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Protein function prediction is one of the most well-studied topics, attracting attention from countless
researchers in the field of computational biology. Implementing deep neural networks that help improve
the prediction of protein function, however, is still a major challenge. In this research, we suggested a
new strategy that includes gated recurrent units and position-specific scoring matrix profiles to predict
vesicular transportation proteins, a biological function of great importance. Although it is difficult to dis-
cover its function, our model is able to achieve accuracies of 82.3% and 85.8% in the cross-validation and
independent dataset, respectively. We also solve the problem of imbalance in the dataset via tuning class
weight in the deep learning model. The results generated showed sensitivity, specificity, MCC, and AUC to
have values of 79.2%, 82.9%, 0.52, and 0.861, respectively. Our strategy shows superiority in results on the
same dataset against all other state-of-the-art algorithms. In our suggested research, we have suggested a
technique for the discovery of more proteins, particularly proteins connected with vesicular transport. In
addition, our accomplishment could encourage the use of gated recurrent units architecture in protein
function prediction.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Proteins perform a wide variety of functions within different
eukaryotic cell compartments. Therefore, prediction of protein
functions is the most well-studied problems in computational biol-
ogy field, attracting the attention of countless scientists. With a
multitude of computational methods, much attention has been
provided to enhance the predictive efficiency of protein functions.
To tackle this problem, there are two popular solutions: finding the
finest attribute sets and producing powerful predictive neural net-
works. For example, in the past, some bioinformatics researchers
used machine learning techniques with a strong feature set such
as pseudo amino acid composition [1,2], position-specific scoring
matrix (PSSM) [3,4], and biochemical properties [5,6]. Nowadays,
with the rise of deep learning, many researchers in the field of
biology have been attempting to apply it to the prediction of pro-
tein functions. There has been much research done on the applica-
tion of deep neural networks in predicting different functions of
proteins, such as electron transport chain [7], human protein sub-
cellular localization [8] and Rab GTPases [9]. However, it requires a
lot of efforts to create innovative deep neural networks and to
enhance the performance results. In this study, we propose a novel
approach to address this issue by using deep gated recurrent unit
(GRU) structure, which is a form of deep neural network. GRU
has been applied in a variety of fields, achieving high performing
results. Thus, we now extend it into computational biology via high
throughput sequencing data. To explain in detail, we applied our
techniques in predicting the vesicular transport protein, which is
one of the most important molecules in transmembrane.

A vesicular transport protein, or the so-called vesicular trans-
porter, is a protein, contained in the cell membrane, which orga-
nizes or promotes the activities of explicit molecules across a
vesicle’s membrane. It plays a vital function in the intracellular
transport of molecules crosswise over membranes. Accordingly,
vesicular transporters oversee the centralization of molecules
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inside a vesicle. Vesicular transport is thus a primary cellular com-
partment, in charge of trafficking molecules between different
explicit membrane-enclosed components. The selectivity of such
transport is, therefore, key to maintaining the functional organiza-
tion of the cell.

Abnormal vesicular transport proteins have been shown to be
associated with a lot of human diseases. In [10], authors reviewed
the mechanism of vesicular transport proteins and their role in
synaptic transmission, behavior, and neural degeneration. Vesicu-
lar transport protein mutations occur in many genetic disorders
and provide insights into the molecular pathology of popular mul-
tifactorial diseases associated with disordered trafficking mecha-
nisms [11]. In [12], many human diseases caused by abnormal
vesicular transport protein were reported, e.g., Hermansky–Pudlak
syndrome, Cranio-lenticulo-sutural dysplasia, Chylomicron reten-
tion disease, and so on. It also participated in disease pathogenesis
of Alzheimer’s disease [13]. Vesicular transport protein structure
has also been used to design the Glatiramer drug, which is also
used in the treatment of patients with recurrent multiple sclerosis
[14].

