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Abstract: Estrogen receptors (ER) include ER alpha, ER beta and new membrane receptor G
protein-coupled receptor 30 (GPR30). Estrogen receptors are key receptors to maintain ovarian
granulosa cell differentiation, follicle and oocyte growth and development, and ovulation function.
The abnormal functions of estrogen, its receptors, and estradiol synthesis-related enzymes are closely
related to clinical reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS) and
endometriosis (EMS). At present, hormone therapy is the main treatment for ovarian-related diseases,
and a stable hormone environment is established by regulating ovarian function. In recent years,
some estrogen-related drugs have made great progress, such as clomiphene, which is a nonsteroidal
antiestrogen drug in clinical application. This article elaborates on the regulatory role of estrogen and
its nuclear receptors and membrane receptors in oocyte development, especially female reproductive
diseases related to the abnormal expression of estrogen and its receptors. We also highlighted the
latest advances of treatment strategy for these diseases and the application of related targeted small
molecule drugs in clinical research and treatment, so as to provide reference for the treatment of
female reproductive diseases.
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1. Introduction

Estrogen mediates various effects throughout the body in both women and men, regulating
physiological and pathological processes in the reproductive, cardiovascular, skeletal, endocrine,
nervous, and immune systems. Therefore, it is also involved with scores of diseases, for example,
infertility, endometriosis, polycystic ovary syndrome, and various cancers. The role that estrogen plays
in the female reproductive system and the development of secondary sexual characteristics are primarily
recognized as its most significant function. The cellular receptors of estrogen are crucial mediators of
estrogen functions, which includes the nuclear receptor family (estrogen receptors (ER) alpha and ER
beta) and membrane estrogen receptors (mERs; G protein-coupled receptor 30 (GPR30)). The physiology
of estrogen and its receptors is especially complicated, as the history of estrogen-signaling mechanisms
and systems originates more than 500 million years ago [1]. Interestingly, it was believed that the
actions of estrogen were activated via a single receptor discovered in 1962 [2] until another estrogen
receptor with high homology was identified in 1996 [3]. Since then, the former was renamed as ERα
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and the latter ERβ. The third estrogen receptor was discovered and characterized in the 2000s [4,5],
and was named the G protein-coupled receptor 30 (GPR30)/G protein-coupled estrogen receptor 1
(GPER).

Before the discovery of GPER, most physiological functions of estrogen receptors were
widely recognized as ligand-activated transcription factors that belong to the nuclear hormone
receptor family, including other steroid receptors such as progesterone, androgen, glucocorticoids,
and mineralocorticoids [6]. However, this view was proved to be inaccurate by the time frame of
transcriptional mechanisms because rapid cellular and physiological responses mediated by estrogen
and other steroids had already been demonstrated. GPER identification allowed us to further
understand the complicated activities and functions of estrogen and its receptors due to the rapid
responses it classically mediates [7–9]. As described above, there are multiple and diverse cellular
estrogen effects, including cAMP production, calcium mobilization inside cells, and the activation of
various kinases, which include phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated
kinase (ERK). During these physiological processes, the expression and signaling mechanisms of
estrogen receptors is complex and potentially exhibit redundant, independent, synergistic, and/or
antagonistic actions [10]. As a result, the abnormal functions of estrogen receptors and estradiol
synthesis-related enzymes are closely related to clinical diseases, especially in the reproductive and
endocrine systems, such as polycystic ovary syndrome (PCOS) and endometriosis (EMS). Moreover,
some numerous estrogenic compounds, including natural and synthetic ligands, are harmful to humans
and other animals and were classified into endocrine-disrupting chemicals (EDCs) [11].

Owing to the critical role that estrogen receptors and estrogenic (including antiestrogenic)
compounds play in various aspects of health and disease, numerous drugs have been synthesized
by pharmaceutical companies, some of which have achieved great success as contraceptives, cancer
treatment, and postmenopausal conditions including depression and osteoporosis. Part of these
drugs are classified as selective estrogen receptor down-regulators or degraders (SERDs) because their
binding to receptors leads to the proteasomal degradation of the receptor [12], while others are sorted
into selective estrogen receptor modulators (SERMs) that play a role as agonists or antagonists of
estrogen receptors in different types of estrogen-sensitive tissue [13].

