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Abstract
We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of
electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal,
anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the
torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used
to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel
multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously
pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in
terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of
pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained
higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy
than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant
improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation
of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens
potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific
clinical questions.
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1 Introduction

Heart rhythm disorders are among the leading causes of
deaths worldwide. The 12-lead electrocardiogram (ECG)
is a well-established, patient-friendly, quick, reproducible,

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s11517-018-1831-2) contains
supplementary material, which is available to authorized users.

The first two authors contributed equally to this work.

� Matthijs Cluitmans
m.cluitmans@maastrichtuniversity.nl

1 Department of Data Science and Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands

2 CARIM School for Cardiovascular Diseases, Maastricht
University, Maastricht, The Netherlands

and cheap tool to determine normal cardiac activation and
recovery, to diagnose cardiac arrhythmias, altered activa-
tion, ischemia, infarction, primary electrical abnormalities
of the heart, structural disease, and other conditions. It
reflects the attenuated and dispersed propagation of electri-
cal activity of the heart on the body surface. However, it
lacks the capacity to directly assess spatial electrical activity
at the level of the heart muscle at high spatial resolution.

Electrocardiographic imaging (ECGI) non-1invasively
reconstructs potentials, electrograms, and activation/recovery
isochrones directly at the heart surface from body-surface
potential measurements and a patient-specific torso-heart
geometry [5, 7, 33, 34] (see Fig. 1). This is achieved by solving
what is known as “the inverse problem of electrocardiogra-
phy.” In the last decades, much progress has been made in
ECGI and clinical applications are published with increas-
ing frequency [7].

However, the accuracy of the reconstructed electrical
heart activity is still suboptimal. This is partly due to
the non-uniqueness and ill-posedness [13] of the inverse
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Fig. 1 Electrocardiographic
imaging (ECGI) non-invasively
reconstructs electrograms and
activation and recovery
isochrones on the epicardium
(outer heart surface). Body-
surface ECGs are combined with
a torso-heart geometry obtained
with CT. By carefully reversing
a model of the physical laws of
electromagnetism, epicardial
potentials can be reconstructed.
From these, epicardial
electrograms and isochrones are
deducted
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problem: the solution is not unique and small variations
(noise and measurement errors) in the input data can lead
to large variations in the reconstructions [7]. To cope
with this problem, regularization is applied, i.e., additional
knowledge is incorporated, in the form of constraints on the
possible solutions, in order to arrive at more realistic results
[22, 29]. For a review of common regularization methods in
the field of ECGI, see [25, 30].

One way to overcome the influence of ill-posedness is to
work with the data in a different domain. For example, in
a previous study, we have shown that accuracy is improved
when heart-surface potentials are determined as a function
of physiologically realistic potential patterns obtained from
numerical models that function as “building blocks” [6].
A drawback of that method and other commonly used
methods [25, 30] is that they apply regularization only on
the spatial distribution of potentials (at a certain time point)
or only on the temporal behavior of potentials (at a certain
spatial location). In this study, we propose to use a different
sparse representation, in terms of wavelets. By using a
wavelet basis, only few wavelet expansion coefficients are
necessary to describe electrograms at the heart surface. This
approach allows to achieve regularization over space and
time simultaneously. Wavelets have been used in the inverse
problem of tissue imaging, such as magnetic resonance
imaging (MRI) [3], but not yet in the inverse problem of
electrocardiography.

The purpose of this work was to investigate whether such
a wavelet-promoted spatiotemporal regularization could
improve accuracy of reconstruction of the electrical activity
of the heart. We have a special interest in reconstruction of
recovery times, which are currently more difficult to obtain
with ECGI than activation times [5]. This is relevant because
abnormalities in recovery form an important substrate

for arrhythmias and are difficult to assess with current
noninvasive tools. We evaluated our novel method in
canine experiments for which simultaneous body-surface
and invasive heart-surface recordings were obtained.

2Methods

The approach for finding the ECGI inverse solution as
presented in this paper is based on working in the wavelet
domain, obtaining a sparse solution with multitask elastic
net and transforming back to the time domain. Figure 2
illustrates this approach and this is further discussed in
detail in the following subsections.

