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ABSTRACT

Hepatocellular carcinoma (HCC) is a major global health problem with about 841,000 new cases and 782,000
deaths annually, due to lacking early biomarker/s, and centralized diagnosis. Transcriptomes research despite its
infancy has proved excellence in its implementation in identifying a coherent specific cancer RNAs differential
expression. However, results are sometimes overlapped by other cancer types which negatively affecting speci-
ficity, plus the high cost of the equipment used.

Hyperspectral imaging (HSI) is an advanced tool with unique, spectroscopic features, is an emerging tool that
has widely been used in cancer detection.

Herein, a pilot study has been performed for HCC diagnosis, by exploiting HIS properties and the analysis of the
transcriptome for the development of non-invasive remote HCC sensing.

HSI data cube images of the sera extracted total RNA have been analyzed in HCC, normal subject, liver benign
tumor, and chronic HCV with cirrhotic/non-cirrhotic liver groups. Data analyses have revealed a specific spectral
signature for all groups and can be easily discriminated; at the computed optimum wavelength. Moreover, we
have developed a simple setup based on a commercial laser pointer for sample illumination and a Smartphone
CCD camera, with HSI consistent data output. We hypothesized that RNA differential expression and its spatial
organization/folding are the key players in the obtained spectral signatures. To the best of our knowledge, we are
the first to use HSI for sensing cancer based on total RNA in serum, using a Smartphone CCD camera/laser pointer.
The proposed biosensor is simple, rapid (2 min), and affordable with specificity and sensitivity of more than 98%
and high accuracy.

1. Introduction

using multiphasic CT scan and MRI according to EASLD and EASL
guidelines are being used now for HCC diagnosis [10, 11]. Moreover,

Hepatocellular carcinoma is the fourth common cause of cancer Ultrasound and alpha-fetoprotein (AFP) are performed as initial

globally, with the highest liver-related mortality worldwide. Chronic
Hepatitis C, B, and D infections are the leading source of about two-thirds
of HCC worldwide [1], besides alcoholic ingestion, dietary toxins as af-
latoxins, and non-alcoholic fatty liver [2, 3, 4, 5, 6]. HCC diagnosis is
currently achieved through several approaches such as histopathology
[71, to distinguish between malignant and benign tumors, through the
liver biopsy, which has many drawbacks including invasiveness, high
cost, time-consuming, and labor-intensive that, associated with serious
complications during and/or after the procedure [8, 9]. Radiologically,
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screening and every six months as follow up for the tumor stage [12].
Alfa-feto protein levels in serum biomarker are the golden non-
invasive biomarker for HCC detection. As a noninvasive serum
biomarker, AFP is notorious for its low accuracy (50%) and sensitivity
(79.2%) [13, 14], and cross-reactivity, in addition to, its serum level is
elevated in chronic liver disease, and/or patients under certain medica-
tions or alcohol abuse. So, the Italian and the American Association for
the study of Liver disease role considers an AFP level >200 ng/ml to be
demonstrative of HCC [15]. AFP ELISA technique suffers from many
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improper features such as low specificity, risk of contamination, and
time-consuming [16]. So, there is an urgent need for novel non-invasive
serum biomarker/s for enhancing prognosis and early detection of HCC.

HCC progression is a multi-step process, starting from cirrhosis,
rejuvenate nodules that provide appropriate microenvironment, leading
to conversion of the normal hepatocytes to dysplastic ones, and then to
neoplastic lesions; ending with HCC [15]. Moreover, genomic instability
due to accumulation of multiple genetic and epigenetic change-
s/mutations and the acceleration of cell growth, that lead mainly to di-
versity in gene expression patterns/profiles; accelerates tumor
progression ending up with the uncontrolled, rapid growth of less
differentiated or undifferentiated cells (Anaplasia); with no chance for
complete cell maturation/differentiation, Consequently, a reduction in
cell organelles and hence, cancer cell occurs such as the endoplasmic
reticulum, and mitochondria. This is could be attributed to the changes
occur in cancer cell's nucleus, such as increase in its size, shape and
density, and their pores, and the abnormalities in the chromatin and RNA
pool [16, 17, 18]. Recently, yang et al, have shown that cancer pro-
gression is governed by the presence of numerous altered RNA molecules
of different types (coding and non coding) such as up-normal splicing,
methylation, alteration in the 3'UTR of mRNAs (variants/alternative
polyadenylations), in addition to, numerous heterogeneity in miRNAs
and LncRNAs sequences, expression and modifications, which affects
significantly the cell dogma RNAs structure, maturation, stability, decay
and translation [18]. Moreover, these mutations, differential expression
and the interactions with miRNAs, LncRNAs and mRNA are affecting
significantly the initiation, and progression of HCC to metastasis [19].