As a matter of fact, because of the significant role that estrogen and its receptors play in multiple
physiological and pathological processes, hormone therapy is the main treatment for ovarian-related
diseases. For example, raloxifene can effectively reduce the incidence of breast and uterine cancer,
tamoxifen is now used for the therapy of breast tumors in premenopausal and postmenopausal women,
and diethylstilbestrol can be used to treat breast cancer patients. On the other hand, regulation of ovarian
function can also maintain a stable hormone environment. In this review, we expound an overview of
the regulatory role of estrogen, its receptors, and their cellular mechanisms in the female reproductive
system, and recent advances in ovary diseases, followed by research and applications of the latest
strategy of clinical therapy, so as to provide reference for the treatment of female ovarian diseases.

2. Estrogen Receptors

2.1. ERα and ERβ

Estrogen receptors α and β, the critical mediators of the biological effects of estrogen, are
encoded by genes ESR1 and ESR2, located on nonhomologous chromosomes, respectively. Moreover,
the expression of ERα and ERβ differs greatly in tissue and cells. ERα is predominantly expressed in
the uterus, ovaries, and breasts, while expressions of ERβ are mainly found in the nervous system,
ovaries, cardiovascular systems, and the male reproductive system [14]. The functions of ERα and
ERβ can be targeted by many therapeutic treatments of estrogen-related diseases. Those therapeutic
interventions emphasize the significance of understanding the mechanisms of ERα and ERβ to optimize
treatment strategy.
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Members of the nuclear-receptor superfamily of hormone receptors are constituted by four domains,
ERs also included. These four structures and functioning domains are an NH2 terminal domain,
a COOH terminal ligand-binding domain, a hinge region, and a DNA-binding domain [15]. In addition,
people found that ERs have a different domain with an unknown function: the carboxyl-terminal
domain [16]. When we compared all of these five domains of ERα and ERβ, we found that the
NH2-terminal domains encompassed a ligand-independent activation function (AF1) domain that
is capable of transcriptionally activating target genes with less than 20% similarity between the two
forms. The amino acid identity of the DNA-binding domain in ERα and ERβ is 97%, and this domain
mainly acts as a mediator of the specific combination of ERs and DNA sequences [17]. On the contrary,
the amino acid identity of the ligand-binding domains of ERα and ERβ is 59%, with only minor
structural differences between the two subtypes of ligand-binding pockets [18]. Moreover, the COOH
terminal ligand-binding domain contains the transcription activation function 2 (AF2) domains, which
are critical for the regulation of ligand-dependent transcription [19].

To mediate the effects of gene expression, nuclear hormone receptors are localized in the
nucleus. As for estrogen receptors, inactivated ERs are mainly located in the nucleus (~95%), and the
rest are located in the cytoplasm, and the membrane-localized ERα acts as an atypical G-protein
coupled receptor [20,21]. Ligand activation usually leads to the dimerization of the monomer after
dissociation from the chaperone (Hsp90), and translocate cytosolic receptors to the nucleus. Like
other steroid hormone receptors, ERs act as homologous dimers and/or heterodimers in transcription,
recruiting coregulators and combining them with estrogen response elements (EREs) [6,22,23]. Through
combining with transcription factors, activated estrogen receptors can also indirectly bind to DNA,
and transcription can be regulated by post-translational modification in the absence of a ligand [24].
A variety of ligands that are able to bind to the ER produce various conformations of the binding
domain of the receptor-ligand (particularly helix 12), which produces numerous binding sites for
coregulatory factors and other proteins. Furthermore, differential expression modes in different types
of tissue lead to the complexity of ER and its ligands [6]. In summary, ERs regulate the expression of
numerous genes, both positively and negatively, which depends on ligand and tissue [25].