2.1 The inverse problem of electrocardiography

The potential-based formulation of the forward and inverse
problems of electrocardiography is based on the assumption
that there is a direct and instantaneous linear relationship
between potentials at a closed surface surrounding the heart
and the potentials at the body surface [30]. The closed
surface surrounding the heart is usually taken to be the
epicardium, i.e., the outer heart surface. The forward model
describes the way that body-surface potentials are induced
by heart-surface potentials. It is commonly defined as:

�B = A�H + N (1)

where �B is an r × m matrix of potentials at r body-
surface nodes at m moments in time, �H a q × m matrix
of potentials at q heart-surface nodes at the same m time
instants, and N is additive independent noise with equal
variance. The r × q transfer matrix A depends on the
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Fig. 2 Schematic illustration of the inverse approach employed in this paper

geometry (the node locations, both on the torso and on the
heart) and the medium (the conductivity properties of the
body tissues). The model neglects the influences of tissue
capacitance and any sources of electrical potentials other
than the heart, as well as the effects of relative motion
of the nodes (e.g., due to a contracting beating heart and
breathing). It also assumes that the q heart-surface nodes are
sufficiently densely generated to well represent all electrical
potential on the heart. The matrix A is typically estimated
based on a computed tomography (CT) scan of the patient’s
torso with body-surface electrodes attached.

The objective of the inverse problem of electrocardiog-
raphy is to find �H under the linearity assumption in (1)
with assumed Gaussian white noise N , so as to best explain
a recorded instance of �B , and given the estimated transfer
matrix A:

min
�H

‖A�H − �B‖2
F (2)

Here, the notation ‖ · ‖F is used to indicate the entrywise 2-
norm for matrices, i.e., the Frobenius norm. The choice of
this norm is motivated by the time-invariance of the forward
linear model, the identical technical specifications of the
electrodes, and the assumed independence and (Gaussian)
whiteness of the measurement errors.

Problem (2) is non-unique, as the number of heart-
surface nodes q is generally taken to be much larger than
the number of electrodes r , making matrix A not full rank.
Matrix A is also ill posed, as the forward model is only
approximate, and A can only be estimated with limited
accuracy, due to necessary simplifications with respect to
torso inhomogeneities, movement of heart and torso, or
changes in conductivity.

Therefore, to obtain a stable solution to the inverse
problem, additional constraints on the feasible solutions
are needed, either implicit or explicit. For example, the
well-known Tikhonov regularization method [40] does this
implicitly. For an in vivo evaluation of Tikhonov-based
reconstruction of epicardial potentials, see our previous
study [5].

2.2 Multitask elastic-net-based reconstruction
of epicardial potentials with wavelet-domain
regularization

Another approach to regularization is to reduce parameter
redundancy by representing �H sparsely. One may do this
explicitly, by preselecting a limited number of “building
blocks” to reconstruct �H , as in [6]. An implicit, more
flexible way to obtain sparsity is by minimizing the least-
squares error criterion under an �1-norm constraint. The
�1-norm is widely used to promote sparsity [2], for example
in the total variation method [27], the lasso method
[39], or the more flexible elastic-net approach [16, 44],
which offers a combination between lasso and Tikhonov
regularization. Extending elastic-net to multitask elastic net
additionally allows for exploiting structure between the
spatial patterns at each time instance. In order to enforce a
sparse representation, we will apply multitask elastic net in
the wavelet domain.

2.2.1 Elastic-net-based reconstruction

The straightforward approach for solving the inverse
problem with elastic net is to work on each of the m columns
of the potentials matrix �H independently, yielding m
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decoupled elastic net problems (each time instant processed
individually):

min
�

(k)
H

{∥∥∥A�
(k)
H − �

(k)
B

∥∥∥2

F

+λ

[
(1−α)

1

2

∥∥∥�
(k)
H

∥∥∥2

F
+α

∥∥∥�
(k)
H

∥∥∥
1

]}
, k=1, . . . , m,(3)

where the superscipt (k) denotes the k-th column of a matrix,
corresponding to the k-th time point, and ‖·‖p the vector p-
norm. In this case, the problem is decoupled over time, and
sparsity is sought over space, per time instant. The constant
α is the elastic-net mixing parameter, balancing between
a lasso approach (α = 1) and zeroth-order Tikhonov
regularization (ridge regression) (α = 0). The factor
1
2 appears in convention with [10, 16] and the software
glmnet [31]. Although the factor 1/2 before the Tikhonov
term in the elastic net makes the resulting regularization
not a convex combination of the two terms, this does not
affect convexity of the problem in (6). Indeed, the L1
and L2 norms are convex functions, and any non-negative
combination of those terms still defines a convex problem.