Due to the significant role that the vesicular transporter plays in
the functioning and structuring of eukaryotic cells, much progress
toward elucidating the molecular mechanisms of vesicular trans-
port proteins has been made in the area of cell biology research
such as emerging inductive technology, mass spectrometry-based
proteomics [15,16], Morpholino knockdown [17], dissection [18],
and gene expression [19]. The use of these experimental tech-
niques, however, is costly and time-consuming. Therefore, in
investigating and characterizing vesicular transport proteins, there
is a need to find new computational approaches to supplant the
experimental techniques. Furthermore, since more protein
sequences have been found with the development of protein
sequencing techniques, the amount of protein sequence entries is
now a thousand times higher than the amount of entries from
around 25 years ago. Faced with the rise of new protein sequences
found in the post-genomic age, there was a desire to develop auto-
mated computational prediction methods to identify vesicular
transport proteins quickly and accurately.

There are few computational studies to investigate the biologi-
cal processes or molecular functions that relates to vesicular trans-
port proteins. For example, one of the most common research is
TCDB [20], a web-accessible, curated, relational database compris-
ing of sequence, classification, structural, functional and evolution-
ary transport system data, including vesicular transport proteins
from a multitude of living organisms. Going in-depth regarding
the discussion of vesicular transport proteins, there have been a
few researchers that attempted to identify some of the proteins.
Anderson and Sandelius [21], for example, searched for the
chloroplast-localized homologues of cytosolic vesicular trafficking
components in the Arabidopsis thaliana genome by using web-
based subcellular prediction tools. Emelie et al. [22] used bioinfor-
matics analysis to indicate the role of two common vesicular trans-
port proteins (Coat and Clathrin). Another kind of vesicular
transport proteins is SNARE, which has been investigated in [23–
25]. In order to classify the molecular function of Rab GTPases in
vesicular transport system, Le et al. [9] created a computational
model by using 2D convolutional neural network (CNN) and PSSM
profiles. However, all current published works only focus on the
whole transport protein system or on one specific type of vesicular
transport protein. Therefore, identifying vesicular transport pro-
teins has not yet been attained and the present study attempts
to deal with this problem.

By using multiple representations of features and neural net-
works, there have recently been a lot of research addressing the
issue of protein function prediction. PSSM profile is one of the most
popular characteristics that can solve the issue while delivering
high performance. Most of these studies undertaken, however,
did not fully exploit the benefits of PSSM profiles in deep neural
networks. In the previous works, the PSSM profiles had been scaled
to a fixed length to feed into the neural networks and then per-
formed classification. But the ordering information was missed in
the process and it affects the outcomes of the performance. To
address this issue, the incorporation of 1D CNN and GRU has been
applied in this study. GRU architecture has indeed been used in
computational biology problems such as protein sequence [26–
28] and RNA sequence [29]. To our understanding, no prior compu-
tational study has specifically integrated the GRU and PSSM pro-
files in the vesicular transport protein prediction. Some essential
contributions of this study to its field are as follows: (1) an innova-
tive computational model for the identification of vesicular trans-
portation proteins showing powerful improvements beyond the
previous models; (2) a benchmark dataset and new discovered
data for further study on vesicular transport protein, and (3) a
study that would provide biologists and researchers with a great
deal of information as they better understand the vesicular trans-
portation protein structures and conduct future research.
2. Materials and methods

Our flowchart is illustrated in Fig. 1 and the details of it was
described in the following sub-sections as follows.
2.1. Benchmark dataset

For an accurate and fair classification problem, data collection
plays a very important role. In this study, we collected data from
UniProt [30] (release 2018_07) and Gene Ontology (GO) [31],
which provides high-quality resources for research on gene prod-
ucts. We performed the following steps:

(1) We collected protein sequences through searching the Uni-
Prot database [30] (release 2018_07) with keyword ‘‘vesicu-
lar transport” or gene ontology terms ‘‘vesicular transport”,
and then, the initial positive dataset for vesicular transport
protein was created.

(2) Note that we only chose the reviewed proteins which have
been annotated by biological experiments. It means that
we filtered out all non-experimentally validated terms from
both UniProt and GeneOntology.

(3) From the datasets, we eliminated the homologous sequences
to ensure that any two sequences shared a pairwise
sequence identity of less than 30%. To perform this task,
we used BLAST [32] with a cut-off level of 30%.

(4) In the last step, we removed all the protein sequences with
non-canonical amino acids (e.g. X, U, B, and Z).