2.2. G Protein-Coupled Estrogen Receptor

GPER was originally identified in the laboratory as an orphan receptor (a cloned receptor with no
known ligand) in the late 1990s and was named GPR30, which belongs to the 7-transmembrane G
protein-coupled receptors family (GPCR) [26]. The vast majority of the available data illustrated that
GPR30 specifically binds to estrogen and activates the intracellular signaling cascade normally associated
with GPCR. That is the reason why GPR30 was designated as a GPER [27,28]. The transmembrane
domains of the GPCR positions the amino terminus outside the cell, which is typically glycosylated;
the carboxyl-terminal is in the cytoplasm and has great effects on receptor internalization through
phosphorylation [29]. At present, the positioning of GPER is still controversial. Using both cell and
tissue samples, most studies have resulted in consistent results with mainly the cytoplasmic membrane
localization of GPER [30–32], while localization in the nucleus has been observed, too [33,34].

GPER is coupled with a heterotrimeric G protein that, in turn, regulates multiple downstream
intracellular effectors. The most active natural form of estrogen is 17β-estradiol (E2), which is formed
predominantly in the ovaries of premenopausal women. GPER was demonstrated to be involved in
the rapid activation of ERK1/2 mediated by 17β-estradiol [35–37]. The downstream signaling pathway
is involved in the activation of metalloproteinase mediated by Src, which releases heparin-binding
EGF, followed by the transactivation of EGFR and then ERK1/2. After that, the capability of GPER to
activate adenylate cyclase was illustrated as a mechanism involved in the activation and/or inhibition
in ERK1/2 [38]. On the flip side, GPER activates the PI3K/Akt pathway and responds to 17β-estradiol
with EGFR transactivation involved. In addition, 17β-estradiol can stimulate the growth of human
keratinocytes by inducing cyclin D2 expression, and induce the expression of c-Fos (a cyclic adenosine
monophosphate signal in macrophages) to enhance the production of nerve growth factor, which are
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both mediated via cell surface GPER [39,40]. In spite of rapid signaling events, GPER also regulates gene
expression, such as c-fos and D1 [41,42], growth factor of connective tissue [43], fatty acid synthase [44],
and vascular endothelial growth function [45]. All of these different GPER activation pathways regulate
a variety of cellular physiology functions in proliferation, metabolism, migration, and secretion, which
also shows the great influence of GPER in physiological and pathological processes. As mentioned
above, ERα and ERβ mediate multiple physiological processes. At the cellular level, ERα, ERβ,
and GPER may function synergistically or antagonistically, which means the final cellular outcome
would be decided by the interaction of all activation and inhibition pathways.

2.3. Estrogen Receptor Ligands

Estrogen receptor ligands and other factors affect the hormone signal transduction pathway:
The modulation of endogenous ligands and coregulators can be a candidate for tumors and
therapeutic targets. In addition to 17β-estradiol, estrogen receptor ligands can activate the receptors
of each subtype, and the synthesis and use of specific ligands have received extensive attention.
These compounds, SERMs, bind to these receptors with specificity in transcriptional-activation
activity (for example, tamoxifen is an ERα-selective agonist or antagonist, and raloxifene is
an ERβ-selective agonist or antagonist). In order to study the molecular mechanisms of the
action of three estrogen receptors, many synthetic selective agonists or antagonists have been
successfully developed: 4,4′,4′’-[4-propyl-(1H)-pyrazole-1,3,5-triyl] trisphenol (PPT) activates ERα,
2,3-bis (4-hydroxyphenyl)–propionitrile (DPN) is an agonist of ERβ, and compound G-1 is a highly
specific agonist of GPR30. Figure 1 shows various estrogen receptor ligands, including endogenous
and exogenous ligands, SERMs, SERDs, and GPER agonists and antagonists, which correspond to
their receptors.
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Figure 1. G-protein-coupled estrogen receptor (GPER) and agonists and antagonists of cell-
membrane-bound receptors derived from estrogen receptor (ER)α and ERβ, involved in rapid
intracellular signal transduction. Arrows indicate activation, blocked arrows indicate inhibition,
and dashed lines indicate tissue-specific activation or inhibition.