Moreover, compared to the normal cells, the loss of the cancer cell
architectural, [incomplete differentiation, small size], and the presence of
dysregulated aberrant RNAs, with abundant mutations (different iso-
forms), lead to up-normal interactions of the RNAs (coding and non-
coding), as analyzed by Xu et el [20], using Gene Expression Omnibus
for the prediction of the differentially expressed RNAs and their inter-
action in HCC carcinogenesis. Subsequently, all these factors affecting
the spatial organization of the cancer cell, and hence, the folding
behavior of its RNAs leading to miss-folded, RNA confirmation,
compared to the normal cell, which has compact structure and accurate
RNA folding.

In the same context, Transcriptome is the whole set of all RNA
molecules within a cell, and/or group of cells, reflecting the cells'
behavior and its response to internal and external factors [21]. Cancer
Transcriptome landscape extends beyond protein ~-mRNA interactions
and includes numerous non-coding RNAs [22, 23, 24]. Compared to
protein biomarkers, coding and non-coding RNA expression and profiling
(circular RNAs, miRNAs, LncRNAs, exosomal RNAs, and mRNA) have
shown higher sensitivity and specificity as stable blood-based markers for
detecting various types of cancer including HCC [25, 26, 27, 28, 29, 30].
Despite the sensitivity and specificity of qPCR and NGS approaches for
transcriptome  detection/profiling, they are highly expensive,
labor-intensive, and time-consuming; need sophisticated equipment and
strenuous data analysis Therefore, liquid biopsies such as, the corre-
sponding circulating RNAs in the blood, extracellular vesicles and
circulating tumor cells, are representative to the primary RNAs in the cell
of origin in sequence, proteins, and hence RNA folding and/or RNA/p-
roteins (nucleoproteins) [31, 32, 33].

Recently, elevated AFP mRNA along with Glypican-3 mRNA has been
found in serum extracellular vesicles in HCC patients compared to the
control with high positive predictive value [34]. Consequently, modern
patterns point to the advancement of panels merging numerous varying
RNA markers [35, 36, 37]. Therefore, revealing total RNA profiles for
specific cancer diagnosis depending on total RNA profiles/dogma for
assertive early diagnosis and/or prognosis of cancer is highly essential
[38]. Indeed, Transcriptome techniques provide inclusive molecular in-
formation of the different RNAs tested.

Expression profiles for some RNAs have been revealed for all the
samples in the study as molecular evidence to the origin (HCC and
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normal) of the total extracted RNA from sera specimens in the study.
These RNAs are related and linked to HCC pathogenesis and implicated
in different HCC molecular pathways carcinogenesis such as transcripts
MCM6 mRNA and FOXM1 mRNA, apoptosis, and immune checkpoint
regulation: STATI and LAT1 mRNA and autophagy: ATG12 mRNA.
Furthermore, miRNA 23a-3, miRNA 221-3p, and miRNA 106b-3p, Also,
3 Long non-coding RNAs (IncRNA-WRAP53, LncRNA-CTBP1-AS, and
Lnc-RNA-RP11-513115.

Light electromagnetic waves interact with objects generating
different optical responses [transmission, absorption, and scattering], ac-
cording to various object properties such as size, concentration, and
spatial organization (shape), in addition to its physical and chemical
properties [39]. Light absorption by the molecule/particle leads to the
attenuation of the incident light, which is based mainly on the concen-
tration, extinction coefficient of the molecule/s (Figure 1a). In the same
context, light scattering leads to the dissemination of light in different
directions according to the molecule/s physical & chemical nature
(Figure 1b). Moreover, there is a larger illuminated area produced by the
light scattered, when applying a reflective white screen behind the
molecules solution, in addition to, small intense spot due to attenuated
light transmission (Figure 1c).