Our proposed study is regarding a binary classification problem
between vesicular transport proteins and non-vesicular transport
proteins, so that a set of general proteins were collected as nega-
tive data. In this work, we chose the membrane protein, which is
a big family of general protein containing a lot of protein functions
(including vesicular transport). Briefly, we extracted all of the
membrane proteins in UniProt and excluded the vesicular trans-
port proteins. Similar to the previous step, only reviewed proteins
and canonical amino acids were retained and we also used the
BLAST clustering [32] with a cut-off level of 30% to remove the
highly similar sequences.

In summary, we received 2533 vesicular transport proteins and
9086 non-vesicular transport proteins in all species. To conduct the
experiments, the data was divided into two sets: cross-validation
and independent data set. The cross-validation dataset was used



Fig. 1. The flowchart for identifying vesicular transport proteins using GRU and PSSM profiles.
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for the construction of our model, and the independent dataset was
used for evaluating the performance of the proposed method. To
separate these two sets, we randomly picked the newly discovered
proteins (by 2009) as independent dataset, and the rest of
sequences was used as cross-validation dataset. Since we used
the year of 2009 as a cut-off point, therefore, there was a different
class distribution in cross-validation and independent datasets.
Table 1 lists all the details of the dataset using in this study. We
also provided our benchmark dataset for further study at https://
github.com/khanhlee/vesicular-gru/tree/master/data.

2.2. Construction of PSSM profiles

In this study, we extracted features using PSSM profile, which is
a well-known representation of patterns in protein sequences. As
mentioned in the original paper [3], it is used to decode the

https://github.com/khanhlee/vesicular-gru/tree/master/data
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Table 1
Statistics of all dataset used in this study.

Original Identity < 30% Cross-validation Independent

Vesicular transport 7108 2533 2214 319
Non-vesicular transport 17656 9086 7573 1513
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evolutionary information of proteins. A PSSM for a protein is an
N*20 matrix, in which N is the sequence length of the query pro-
tein. It assigns a Pij score for the jth amino acid in the ith position
of the query sequence with a high value that indicates a highly
conserved position and a low value that indicates a weakly conser-
vative. Since its discovery, it has been used in numerous studies in
bioinformatics with valuable results [33–35]. This study used PSI-
BLAST (in BLAST package [32]) to search all sequences one-by-one
against non-redundant (NR) database with two iterations and e-
value threshold of 0.001. Thereafter, the PSSM profiles have been
generated and used for the next experiments.

2.3. Deep gated recurrent units architecture

After generating PSSM profiles from FASTA sequences, we used
them as features to be inserted into our deep neural networks. To
extract the features in PSSM profiles, we applied GRU architecture,
which is a type of recurrent neural network (RNN) that has been
used in various bioinformatics applications such as predicting pro-
tein secondary structure [36], classifying widely and rarely
expressed genes [37], biomedical named entity recognition [38].
The big advantage of this architecture is that it can work well with
sequential data and accept an input with different lengths. There-
fore, it can be suitable with our kind of data. These networks are at
the heart of speech recognition, translation and more.

We used PyTorch [39] as our deep learning framework for
implementing our GRU structure. NVIDIA Titan XP was used to
accelerate the graphic processing unit (GPU) via CUDA platform.
In the first initiation, we extracted the information from PSSM pro-
files by using a 1D CNN over an input shape. Given an input size
((N,Cin,L), we are able to exactly calculate the output (N,Cout,Lout)
by using the following formula:

out Ni;Coutj

� �
¼ bias Coutj

� �
þ

XCin�1

k¼0

weight Coutj ; k
� �

� inputðNi; kÞ ð1Þ
where N is a batch size, C is the channel number, L is a length of the
signal sequence, and * is the valid cross-correlation operator. In this
architecture, we limited the input size to be equalled with the num-
ber of amino acids (=20). For this step, we put an input shape (N, Cin,
Lin) to give an output shape (N, Cout, Lout) where:

Lout ¼ bLin þ 2 � padding � dilation � kernelsize � 1ð Þ � 1
stride

þ 1c ð2Þ

An important benefit of inputting all the PSSM profiles into the
neural network is that it prevents missing information of PSSM
profiles. Next, the pooling layer takes a sliding window or a certain
region through the input matrix, which transforms the values into
representative values. The transformation is carried out either by
taking the maximum value (max pooling) or the average of the val-
ues (average pooling) in the window. In our study, we performed a
1D average pooling over an input of several values. In this step, we
can also calculate the output (N, C, L) and kernel size k as follows:

out Ni;Cj; l
� � ¼ 1

k

Xk

m¼0

input Ni;Cj; stride � lþm
� � ð3Þ
Zero-padding is the method of symmetrically adding zeros to
the input matrix, making it possible to adjust the size of the input
to certain demands. Zero values were added at the start and end of
the matrices in the model described in the present research. This
enabled us to apply the filter to the matrix boundary positions. If
the padding size is not zero, the input is implicitly zero-padded
to padd on both sides the amount of points. It is possible to calcu-
late the input shape (N, C, Lin) and output shape (N, C, Lout) by:

Lout ¼ bLin þ 2þ padding � kernel size
stride

þ 1c ð4Þ

Amulti-layer GRU was implemented after the generation of fea-
ture sets with 1D CNN. GRU is an enhanced version of the recurrent
neural network. GRU utilizes the so-called update gate and reset
gate to fix the disappearing gradient issue of a conventional RNN.
The concept behind a GRU layer, as well as their resulting equa-
tions, is quite comparable to that of an LSTM layer. As described
in the previous works [27,28], each layer of GRU cells was calcu-
lated according to the following functions:

(1) Update gate helps the model determine how much of the
past information (from previous steps in time) needs to be
passed on to the future. We used the formula to calculate
the update door zt for time step t:

zt ¼ rðWizxt þ biz þWhzh t�1ð Þ þ bhzÞ ð5Þ
where xt is the input at time t, h(t�1) is the hidden state of the pre-
vious layer at time t-1 or the initial hidden state at time 0, r is the
sigmoid function, W is weight, and b is bias

(2) Reset gate is used from the model to determine howmuch of
the prior data should be forgotten. We use the following for-
mula to calculate it:

rt ¼ r Wirxt þ bir þWhrh t�1ð Þ þ bhr
� � ð6Þ

(3) Current memory content stores appropriate data from the
past using the reset gate.

nt ¼ tanh Winxt þ bin þ rt Whnh t�1ð Þ þ bhn
� �� � ð7Þ

(4) Final memory at the present time step: as the last phase, the
network needs to calculate the ht vector that retains the pre-
sent unit’s data and transfers it to the network. The update
gate is required to do this. The following is performed:

ht ¼ 1� ztð Þnt þ zthðt�1Þ ð8Þ
2.4. Output layers

In the output layers, we firstly applied non-linear activation
layer, namely sigmoid. Commonly, it is problematic in RNN and
it applies the element-wise function as follows:
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Sigmoid xð Þ ¼ 1
1þ expð�xÞ ð9Þ

Then we used linear layers to apply a linear transformation to
the incoming data:

y ¼ Axþ b ð10Þ
In summary, the output shape of linear layers can be described

as:

(1) Input: ((N,⁄,in_features) where ⁄ indicates any additional
dimensions number.

(2) Output: (N,⁄,out_features) where all dimensions have the
same shape as the input except the last dimension.

We next applied a dropout layer for regularization and preven-
tion of neuron co-adaptions [40]. This layer also plays an important
role in helping our model prevent overfitting. The dropout values
in this study range from 0 to 1 to evaluate our model. Given p as
the dropout values, we can calculate the output of this layer via
scaled function:

out ¼ 1
1� p

ð11Þ

Finally, Table 2 summarizes all sections of our GRU model with
weights and trainable parameters (434,365 parameters).

2.5. Assessment of predictive ability

The main aim of this research is to predict whether an unknown
sequence is a vesicular transport protein; therefore, we used ‘‘pos-
itive” to describe the vesicular transport protein, and ‘‘negative” to
describe the non-vesicular transport protein. Although the jack-
knife test is an approximately unbiased performance generaliza-
tion estimator, it has two major drawbacks, e.g. it has high
variance (because all the data sets used for the estimation are very
similar) and it is also expensive to calculate (it requires n esti-
mates, where n is the number of observations in the dataset)
[41]. Therefore, it has been proposed that 5 or 10 fold cross-
validation is a good compromise between unbiasedness and com-
putational requirements. Moreover, there are resources to learn
more about it [42]. We thus trained our model by using 5-fold
cross-validation method for the entire training dataset. We have
performed 10 times of 5-fold cross-validation to obtain more accu-
rate outcomes, since 5-fold cross-validation results differently each
time. The final result of cross-validation is then the average result
of all the 10 times of 5-fold cross-validation testings. Hyperparam-
eter optimization method was used to discover the best model for
each dataset based on the 5-fold cross-validation tests. In addition,
the independent data set was utilized to assess the results preci-
sion in order to regulate any systematic bias in the cross-
validation set. In this examination, the default threshold of 0.5
was selected for binary classification.
Table 2
Summary of GRU architecture in this study.