2.4. Cell Mechanisms

Estrogen mediates its biological response through several possible cellular mechanisms, as shown
in Figure 2. There are two main cellular roles involving receptors: genomic activity and rapid
nongenomic effects [46]. It was reported that the rapid effects take place within minutes in the process
of therapy. Furthermore, by inhibiting the MAPK/ERK or AKT signaling pathway, nongenomic
effects can be stopped. Initiating the processes of these signaling pathways is closely related to
GPR30-mediated plasma-membrane-associated processes [47]. Here, we elaborate on the process of
ERα transportation to the cell membrane and the signaling that follows. ER can bind to caveolin 1
(Cav-1) physically induced by ERα palmitoylation [48]. After the binding process, Cav-1 transports ER
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to the caveolae rafts in the membrane and is capable of assembling various signaling molecules [49].
The activation process of ER is achieved by association with G-protein α and β/γ subunits after its
linking with E2 and the following dimerization [50,51]. The activation of the G-protein can initiate
multiple rapid nongenomic effects in a matter of seconds, including cyclic nucleotide production and
early kinase activation. On the other hand, because of signaling to the epigenome of membrane ER
and the improvement of receptor activity caused by nuclear ER protein post-translational modification,
non-palmitoylated nuclear-localization ER is recruited to promoters and enhancers that regulate genes
required for the regulation of steroid action. During the binding of hormones to extranuclear receptor
proteins, the steroid-binding unit of the protein changes, which is called receptor transformation.
Receptor transformation is an important step in the action of estrogen, and hormone-induced receptor
proteins are converted into biochemically functional forms [52].
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Figure 2. Expression of ERβ in endometriosis. ERβ mainly participates in endometriosis through
the following ways: Inhibiting TNFα-mediated apoptosis, inducing an increase in interleukin-1,
and co-stimulating Ras-related and estrogen-regulated growth inhibitor (REGE) expression with
prostaglandin E2 (PGE2) under the action of estradiol. In addition, serum and glucocorticoid-regulated
kinases (SGK1) is a co-targeting target of PGE2 and estradiol. These pathways lead to proliferation of
endometriosis cells.

There are three predominant mechanisms of genomic transcriptional regulation mediated by
estrogen receptors. The classical mechanism (direct binding to DNA regulatory elements) can be
illustrated by the following example. Helix 12 is the functional core of AF-2 and is highly conserved in
ligand-binding domains. The process of binding to a ligand can alter the configuration of helix 12,
which leads to an agonistic or antagonistic form of transcriptional regulation [53]. Binding between
ER and hormone results in a change of conformation in the ligand-binding domain that allows helix
12 to interact with coactivators. The resulting genomic reaction requires coactivator binding and is
proportional to the magnitude of the reaction. On the other hand, as shown by studies at the cellular
level and the living individual level, ERα binds to the DNA with inactive status in the absence of
hormones [54,55]. A mouse model of DNA-binding domain mutation of ERα indicates that direct
DNA binding is required to activate both biological activity and hormone response. Nuclear factors
such as pro-factor FoxA1 may affect direct binding, and by recruiting chromatin at the binding site
to remodel the protein, the chromatin is opened, allowing the ER to enter its regulatory DNA site.
Following this, the recruitment of polymerase II initiates gene transcription after assembling the
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transcription complex, which is comprised of multiple components [56]. In the second ER-regulated
mechanism, ER binds to transcription factors that are already bound to the DNA. Then, hormone
receptors regulate gene expression first via the interaction between proteins and transcription factors,
then, these transcription factors directly bind to their respective response elements [57]. As for the
third mechanism, ER can regulate hormone responses without hormones through the activation of
growth factors without ligands, which is attributed to the phosphorylation process of some serine
residues on the receptor [58]. In addition to its ability to directly regulate gene expression, estrogen
also affects cell signaling and cellular function through rapid membrane-initiation events. Many
signaling processes rely on estrogen receptors localized to the plasma membrane. Lipid rafts are
critical for ER plasma-membrane localization and play a key role in its membrane-priming effect [59].
Together, the integration of these cellular signaling pathways can mediate genomic activities and rapid
nongenomic effects independently and/or complementarily, which activates the effects of estrogen
through hormonal response.