2.2.2 Multitask elastic-net-based reconstruction
in the wavelet domain

Our assumption is that epicardial potentials �H can be con-
sidered sparse due to the properties of propagating cardiac
wavefronts. Indeed, only a specific part of the cardiac tis-
sue is activated at a specific moment in time (sparsity over
space at each time instant) and cardiac cells are activated
according to propagation waves (sparsity over time at each
location), causing the local electrograms to be sparse in both
time and space. This justifies to pursue sparsity of �H over
time and space simultaneously. Furthermore, the frequen-
cies that constitute these electrograms come from a limited
frequency band, which is well represented in the wavelet
domain. Therefore, we propose a method which combines
an orthogonal wavelet transform as is commonly used in
ECG signal processing [36] with multitask elastic net.

A discrete wavelet transform is a cascade of N filter
banks, governed by a pair of wavelet filters, yielding N

wavelet scales. Discrete-time wavelet transforms can also be
represented by a convolution matrix1 W [38]. This matrix
W will be orthogonal if the wavelet transform is orthogonal,
for which the underlying wavelet must be orthogonal, the
transformation must be critically sampled and the borders
must be handled in a way preserving energy; in this case,

1This is convenient from a notation viewpoint. The convolution matrix
W does not have to be implemented explicitly. It is more convenient to
use a filter bank for performance reasons.

by periodic extension. By multiplying W with �H , one can
obtain the matrix PH :

PH = �H W (4)

The matrix PH collects in each row a set of scaling and
wavelet coefficients of all the electrograms in the rows of
�H , from coarse to fine. With the exception of the Haar
wavelet transform, an orthogonal wavelet transform cannot
be linear phase [9, thm 8.1.4].

Since multiplication by an orthogonal matrix does not
change the 2-norm, and it is natural to require the matrix PH

to be sparse, the set of m decoupled elastic net problems in
(3) can be rewritten as:

min
P

(k)
H

{∥∥∥AP
(k)
H − P

(k)
B

∥∥∥2

F

+λ

[
(1−α)

1

2
‖P (k)

H ‖2
F + α‖P (k)

H ‖1

]}
, k=1, . . . , m, (5)

where PB = �BW denotes the matrix of body-surface
wavelet coefficients using the same orthogonal wavelet
transform. When applying the wavelet transform, we choose
for a redundant representation of the discrete wavelet
transform, i.e., the undecimated wavelet transform, which is
practically implemented here in the form of the stationary
wavelet transform [37]. The advantage of having redundant
information is that smoothness is better retained after
regularizing. In this scenario, the number of columns of
PH is equal to the number of columns of �H times
the number of decomposition levels N. In case that the
stationary wavelet transform is used, the matrix W is no
longer orthogonal. However, if the used wavelet filter is
orthogonal, the energy is weighted by a factor 2j with
increasing j as the scale becomes coarser [19, 20].

Concerning the choice of a suitable wavelet, electro-
grams can be sparsely represented with the orthogonal
Daubechies-2 wavelet (2 vanishing moments, filter length
4) [19]. If desired, one may also design a more dedicated
orthogonal wavelet by using the approach of [17, 20]. The
Online Supplement (Online Figure 3) illustrates this.

In (5), the wavelet transform is applied over each row
of �H (over time only), to promote sparsity over time.
Each P

(k)
H thus denotes a vector of wavelet coefficients of

index k, collected over all nodes at a specific time instant.
This means that by solving for each P

(k)
H independently, the

problem gets decoupled over the wavelet coefficients (and
thus time), and the natural relationship between the wavelet
coefficients is ignored. For this reason, it is preferable to
solve the k regression problems jointly, imposing some
type of group structure on the coefficients (to take into
account that groups of nodes have a similar time-frequency
content). This can be achieved by combining the m elastic
net problems into a single multitask elastic net problem [21,
26]. Joint sparse estimation of the coefficients can then be
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Fig. 3 Setup of the canine experiments. Body-surface potentials were
recorded with 192 electrodes (blue) and epicardial potentials with 99
implanted electrodes (red). A CT scan was performed to localize the
electrodes and epicardial surface (green)

achieved by including a penalty term consisting of the �1-
norm of the root energies (�2-norm) per wavelet coefficient
over all time instants:

min
PH

{
‖APH − PB‖2

F

+λ

[
(1 − α)