Layer Weights Parameters

Conv1d (20, 250, 3) ((250, 20, 3), (250,)) 15,250
AvgPool1d (3) 0 0
Conv1d (250, 250, 3) ((250, 250, 3), (250,)) 187,750
AvgPool1d (3) 0 0
GRU (250, 150, 1) ((750, 150), (750, 150), (750,), (750,)) 226,500
Linear (150, 32) ((32, 150), (32,)) 4832
Dropout (0.01) 0 0
Linear (32, 1) ((1, 32), (1,)) 33
Sigmoid () 0 0
For evaluating the performance of the methods, we adopted
Chou’s criterion used in many computational biology studies
[41,43]. Since Chou introduced this set of intuitive metrics, they
have been concurred and admired by a series of recent publications
because of their improvement from the traditional metrics. They
provided the intuitiveness and were easily comprehensible for all
biologists. These intuitive metrics include sensitivity, specificity,
accuracy, and Matthews correlation coefficient (MCC) were
calculated by the following formulas: (TP, FP, TN, FN are true pos-
itive, false positive, true negative, and false negative values,
respectively):

Sensitivity ¼ 1� Nþ
�

Nþ ; 0 � Sen � 1 ð12Þ

Specificity ¼ 1� N�
þ

N� ; 0 � Spec � 1 ð13Þ

Accuracy ¼ 1� Nþ
� þ N�

þ
Nþ þ N� ; 0 � Acc � 1 ð14Þ

MCC ¼
1� Nþ

�
Nþ þ N�

þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N�

þ�Nþ
�

Nþ

� �
1þ Nþ

��N�
þ

N�

� �r ; �1 � MCC � 1 ð15Þ

where:

N�
þ ¼ FP

Nþ
� ¼ FN

Nþ ¼ TP þ Nþ
�

N� ¼ TN þ N�
þ

8>>><
>>>:

ð16Þ

Furthermore, since our problem is a class-imbalanced problem,
we also analyzed the Precision metric as follows:

Precision ¼ TP
TP þ FP

ð17Þ
3. Results and discussions

3.1. Comparison between vesicular transport proteins
and non-vesicular transport proteins

We calculated the frequency between vesicular transport and
non-vesicular transport proteins to analyze the differences
between them. Fig. 2 shows the amino acid composition of the
vesicular and non-vesicular transport proteins. The error bars on
the chart show whether there is a significant difference in the con-
tributions of these amino acids. As shown in this figure, there are
not many differences between the amino acid frequencies sur-
rounding these two datasets since they both come from the mem-
brane transport proteins and have a similar structure. Because of
this reason, we cannot apply the basic feature sets, e.g. amino acid
composition, dipeptide composition in this study. However, some
minor differences between two sets of data could be shown, such
as amino acids E, K, and Q may play an important role in deciding
vesicular transport proteins. On the other hand, amino acid G has a
higher frequency and would play a more important role in non-
vesicular transport proteins.

We tried to look at the motifs that often appear in protein
sequences in the following analysis. Fig. 3 shows the most frequent
motifs in vesicular and non-vesicular transport of dipeptide and
tripeptide residues. The results show that the protein sequence
contained more important motif residues while only containing
one residue amino acid composition. Note that this analysis was
performed using our training dataset. Dipeptide composition



Fig. 2. Amino acid composition in vesicular transport and non-vesicular transport proteins.