3. ERs and Female Reproductive Diseases

3.1. ERs and Ovarian Cancer

In women of childbearing age, ERα is mainly located at thecal cells and the ovarian stroma in
the corpus luteum and surface epithelium of the ovary. In postmenopausal women, ERα is present
in the stroma, the epithelial inclusion cyst, and the ovarian-surface epithelium. The main locations
of ERβ are granulosa cells. Growths that depend on estrogen in response to endocrine therapy for
ovarian cancer are closely related to the expression level of ERα. ER is downregulated in ERα-positive
ovarian cancer, while being targeted directly by tumor suppressor microRNA (miR)-206. Therefore,
the introduction of miR-206 mimics could inhibit cell proliferation and the invasion of ovarian-cancer
cells [60,61]. Recent studies have shown that long noncoding RNAs can mediate the function of ERα
in ovarian cancer [62]. The promotion of ERα in ovarian cancer suggests that endocrine therapy
may be an efficacious option. Unfortunately, ovarian cancer is not often treated with antiestrogenic
drugs because of the low response rates. As ovarian cancer occurs, the ratio of ERβ and/or ERβ/ERα
decreases, indicating that carcinogenesis may be associated with the loss of ERβ expression. Treatment
or reintroduction of ERβ with ERβ agonist DPN significantly inhibits the growth of ovarian cells [63].
It is worth noting that recent studies have shown that a normal ovarian epithelium almost completely
shows ERβ cell-nuclear positive immunity, while ovarian-cancer tissue mostly shows the cytoplasmic
staining of ERβ. Therefore, the expression of cytoplasmic ERβ is recognized as an independent
unfavorable prognostic factor [64]. In addition, statistical data indicate that cytoplasmic ERβ2 (one of
the isoforms of ERβ) expression is positively correlated with five-year survival and decreased chemical
resistance [65]. These new results suggest that different isoforms of ERβ may function in different
ways, which is possibly due to their different cellular localization and prognosis. Recent studies have
shown that natural ERβ agonists have the potential to significantly inhibit the growth of ovarian-cancer
cells through anti-inflammatory and proapoptotic effects, and can be used as novel therapeutic agents
for the treatment of ovarian cancer [66].

3.2. ERs and Endometriosis

Endometriosis refers to a common gynecological disease formed by the active endometrial cells
being implanted outside the endometrium [67]. The symptoms have a negative impact on the health
and quality of life of the patient. Among all patients with endometriosis, according to statistical data,
40%–50% have fertility problems [68].

Estrogen-mediated changes in cell signaling have important implications for the pathogenesis of
endometriosis. The invasion and migration of endometriosis eutopic endometrial stromal cells (euESC)
can be regulated by estrogen/H19/miR-216a-5p/ACTA2 pathways. Specifically, the invasion and
migration of euESC can be inhibited by the suppression of H19 or ACTA2, and promoted by estrogen
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via H19 [69]. Endometriosis contains higher levels of 17β-estradiol than the normal endometrium
because of higher levels of aromatase and 17β-hydroxysteroid dehydrogenase-1 genes [70]. High
levels of 17β-estradiol activate ER in endometriotic tissue and stimulate growth that depends on
estrogen. In endometriotic tissue, both the ERα and the ERβ isoforms are required for the growth of
endometriotic lesions. In mice, ERα knockout females are sterile because their uteruses are not sensitive
to estrogen. On the contrary, ERβ knockout females are sub-fertile and primarily lack effective ovulation
function [71]. The important role of ERα and ERβ in the development of mouse ectopic lesions have
been revealed in previous research [72,73]. Functional studies on ERβ have shown that it can prevent
apoptosis, enhance adhesion, invasion, proliferation, inflammatory body activity, and inflammatory
signals of ectopic lesions. Studies on ERα knockout mice with endometriosis have shown that ERα
brings cell adhesion and proliferation, and regulates inflammatory signaling in ectopic lesions [74].
However, different isoforms of ER mean various kinds of expression patterns between types of tissue
with endometriosis and a normal endometrium [75]. Contrary to the case of ERα, not only can
high levels of estrogen receptors be detected in tissue with endometriosis, but also enhanced ERβ
activity. In addition, ERβ-selective antagonists promote the inhibition of ERβ activity and inhibit the
growth of ectopic lesions in mice. It is worth noting that the acquisition of ERβ function stimulates
endometriotic processes. ERβ inhibits TNFα-induced apoptosis through interactions with apoptotic
mechanisms to avoid the endogenous immune surveillance of survival cells [76]. ERβ also promotes
the expression level of interleukin-1β through interactions with components of the cytoplasmic
inflammatory body, thereby enhancing its cell-proliferation characteristics. In order to identify the
target of ERβ in endometriosis, a genome-wide comparative analysis method was used to identify
Ras-related and estrogen-regulated growth inhibitor (RERG) and serum and glucocorticoid-regulated
kinases (SGK1) [77,78]. Among them, RERG can induce the proliferation of primary endometriotic cells,
and the levels of RERG mRNA and protein in human endometriotic stromal cells can be induced by
estradiol. Prostaglandin E2 (PGE2) can also phosphorylate RERG. Thus, integration of ERβ and PGE2