1

2
||PH ||2F + α

m∑
k=1

||P (k)
H ||2

]}
. (6)

This promotes sparsity over all scales and wavelet coeffi-
cients (time-frequency) simultaneously, while exploiting the
spatial group structure [16, 26]. The last penalty term of
(6) is a mixed �2/�1-norm, i.e., the �1-norm of the vector
of columnwise �2-norms of PH . The multitask lasso term∑m

k=1 ||P (k)
H ||2 is the sum of the �2-norm per column which

is further minimized for α > 0 if each individual �2-norm
is kept as small as possible. Indeed, this means that at each
time/time-scale snapshot, spatial sparsity is still promoted.2

Standard packages exist for multitask elastic-net problems,
of which the implementation in glmnet [31] was used. The
parameters α and λ in (6) were determined by an exhaustive
parameter search as explained in Section 2.5 and illustrated
in Fig. 4.

From the resulting wavelet coefficient matrix PH , the
desired heart-surface potentials are finally obtained by
�H = PH W−1, where for the inverse wavelet transform
it holds that W−1 = WT in the case of the orthogonal
wavelet transform, which boils down to using the time-
reverse filters as reconstruction filters. The approach is
visualized in Fig. 2.

2.3 In vivo recordings and non-invasive
reconstruction

In vivo data were acquired in a canine experiment,
illustrated in Fig. 3. Details on the experimental setup can
be found in [5] and are summarized below.

2For an illustration, see the online supplement.

In three normal, anesthetized dogs, 99 electrodes were
implanted around the epicardium via a thoracotomy and
192 body-surface electrodes were attached to the torso after
chest closure. Potential recordings were obtained simultane-
ously on the body surface and on the epicardium. Reference
electrodes for both recording systems were attached to the
lower abdomen. A CT scan was performed and used to
digitize a homogeneous geometry which consisted of the
body-surface electrodes and the epicardial surface [35]. The
transfer matrix, relating the electrical activity at the cardiac
surface to the body surface, was computed with methods
available from the SCIrun software repository [1]; details
of our inverse reconstruction approach can be found in [5].
Beats were recorded during normal sinus rhythm and during
epicardial pacing (and limited endocardial pacing).

Epicardial potentials were reconstructed with the
wavelet-based multitask elastic-net regularization method
described in the previous section. For this, we used the
Daubechies-2 (i.e., filter length 4) wavelet. Choosing more
vanishing moments seems to have a limited effect on spar-
sity [19], but improves the bandpass filters which is benefi-
cial for denoising [43]. Some additional details can be found
in the Online Supplement.

We used three levels of wavelet decomposition, which
provided results that were as accurate as when more
levels were used, but computationally more efficient. We
chose the stationary-wavelet approach over the discrete-
wavelet approach because of its time-invariant properties.
Specifically, the implementation that is available in Matlab
[23] was employed. The optimization of (6) was performed
with the glmnet package in Matlab [23, 31].

2.4 Post-processing

From non-invasively reconstructed electrograms, activation
and recovery times were determined by considering the
maximum negative slope (max −∂�H (t)/∂t) during acti-
vation and the maximum positive slope (max ∂�H (t)/∂t)
during recovery. To reduce the influence of noise, we fitted
a smoothing spline curve to each electrogram before differ-
entiating. Activation and recovery times obtained with our
approach could then be compared to the invasively obtained
timings of activation and recovery.

The origin of an epicardially paced beat was defined as
the epicardial node with the earliest reconstructed activation
time. This location was then compared to the known
location of pacing.

2.5 Analysis of performance

Given the multitask elastic-net model in (6), a grid search
was carried out to identify an optimal point in the two-
dimensional parameter space given by the regularization
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parameter λ and the elastic-net mixing parameter α

(see Fig. 4). Optimality was defined in terms of data
mismatch, i.e., the mismatch between the recorded body-
surface potentials and body-surface potentials provided
by the forward solution based on reconstructed epicardial
potentials as in (1). The data mismatch in inverse problems
is usually a suboptimal criterion and more advanced
approaches (such as the L-curve method [15]) are employed
to select the optimal parameter, but are not designed for
two-parameter problems as the one in our approach. For this
paper, we decided to focus on the novelty of the method
itself and leave its parameter selection for future study.

Due to the computational cost, the grid search was
determined in a subset of 8 beats only.