Fig. 3. Comparison between vesicular and non-vesicular transport proteins using their dipeptide and tripeptide composition.
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showed that the pairs of LE, EE, and EL are dominant in vesicular
transport proteins but less frequent in non-vesicular transport pro-
teins. Regarding tripeptide composition, motifs PPP and EEE are
more abundant in the vesicular transport sequences under study.
Thus, we are able to discover some motifs to discriminate vesicular
transport proteins from general proteins and our model aims to
discriminate them according to the sequence information.
3.2. Model optimization

Hyper-parameters (e.g., convolutional feature size, fully con-
nected size, kernel size, and so on) optimization has been exam-
ined to identify the optimal setup of our model. Firstly, GRU
hidden sizes were ranged from 50 to 500 (with step size of 50)
to search for the optimal one. After this step, we realized that
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our model came to the highest performance when GRU sizes came
to 250 (training accuracy of 81.6% and MCC of 0.41). The GRU sizes
play a role like feature selection technique, which means that we
have selected the 250 features in our GRU architecture.

We also investigated the performance results of different fully
connected layer sizes. As shown in Table 3, using a bigger size of
fully connected layers did not increase the performance, rather it
achieved worse results. From this table, the fully connected layer
size of 32 performed better than the others. Thereafter, this param-
eter was used subsequently for the rest of the experiments. This
indicated that the big filter size did not have a significant impact
on this problem, hence, the simplest filter sizes are required to
achieve significant results.

To evaluate the model’s performance, an independent dataset
was used for another testing. To increase the persuasiveness of
the problem, we chose the independent dataset from newly dis-
covered proteins (proteins discovered after 2009). This means that
we used the old proteins to build a model and evaluate them with
new proteins. None of the samples in the independent dataset is
contained in the cross-validation dataset and it also has sequences
with identity of less than 30%. After performing experiments, our
independent test results reached an accuracy of 85.8% and MCC
of 0.44. The results between the cross-validation and independent
datasets are consistent with less differences. It claims that the opti-
mal hyper-parameters could be used to evaluate the independent
dataset and there was not overfitting in our model. In addition,
the overfitting was also resolved due to of our dropout layers
which had been inserted in the GRU network.
3.3. Imbalanced problem solving

A common problem in supervised learning is the imbalance of
the dataset, due to the number of negative samples being much
higher than the number of positive samples. In the current study,
the number of negative samples (non-vesicular transport proteins)
is 3.42 times higher than those of positive examples (vesicular
transport proteins). A predictor trained by such a highly skewed
dataset may introduce inaccuracies in prediction of the vesicular
transport as non-vesicular transport ones. Therefore, in our results,
the low sensitivity of the methods is due to the larger number of
negative examples compared to positive examples.

Recently, there are many techniques to deal with an imbalanced
dataset, such as oversampling [44], under-sampling [45], and class
weight tuning [46]. Each technique might be suitable for a specific
problem and many researchers attempted to evaluate and find the
optimal one for their problem. In this study, we also applied those
techniques to consider the suitable one for our model. A data pre-
processing approach was applied by randomly oversampling the
minority class or under-sampling the majority class in the training
dataset. By choosing oversampling, we not only have sufficient
data for the deep learning method but could also avoid losing valu-
able information. One concern when using oversampling is that
our model will become overfitted in some cases. On the other hand,
Table 3
Performance results of identifying vesicular transport proteins with different fully-connec

FC sizes Sensitivity Precision Spe

16 39.6 63.4 93.5
32 40.9 63.4 93.3
64 34.6 65.2 94.7
128 40.8 63 93.1
256 38.8 63.2 93.5
512 38.2 63.7 93.8
1024 37.1 64.7 94.2

The bold values are the highest ones in each specific metric.
under-sampling will allow us to attain clean data with no similar-
ity. However, we will lose information through the removal of
some of the negative samples. The last method we applied in this
study is class weight tuning, in which we kept the original dataset
and used weight tuning in the loss function. It is also a good solu-
tion and has been used in many deep learning applications. An
important note here is that we only applied sampling techniques
in the training set but not in the testing set. This ensures the accu-
racy in using those techniques, making the results more reliable.
Table 4 shows the performance results when we applied three
imbalanced techniques. We see that the class weight tuning
method is superior to the other two. Now we can increase the per-
formance of our model, especially in sensitivity and MCC, which
reached 79.2% and 0.52, respectively. It means that we can predict
accurately more vesicular transport proteins and increase the qual-
ity of the model.
3.4. Effectiveness on the other datasets