signaling in RERG results in endometrial ectopic cell proliferation. In addition, since the expression of
SGK1 is stimulated by estradiol and ERβ, the number of endometrial ectopic cells is increased [79]. ERβ
functions in a variety of ways to promote cell-proliferation and tissue-invasion activity in endometriosis
sites to establish ectopic lesions (Figure 2).

GPER expression in mature follicles/oocytes is more frequent than in primordial follicles/oocytes,
which means that GPER may be the choice during follicular development. In addition, GPER is
upregulated in ovarian endometriosis [80]. GPER is maximally expressed during the proliferative
phase. There is overexpression of GPER in the eutopic and ectopic endometrium in patients with
endometriosis compared with the eutopic endometrium of normal participants [81]. In addition, recent
research has found and optimized pyridyl-cycloalkyl-carboxylic acids as an inhibitor of microsomal
prostaglandin E synthase-1 for the treatment of endometriosis [82].

3.3. ERs and Polycystic Ovary Syndrome

Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic abnormality, common
in women of childbearing age, and is the most common female endocrine disease. It is characterized by
chronic anovulation (ovulation dysfunction or loss) and hyperandrogenism (excessive male-hormone
production in women). The main clinical manifestations are an irregular menstrual cycle, infertility,
hairiness, and/or acne [83,84]. PCOS is associated with global and gene-specific DNA methylation
remodeling in a cell-type-specific manner [85]. Furthermore, PCOS is an important risk factor
for type 2 diabetes, cardiovascular disease, gestational diabetes, pregnancy-induced hypertension,
and endometrial cancer [86]. Studies have shown that the endometrial phenotype and dysfunction
of women with PCOS are abnormal. PCOS women are at least three times more likely to develop
endometrial cancer (EC) [87,88]. Endometrial cancer is associated with endometrial hyperplasia, no
antagonistic estrogenic effects and genetic alterations, and is classically classified into two types: type
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I, which is the most prevalent and estrogen-dependent, and type II, which is more aggressive and
generally considered to be estrogen-independent.

In a normal menstrual cycle, the life cycle of the endometrium is divided into a proliferative
phase and a secretory phase. It is based on the response of the endometrium to steroid hormones
(progesterone, androgen, and estrogen) up- or down-regulated [89]. The main cell types that steroid
hormones target in the endometrium are epithelial cells and stromal cells. The activity of mitosis and
extensive proliferation activated by estrogen are two main characteristics of the proliferative phase,
and elevated estrogen promotes expression levels of ERα and ERβ, which are the highest in the late
phase of proliferation [90,91]. Estradiol increases the expression of progesterone receptors mainly
through ERα activation, thereby causing the action of progesterone on the endometrium, and triggering
the secretory phase of endometrial circulation. In contrast, progesterone inhibits ER expression on
the endometrium and inhibits estrogenic effects, thereby initiating endometrial reprogramming and
inducing interstitial differentiation. In recent years, studies have demonstrated that several endometrial
features associated with the PCOS phenotype may explain the clinical manifestations that are related
to an adverse endometrium. ER is the most prominent endometrial marker in women with PCOS.
A study showed that expression of ER was increased in the stroma and glandular epithelium of PCOS
women when compared to a normal endometrium [92,93]. However, in two relatively advanced
studies, gene-expression differences between female endometrial samples in PCOS and control groups
were reported, and no changes in ER expression were found [94,95]. Studies have also shown that
the expression of p160 steroid receptor coactivator is increased in the endometrium of PCOS women,
which may promote the activation of ERα and regulate estrogen effects [92,93]. In short, an abnormal
steroid environment may alter endometrial receptivity in these women.