After identifying optimal values for λ and α, we used the
corresponding model to assess performance of the proposed
approach. Performance was assessed in terms of accuracy
of:

Reconstructed epicardial potentials. For each epicardial elec-
trode, Pearson’s correlation coefficient (CC) was com-
puted between the recorded electrogram and the recon-
structed electrogram at the corresponding (closest) vir-
tual epicardial node.

Estimated activation and recovery time. Linear correlation
between recorded and reconstructed activation/recovery
timings was assessed by means of Pearson’s correlation
coefficient.

Estimated locations of pacing. Localization error (LE) was
defined as the Euclidean distance between the recon-
structed location of earliest activation and the known
pacing location.

#
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Fig. 4 Dependency of in vivo results on elastic-net algorithm
parameters, based on 8 recorded beats in a dog. For each combination
of alpha and lambda, the data mismatch is shown in microvolts. Grid
search points are indicated by black dots. The number sign denotes
the value ultimately chosen for the remainder of the analyses (α =
0.9, λ = 100)

Results were statistically compared with Wilcoxon signed-
rank tests (for paired measurements) or Wilcoxon rank-
sum tests (for unpaired measurements). Performance of
the proposed approach was compared with Tikhonov
zeroth-order regularization, one of the most commonly
used regularization approaches in the inverse problem of
electrocardiography [5, 7].

3 Results

In the grid search with 8 beats, the point of lowest mismatch
was for α = 1. At this point, there is no effect of the
Tikhonov term of Eq. 6. Additionally, we noticed that the
correlation coefficients with the recorded signals improved
with slightly lower values of α (see Online Figure 5).
Therefore, we chose a point close to but not at the minimum
data mismatch: α = 0.9 and λ = 100 (indicated by the
number sign in Fig. 4). These parameter settings were then
used for the full in vivo analyses.

Figure 5 shows an example of a few potential distribu-
tions of the recorded and reconstructed potentials with the
Tikhonov method and wavelet-domain multitask elastic-net
method. The latter method obtains overall higher CC and a
more realistic potential pattern (i.e., it shows a less patchy
pattern, which is to be expected for a paced beat).

Panel A of Fig. 6 shows an example of reconstructed acti-
vation times on the ventricular epicardium for a sinus beat.
For selected electrodes, the corresponding electrograms are
shown as recorded, Tikhonov reconstructed, and wavelet-
domain multitask elastic-net reconstructed. Panel B of Fig. 6
shows similar results for a left-ventricular paced beat. In
general, wavelet-domain multitask elastic-net regularization
was able to recover some details (e.g., the initial positive
deflection in the QRS complex of electrode 1, and the ter-
minal negative deflection in electrode 2) that were lost with
Tikhonov regularization.

In the in vivo experiments, 89 beats were recorded, with
on average 60 epicardial electrodes per beat recording high-
quality electrograms as ground truth. Figure 7 shows results
for this full data set. Columns show the results for the
different reconstruction methods: Tikhonov regularization
or wavelet-based multitask elastic-net regularization. Panel
A shows accuracy of reconstructed epicardial potentials
in terms of correlation coefficients between recorded
and reconstructed electrograms. Wavelet-based multitask
elastic-net regularization is able to recover more details
in the electrograms, significantly improving reconstruction
quality (CCTikh = 0.72, CCW/E = 0.77, p <

0.05), although distributions overlap considerably. Panel B
shows activation times and recovery times as reconstructed
vs. recorded. Activation times (red) are not improved
by wavelet-based multitask elastic-net regularization, but
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Fig. 5 Reconstructed potentials on the epicardial surface at specific
time points during a single (paced) beat. Top row: The root mean
square (RMS) of the Tikhonov-reconstructed epicardial potentials
(red) and the RMS of the Wavelet-elastic-net-reconstructed potentials
(blue). The first peak is the QRS complex, while the second wave
is the T wave. The spatial CC (per time instant) between all recon-
structed potentials and the invasively recorded potentials is depicted as

well for both methods (dashed lines), indicating an overall higher CC
for the proposed method. The second and third row show potentials
at specific time instants (moments are visually indicated by dashed
lines in the top row). The colored heart surface displays the recon-
structed potentials (second row: Tikhonov; third row: wavelet-elastic
net), while the colored circles display the recorded potentials at the
invasive electrodes

recovery times are improved significantly (RTikh = 0.57,
RW/E = 0.63, p < 0.05). Panel C shows localization
error between detected and known origins of pacing. There
is no significant difference between the two regularization
methods, although it appears that there are fewer outliers
with the new method.