In this section, we aim to carry out a set of additional experi-
ments to see whether our method works well on different datasets
or using different separation way. In the first try, we would like to
see whether picking only membrane non vesicular transporters has
an impact or general protein. Therefore, we randomly collected a
set of general proteins to make it a negative dataset. Note that
we excluded all of the vesicular transport proteins and removed
all the sequences with identify level of 30%. A set of 12,746 pro-
teins was retrieved and we randomly divided it into cross-
validation set and independent dataset with ratio 5:1 (10,898
sequences for cross-validation and 1847 sequences for indepen-
dent test). Thereafter, a binary classification between vesicular
transport protein and general protein has been made using our
best GRU architecture. As a result, this model reached an average
5-fold cross-validation sensitivity, precision, specificity, accuracy,
and MCC of 58.2%, 41.8%, 83.8%, 79.5%, and 0.37, respectively. Com-
pared to our membrane set’s results (Table 3), it has been consis-
tent. It can be claimed that we can use membrane proteins to
represent general proteins with a same-level performance.

Moreover, because we used the newly discovered sequences for
independent dataset, we also examined our performance results on
a different independent dataset. Contrasting with this independent
dataset, we used the ‘‘old” protein as new independent dataset and
the other proteins as our training set. In total, there were 420
vesicular transport proteins used in this new set. After performing
the optimal GRU architecture (Table 2’s parameters), we reached a
sensitivity of 67.1%, precision of 51.5%, specificity of 82.4%, accu-
racy of 79.1%, and MCC of 0.45. It is easy to observe that the perfor-
mance results were consistent with the selected independent
dataset. Therefore, we could claim that our model was efficient
in identifying vesicular transport proteins, even with different sep-
aration of data.
ted (FC) layer sizes.

cificity Accuracy MCC AUC

81.5 0.40 0.765
81.6 0.41 0.771
81.4 0.38 0.757
81.5 0.40 0.75
81.4 0.39 0.762
81.4 0.39 0.76
81.5 0.39 0.757



Table 4
Comparative performance results among different imbalanced techniques.

Techniques Sensitivity Precision Specificity Accuracy MCC AUC

Oversampling 77.3 47.4 82.5 81.6 0.50 0.849
Undersampling 60.4 46.5 85.8 81.5 0.42 0.781
Class weight tuning 79.2 48.7 82.9 82.3 0.52 0.861
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3.5. Comparison with the previous techniques and methods

As shown in Table 2, we have already selected our best layers
and parameters for our neural network. In this section, we aim to
compare our performance with the previous techniques as well
as networks. One of the most efficient methods in this field is to
transform PSSM profile from 20*n dimension to 20*20 dimension
and feed into neural network. This method has been successfully
applied in numerous sequence-based protein function prediction
with valuable results such as transport proteins or cytoskeleton
motor proteins [35,47]. A big limitation of this method was that
there was no order of information, which our method managed
to address. We conducted the comparative performance with three
common classifiers: k-nearest neighbors (kNN) [48], Random For-
est [49], and SVM kernel [50] due to their significant improve-
ments in a lot of similar studies. The next classifier that we
would like to compare against is 2D CNN, which is recently consid-
ered as one of the best methods to resolve this type of problem
[9,47]. The traditional machine learning algorithms have been
implemented by using Python language and Scikit-learn package,
while 2D CNN have been implemented by using Keras deep learn-
ing library. To have a fair comparison, we tuned the optimal
parameters for all these classifiers via a systematic grid-search
on the training dataset. To detail, the number of nearest neighbors
were ranged from one to ten in kNN (step size = 1), number of trees
were ranged from 100 to 500 in Random Forest (step size = 100),
and cost was ranged from �5 to 15 (step size = 2), gamma was ran-
ged from 3 to �15 (step size = �2) in SVM to perform a grid search
and find the optimal cost and gamma. For 2D CNN, we performed a
hyperparameter optimization process to select the optimal num-
ber of layers, filters, dropout level, and optimizers. After tuning,
we specified the optimal parameters of each classifier as follows:
Fig. 4. ROC Curves among different methods fo
k = 10 in kNN, n_estimators = 100 in Random Forest, cost = 2 and
gamma = 0.5 in SVM, number of filters = 128, dropout = 0.1 in 2D
CNN. We also used weight tuning in these classifiers to fairly
compare with GRU architecture. In summary, the comparative
performance among different classifiers was shown in Fig. 4. To
see the performance at different levels of threshold, we showed
the ROC Curve and AUC in this figure. We readily noted that the
performance results of our GRU was also greater than the other
methods in most of points. However, the issue posed here is how
to maintain GRU’s better output when it undergoes many cross-
validation tests compared to other methods. To answer this ques-
tion, we carried out a paired t-test to determine whether other
techniques are considerably better or worse, or whether there is
even no statistical distinction relative to GRU. The null hypothesis
assumes that the real mean difference between the combined met-
rics is zero and p-value = 0.05 (95% confidence level) determines
the statistical significance. After performing statistical test, the p-
values were 0.00029, 8.81e-05, 0.00216, and 0.000137 when
comparing GRU with kNN, Random Forest, SVM, and 2D CNN,
respectively. The low p-values showed that our GRU outperformed
the other methods with high confidence level. It can be claimed
that the order information of PSSM plays an important role in iden-
tifying the protein function in general and vesicular transport in
particular. Also, this fill a gap that the previous works could not
address even using GRU architecture [26,36].