At present, drug treatment of PCOS has replaced surgical treatment as the preferred treatment,
and the treatment route is mainly related to the patient’s fertility requirements. PCOS can be
treated by reducing hyperandrogenism by using oral contraceptives, glucocorticoids, spironolactone,
and fluorinated amides. PCOS patients with fertility requirements need to use ovulation-induction
therapy to prevent pregnancy. There has been great progress on drugs for ovulation induction in the
past 50 years. Clomiphene is the first choice, which can bind to the hypothalamic estrogen receptor,
causing the central nervous system to block estrogen levels in circulation, and pulsed GnRH and
gonadotropin secretion are increased, further causing follicular growth and development. In addition,
clomiphene can directly affect the pituitary and ovaries, respectively, increase gonadotropin secretion,
synergistically enhancing FSH-induced aromatase activity. Clomiphene also exhibits antiestrogenic
properties in other parts of the female reproductive tract, especially the endometrium and cervix.

In adolescent populations, the pathophysiology of PCOS is multifactorial. Medical therapy
includes combined hormonal contraceptives spironolactone and metformin [96], oral contraceptive
pills, and local treatments for hirsutism and acne [97]. The latest research showed that aromatase
expression may be affected by epigenetic modifications and the binding of differential ERβ to the
proximal CYP19A1 promoter, possibly involved in enhanced aromatase transcription during ovarian
stimulation in PCOS patients [98].

4. Therapeutic Drugs

In current therapeutic strategies, a variety of nonsteroidal compounds (with agonist or antagonist
activity) and synthetic estrogen derivatives have been developed corresponding to different clinical
symptoms and needs. As mentioned above, the ligand-binding domains of ERα and ERβ show a high
level of homology, but tissue distribution and the physiological effects are very different. The discovery
of GPER further complicates ligand-binding selectivity, affinity, and differences in the types of responses
mediated by estrogen-receptor subtypes and classes. Successfully researched and developed selective
agonists and antagonists make it easier to distinguish between subtypes of ERα, ERβ, and GPER.
Moreover, this has provided a more powerful tool for research and has optimized existing treatments.
Some examples are shown below (Figure 3).
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The simple structure of the phenolic stilbene compound diethylstilbestrol (DES) has a binding
affinity for ERα/β that is about four times higher than that of E2 [99]. The selective ERα/β of DES has
been used in research to distinguish between ERα/β-mediated biological responses.

Tamoxifen was originally developed for contraceptive use, but is now used as adjuvant antiestrogen
treatment for the therapy of early and late ERα-positive breast tumors in premenopausal and
postmenopausal women [100].

Raloxifene (Evista) is a phenolic benzothiophene benzoketone substituted with an alkaline
piperidin-1-ylethoxy side chain that acts as a SERM relative to ERα/β. Raloxifene can elicit estrogen on
bone; this characteristic leads to the treatment of osteoporosis in postmenopausal women, and the
antiestrogen effects of raloxifene in breasts and the uterus have been shown to effectively reduce the
incidence of breast cancer, and reduce uterine-cancer and thrombosis risk. Raloxifene exhibits strong
GPER efficacy as a GPER agonist [101].

17α-ethynyl-17β-estradiol (also known as ethinyl estradiol) is a synthetic estrogen used in oral
contraceptives because of its prolonged biological activity in vivo, and ability to reduce the metabolism.
The affinity of ethinyl estradiol for ERα/β is approximately twice that of 17β-estradiol [102].

5. Concluding Remarks

This article details the regulation and mechanisms of estrogen, and its nuclear and membrane
receptors, the latest advances in diseases caused by the abnormal expression of estrogen and its
receptors in the ovary, and related targeted therapeutic drugs applied in clinical research and treatment.
Estrogen and its receptors play a key role in the pathophysiology of various systems in the human
body. In this review, we highlighted their mechanisms of action and related diseases in the female
reproductive system (mainly ovarian cancer, PCOS, and EMS). Research on these three ER-related
diseases is still ongoing, and some of the latest research results also reveal the pathophysiology of the
disease step by step. Based on the ongoing research progress, more clinical drugs with more effective
and minimal side effects will be developed and applied. Studies of estrogen receptors have been
ongoing for more than 50 years, and this brief review can only provide a measurable overview of
the broad knowledge of these receptors. We hope to provide a reference for the treatment of female
ovarian diseases.
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