4 Discussion

We have introduced a new method to regularize the
inverse problem of electrocardiography by pursuing sparsity
of its wavelet representation in both time and space.
Figure 8 illustrates that, in terms of temporal sparsity,
a representation of the signal in the wavelet domain is
more efficient than a representation in the time domain.
A direct comparison with wavelet decompositions of the
recorded electrograms is problematic since the epicardial
electrograms are recorded with a different recording system.
Additionally, sparsity is further promoted by our proposed
multitask elastic-net approach. Online Figure 1 similarly
illustrates that spatial sparsity is higher in the wavelet
domain. An example of the wavelet decomposition of a beat
and the sparsity of the coefficients on different scales is
shown in Online Figure 2. It is important, however, to realize

that the goal is to obtain an accurate inverse reconstruction
(for which we proposed a sparsity-based approach in a
representative domain), not to obtain a sparse reconstruction
per se.

Epicardial potentials reconstructed with this wavelet-
domain multitask elastic-net approach attain a higher
correlation coefficient compared to traditional zeroth-order
Tikhonov regularization. More importantly, estimation of
recovery time was also improved by the proposed method.
Abnormalities in recovery times can be an important
substrate for cardiac arrhythmias and sudden cardiac
death [14]. Improved recovery time imaging might thus
improve clinical care, but further research on the relevance
of this finding in diseased states (such as long QT
syndrome, sudden cardiac death, etc.) is needed. Currently,
simultaneous invasive and body-surface recordings in such
diseases are not available.

Activation time imaging is not improved and conse-
quently localization of beat origin (which was based on the
earliest activation time) is not improved either, although the
novel method seems to result in fewer outliers.

Our results about the optimal value for alpha (alpha =
0.9) show that (6) weights the 1-norm term 18 times more
heavily than it does the Tikhonov term, suggesting that
the multitask Lasso component is most beneficial for the
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Fig. 6 Apical view of the ventricular epicardium (left, colored accord-
ing to non-invasively reconstructed activation times) and recorded and
reconstructed electrograms (right) during a sinus beat (panel A) and a
left-ventricular paced beat (panel B, pacing location indicated by blue

sphere). White circles represent the implanted epicardial electrodes.
For selected electrodes (purple, numbered), the corresponding electro-
grams are shown: recorded (red), Tikhonov reconstructed (blue), and
wavelet-domain multitask elastic-net reconstructed (black).

dataset at hand. However, the optimal value of alpha may
still be strongly dependent on the specific dataset, and the
suggested formulation in (6) provides a more general setting
which can better adapt to different datasets.

The multitask elastic net returns the inverse solution
which has a sparse group structure over the wavelet coeffi-
cients. This means that optimization is performed over both
time-frequency (columns of PH , wavelet coefficient index)
and space (rows of PH , the epicardial nodes, by group struc-
ture). The spatial relation between the epicardial nodes is
implicitly included in this process, as this relation is cap-
tured by the transfer matrix A. However, this relationship
could be exploited even more if one could define a wavelet
transform over the irregularly curved heart surface.

To the best of our knowledge, spatiotemporal sparsity
in the wavelet domain has not been pursued previously in
a regularization method for ECGI. Previous studies have
proposed alternatives to promote spatial or temporal (or
both) sparsity of the inverse solution (outside the wavelet
domain) [8, 11, 24, 41]. All those methods require prior
assumptions based on the properties of the electrophysio-
logy of wavefront propagations, which are exploited to reg-
ularize the inverse solution. Since the method we propose
aims to promote spatiotemporal sparsity of the inverse solu-
tion, those properties are still accounted for when looking
for a sparse solution, given the spatiotemporal nature of
cardiac propagation and recovery. At the same, since those
properties are not directly introduced as constraints in our
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Fig. 7 Results for the full data set. Columns show the results for the
different reconstruction methods: traditional Tikhonov regularization,
or wavelet-domain multitask elastic-net regularization. Panel A: box
plots of correlation coefficients between recorded and reconstructed
electrograms. Box spans the interquartile range (IQR), i.e., the 25–
75% range; median indicated by horizontal line; whiskers at 9–91%
range. Wavelet-based multitask elastic-net regularization improves
reconstruction quality. Panel B: Activation times (red) and recovery
times (blue) as reconstructed (horizontal axes) vs. recorded (vertical
axes). Recovery times, especially, are improved by wavelet-based
multitask elastic-net regularization. Panel C: Localization error
between detected and known origins of pacing. An asterisk indicates
significant improvement compared to Tikhonov results