Moreover, we also compared our performance results with
three different methods: (1) using traditional PSSM features
+ GRU (to show that the claimed improvement is not merely
because of GRUs), (2) using BLSTM which is decidedly more preva-
lent in the published works for protein applications, and (3) using
BLAST [32] which is a general purpose protein function prediction
tool as shown in paper [51]. Table 5 shows the comparative perfor-
r identifying vesicular transport proteins.



Table 5
Comparative performance results among different protein function prediction methods.

Techniques Sensitivity Precision Specificity Accuracy MCC AUC

Traditional GRU* 70.8 44 81 79.2 0.44 0.848
BLSTM 54.2 55.8 90.9 84.6 0.46 0.846
BLAST 54.1 52.8 89.8 83.6 0.43 0.82
New GRU** 79.2 48.7 82.9 82.3 0.52 0.861

(* traditional PSSM profiles + GRU, ** our GRU architecture).
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mance among different methods. Again, our GRU architecture still
outperformed the other ones at the same level of comparison,
especially in term of sensitivity, MCC, and AUC.

3.6. Releasing benchmark datasets and source codes for re-producing
the model

We provided all datasets and source codes on https://github.-
com/khanhlee/vesicular-gru to make our article simple to repli-
cate. Python language has been used to implement all the deep
learning architectures through the Pytorch library [39]. In order
to re-implement the technique, readers and scientists can freely
access the information and predict their own sequences without
a web server. We supplied the highest model in the design phase
based on 5-fold cross-validation results. Researchers with
restricted programming and machine learning understanding can
readily use these resources to accomplish their job.

Furthermore, as shown in a series of latest papers on the growth
of prediction techniques, user-friendly and publicly available web
servers would improve their effect considerably, leading to an
unprecedented revolution in medicinal chemistry [7,27,41]. We
want our future study to be able to provide a web server for the
forecast technique described in this document.

4. Conclusion

In this research, we approached an innovative technique for dis-
criminating vesicular transport proteins using GRU and PSSM pro-
files. With this technique, all the PSSM data can be preserved in
deep neural networks to avoid missing data as much as possible.
We used 5-fold cross-validation and independent test data (includ-
ing 319 vesicular transport proteins and 1513 non-vesicular trans-
port proteins) to evaluate performance. Our method showed a 5-
fold cross-validation accuracy of 82.3% and MCC of 0.52 for predict-
ing vesicular transport proteins. The accuracy and MCC with inde-
pendent datasets are 85.8% and 0.44, respectively. This strategy
accomplished an obvious enhancement in all assessment metrics
compared to the results of the other state-of-the-art techniques.
We approached a strongmodel throughout this research to discover
newproteins that highlybelong tovesicular transportationproteins.
The results of this study could provide a foundation for further stud-
ies that could use the GRU and PSSM profiles in computational biol-
ogy. In addition, scientists can also use our architecture in the future
to solve several protein function prediction issues.
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