Hyperspectral imaging (HSI) has come out primarily by NASA as a
remote sensing approach in Astrology, earth studies [40], and Agricul-
ture [41] for space research, health crops determination, outbreak plant
diseases respectively. HSI has been found its way in medicine mainly in
the discrimination between cancer and non-cancerous tissues such as
gastric tumors, quantitative prostate cancer detection, and breast cancer
[42, 43, 44].

HSI data cube image generates a spatial (x, y), and spectral wave-
length information along the entire electromagnetic spectrum in the
range of the used camera, with each pixel, provides a specific spectral
signature based on the reflection, transmission, and absorption of elec-
tromagnetic radiation for any material under examination [45]. These
spectral signatures created by the HSI data cube; precisely used in the
identification, characterization, and sorting of different materials
including cancer [44, 46, 47, 48].

Herein, a pilot study has been performed, utilizing the Hyperspectral
imaging system for the identification of the unique spectral signatures for
HCC, benign, cirrhotic, and normal subjects based only on total RNA
extracted from sera specimens. This was followed by the selection of the
optimum wavelength with the highest discrimination between the above
mentioned different groups. Moreover, for the first time, we have
exploited the data obtained from HSI, in developing a simple, robust,
cost-effective setup consisting of a cheap commercial laser pointer and
mobile phone CCD camera; which have been employed in differentiation
between the different groups.

2. Material and methods
2.1. Chemicals and equipment

miRNEasy® RNA isolation kit (Cat No./ID: 217184, Qiagen, USA),
All the PCR kits and primers were purchased from Qiagen, USA.
Ultraspec 1000 ultraviolet (UV)/visible spectrophotometer (Amersham
Pharmacia Biotech, Cambridge, England), One Step One Plus™ System
(Applied Biosystems Inc., Foster, CA), Commercial enzyme-linked
immunoassay (ELISA) kits Abbott Diagnostics Korea Inc (Giheung-gu,
Yongin-si, Korea) for detection. Hepatitis Bs Ag (Cat No > 01FK10W),
Abbott Diagnostics Korea Inc. (Giheung-gu, Yongin-si, Korea), were
used to test the serum anti-HCV antibody (Manufacture -cat
No,02FK10), and a quantitative investigation of AFP has been done
using commercial ELISA kit (Abcam, Cambridge, MA, Cat. Number
(AB1808838).

Hyperspectral camera (SOC710VP Surface Optics, USA), Custom
MATLAB application (The Math-Works, Natick, MA, USA), and Lens
(Schneider KREUZNACH XENOPLAN 1.4).
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Figure 1. Matter and Light interaction: (a) The transmitted light intensity is attenuated by absorption; due to the light absorption of the molecules (b) The transmitted
light is exponentially attenuated by scattering; (c) The transmitted and scattered light, could be seen/reflected by a white reflective screen behind the objects/solution

under examination. These all effects are based on Beer's Lambert Law.

2.2. Sample preparation, viral markers, and serum AFP detection

Written informed consent from all contributors in this study was
attained in line with the Declaration of Helsinki. The work was affirmed
by the Ethics Committee of Ain Shams Faculty of Medicine, Cairo, Egypt.
Venous blood samples were collected from the patients before any
therapeutic interventions, including surgery. Patients with a history of
other tumors and those receiving radiotherapy or chemotherapy, as well
as low quality, extracted RNA samples were excluded from the main
study. Serum samples were collected from Clinical Tropical Medicine
Department; Ain Shams University Hospital from May 2019 to September
2019. The study includes thirty-six HCC patients, where a diagnosis was
performed according to AASLD practical guidelines [12], and classifica-
tion was consistent with clinical-stage using BCLC [49]. Twenty-four
control subjects were enlisted during routine check-ups; in addition to,
four HCV chronic infected samples; three samples have liver cirrhosis and
one with normal liver, and two patients with a benign liver tumor.
Moreover, Serum anti-HCV antibody and hepatitis B surface antigen (HBs
Ag) levels and AFP were verified and quantitatively investigated using
commercial ELISA kits as mentioned in section 2.1. Total RNA was
extracted by miRNEasy® RNA isolation kit from sera samples according
to the manufacturer's instructions in 75 ul DNAse/RNAase free water.
RNA concentration and integrity were assessed using a UV/visible
spectrophotometer, with purity ranged from 1.8 to 2. The concentration
used for all the samples was 60 ng/ul.