approach, we speculate that our method may be more data
driven and versatile. Another study investigated the pos-
sibility of using �p-norm regularization to bridge the gap
between the scattered solution of �1 regularization, useful
to detect sparse and focal sources of activation and pacing
sites, and the smeared solution of �2 regularization, which
provides a better approximation of extended source regions
[32]. In this respect, a question that arises is whether our
method could be generalized to use �p regularization, and it
will be investigated in a future study. Greensite SVD applies
spatiotemporal regularization (without pursuing sparsity)
[12], but was outperformed by zeroth-order Tikhonov
regularization in a previous study by our group [4] (although
other studies find different results). Temporal sparsity was
pursued in a different formulation of the inverse problem

Tikhonov Wavelet + Multitask elastic net
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Fig. 8 Left column: plots and �1-norms of an epicardial electrogram
reconstructed with Tikhonov regularization (top left) and its wavelet
coefficients (bottom left; from approximation coefficients on the
left, to finer and finer detailed coefficients towards the right).
Right column: plots and �1-norms of electrogram reconstructed with
wavelet-domain elastic net (top right) and its wavelet coefficients
(bottom right). Note the higher sparsity (lower �1-norm) for the novel
approach

of electrocardiography [42] but lacked a spatial component,
and focused only on activation times, not electrogram mor-
phology or recovery times. Additionally, that method was only
validated in small animals, although it was able to obtain results
throughout the full myocardium, not only the epicardium.

Moreover, wavelets have not been applied in regular-
ization of the inverse problem of electrocardiography. One
advantage of wavelet-based regularization is the freedom
in choosing the wavelet basis. Here, we chose to apply
the Daubechies-2 wavelet transform, which was previously
shown to be a good choice for sparse representation of heart-
surface potentials amongst orthogonal wavelet transforms
(see [19] and Online Figure 3). However, improved results
could be expected for different choices for the wavelet basis.
We limited our approach to orthogonal wavelets to ensure
that a Parseval’s relation exists in (4), i.e., ensuring equiva-
lence between the �2 fit criterion in the wavelet domain and
in the time domain. Within this setting, designed orthogonal
wavelets could be used to tailor this method to specific situ-
ations [17, 20]. This creates more freedom than using a fixed
(semi-)physiological model that cannot be adopted to patho-
logical situations, as in [42]. For example, if one is interes-
ted in fractionated electrograms (which could occur after
myocardial infarction), our method would allow employing
a more fractionated wavelet to possibly better enhance
regions of fractionation. Additionally, abnormally long or
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short activation or recovery durations might be captured
with specifically designed wavelets. We were not able to test
this in vivo, as the dogs from this experiment had healthy
hearts. Also still within the orthogonal framework, multi-
wavelets [28] can be applied to distinguish between certain
morphologies and even specifically designed multiwavelets
can be employed [18]. For example, if one would like to
include biorthogonal wavelets, the Parseval’s relation is no
longer in place and the problem is the time and wavelet
domain can differ. Possibly, a normalization might partly
remedy this, but one has to be careful that energy is not
transferred in an undesirable way.

Future challenges to improve this method include the
following: (1) investigation of a more robust way to select
the optimal parameters α and λ than a grid search over the
data mismatch; and investigating the effect of determining
these parameters per beat, instead of over all beats; (2)
investigation of an even wider range of activation and
recovery patterns, e.g., septal sources of activation, bundle
branch block, increased local dispersion of recovery, the
effect of scar; (3) investigation of specifically designed
orthogonal wavelets for specific disease types.

5 Conclusion

We have introduced a novel method to regularize the inverse
problem of electrocardiography. By simultaneously pursu-
ing a sparse wavelet representation in time-frequency and
exploiting correlations in space, epicardial potentials were
non-invasively reconstructed with higher accuracy than with
Tikhonov zeroth-order regularization. This indicates that
sparse representations of the cardiac source can help to
improve reconstruction accuracy in electrocardiographic
imaging. Most notably, our approach led to improved esti-
mation of recovery times, which is important to assess
substrate for cardiac arrhythmias. More importantly, this
novel technique opens potentially powerful opportunities
for clinical application by allowing to choose wavelet bases
that are optimized for specific clinical questions.
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