The clinical and demographic descriptions of all the contributors are
summarized in Table 1.

2.3. The proposed custom optical imaging system

The custom optical imaging system composed of a 10 Watts Halogen
lamp (340-1000 nm) as a polychromatic light source for sample illumi-
nation, along with a Hyperspectral camera characterized by a 10-degree
field of view, spectral and spatial resolution of 4.6875 nm and 696 x 520
pixels respectively; with 128 spectral channels for collecting the trans-
mitted and scattered light of the sample under examination. Moreover,
the camera was incorporated with a 35 mm lens of focal length covering
400-1000 nm spectral ranges, the scheme of the system is shown in
[Figure 2a], and a photo of the real setup is illustrated in [Figure 2b]. The
data has been acquired as a 3D dimension cube-image, where (X & Y)
representing the image spatial dimensions; while the third dimension
depicting wavelengths.

2.4. Spectral cube image processing

Before processing the captured Hyper Spectral (HS) image, the arti-
facts and electronic noise impacts are wiped out for the obtained image
data standardization. So, white equalization and dark current measure-
ments were utilized to acquire relative reflectance from the HS image.
The dark cube was captured by covering the HS camera with the lens cap
provided with the camera; while the white reference image has been
obtained by placing a white sheet (made of a material that reflects 99% of
the incoming radiation) at the same location and conditions of the speci-
mens. Thus, the information from the dark image and white balance
estimations were utilized for the image calibration as shown in Eq. (1):
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I¢(g) is the calibrated image, In ) is the captured image, Iy is the ac-
quired dark image with the lens covered with the cap, and I is the
acquired image when using the white reference.

Custom MATLAB algorithms were used for processing the image data
cube. For noise removal and image enhancement, a moving average filter
(kernel = 5) has been applied to the calibrated spectrum images (50 nm
resolution) as demonstrated in Eq. (2).
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Where ‘S’ is the noisy image, f (x x) is the enhanced image, and ‘r’ and ‘c’ for
the row and column coordinates respectively, within a window ‘W’ of size
‘gxt’ where the process takes place.

2.4.1. Column and row mean calculation algorithm

The row and column mean for each spectrum image have been
calculated that represents the amount of transmitted and scattered light
of each image pixel [Figure 3a]. Each cube image is composed of a multi-
dimensional matrix: 520 x 696 pixels x 128 frames, so the column-mean
will be a vector of 1 x 696, and the row-mean will be a vector of 520 x 1
for each spectral image respectively. A total of 13 vectors have been
selected to cover the entire wavelengths (400 nm-1000 nm), with a
resolution of 50 nm between each vector for allocating the optimum
wavelength/s with the highest difference between the normal and HCC
groups [Figure 3b).
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Table 1. The clinical and demographic descriptions of all the groups included in the study. The samples in bold were not analyzed by the Hyperspectral camera due to
the low volume of the RNA provided. AST: Aspartate Aminotransferase; ALT: Alanine Aminotransferase; U/L: Unit per Liter; AFP: Alpha Feto Protein; ng/ml: nanogram
per milliliter HCV Abs: Hepatitis C Virus IgG antibodies; HBVsAg: Hepatitis B virus Surface Antigen; BCLC Stage: Barcelona Clinic Liver Cancer Stage; INR: International
Normalized Ratio (Prothrombin time).

Sample NO. Group Age Sex Smoking Alcohol AST ALT Total Direct  Albumin INR HCV Abs HBVs Ag Cirrhosis BCLC stage AFP (ng/ml)
U/L  U/L bilirubin bilirubin mg/dl

H1 HCC 53 male smoker Non alcoholic 100.0 63.0 1.5 0.6 2.6 1.4 Pos. Neg. Cirrhosis A6 350

H2 HCC 60 male smoker Non alcoholic 58.0 43.0 1.3 0.6 3.2 1.2 Pos. Neg. Non-Cirrhosis A7 130

H3 HCC 60 female non Non alcoholic 103.8 73.3 1.5 0.8 2.4 1.5 Pos. Neg. Cirrhosis A8 355
smoker

H4 HCC 65 male non Non alcoholic 39.0 31.0 1.76 0.9 2.7 1.6 Pos. Neg. Cirrhosis A6 73.8
smoker

H5 HCC 60 female non Non alcoholic 60.0 32.0 1.0 0.35 2.9 1.3 Pos. Neg. Cirrhosis A2 20
smoker

H6 HCC 60 male smoker Non alcoholic 128 78 2.4 1.6 4 1.5 Pos. Neg. Cirrhosis A6 138

H7 HCC 60 male Non smoker Non alcoholic 137 65 3.4 1.9 3.9 1.6 Neg. Neg. Cirrhosis B7 147

H8 HCC 60 male smoker Non alcoholic 260 88 4.5 2.7 2.9 1.6 Neg. Neg. Cirrhosis A6 100.5

H9 HCC 60 male smoker Non alcoholic 106 58 2.5 1.6 3 1.3 Neg. Neg. Cirrhosis B8 16.9

H10 HCC 55 female Non Non alcoholic 108 57 1.4 0.8 3.3 1.4 Pos. Neg. Cirrhosis B8 16.5
smoker

H11 HCC 49 female smoker Non alcoholic 26 25 1 0.2 3.4 1.5 Pos. Neg. Cirrhosis A6 4.14

H12 HCC 55 female Non Non alcoholic 28 24 1.6 0.4 3.5 1.17 Neg. Neg. Cirrhosis A6 5.1
smoker

H13 HCC 58 male Smoker Non alcoholic 75 50 2.2 1.2 1.7 Pos. Neg. Cirrhosis A5 6.5

H14 HCC 60 male non Non alcoholic 32 27 19 1.1 4.3 1.08 Pos. Neg. Cirrhosis A5 5.3
smoker

H15 HCC 60 male Smoker Non alcoholic 60 9 1.2 0.6 4.2 1.4 Pos. Pos. Cirrhosis A5 80

H16 HCC 42 female non Non alcoholic 93 63 0.9 0.6 1.16 Pos. Neg. Cirrhosis A5 81.86
smoker

H17 HCC 50 female Smoker Non alcoholic 60 2 14 0.8 1.6 Pos. Neg. Cirrhosis A5 84

H51 HCC 54 female non Non alcoholic 11 35 1.1 0.3 2.4 1.26 Pos. Neg. Cirrhosis B8 170
smoker

H19 HCC 53 female Smoker Non alcoholic 100 63 2.9 2.1 2.6 1.4 Pos. Neg. Cirrhosis B5 350

H20 HCC 60 male Smoker Non alcoholic 58 43 1.3 0.6 3.2 1.2 Pos. Neg. Cirrhosis B5 355

H21 HCC 50 female non Non alcoholic 30 18 0.9 0.4 4.1 1.7 Pos. Neg. Cirrhosis A5 4.5
smoker

H22 HCC 59 male smoker Non alcoholic 32 27 1.3 0.9 4.3 1.12 Pos. Neg. Cirrhosis A5 4.9

H23 HCC 55 female non Non alcoholic 25 20 1.3 0.5 3.9 1.05 Pos. Neg. Cirrhosis A5 8.2
smoker

H24 HCC 56 female smoker Non alcoholic 40 23 09 0.4 4.2 1.3 Pos. Neg. Cirrhosis A5 10.5

H25 HCC 60 male smoker alcoholic 22 26 1.3 0.4 4.6 1.13 Pos. Neg. Non-Cirrhosis A5 130

H26 HCC 57 male non Non alcoholic 24 29 1.2 0.3 4.2 1.09 Pos. Neg. Non-Cirrhosis A5 160
smoker

H27 HCC 60 male smoker Non alcoholic 24 29 0.99 0.3 3.9 1.05 Pos. Neg. Non-Cirrhosis A5 3.6

H28 HCC 54 female non non-alcoholic 22 38 08 0.3 3.6 1.01 Pos. Pos. Cirrhosis A5 4.5
smoker

H29 HCC 60 male smoker non-alcoholic 25 73.3 1.2 0.7 4.5 1.2 Pos. Pos. Cirrhosis A5 8

H30 HCC 65 male smoker non-alcoholic 39 19 1.76 0.9 2.7 1.6 Pos. Neg. Cirrhosis B8 1200

H34 HCC 60 male non alcoholic 60 70 1 0.35 2.9 1.3 Pos. Pos. Cirrhosis B7 136
smoker

H35 HCC 60 male smoker Non alcoholic 88 66 1.3 0.5 2.9 1.2 Pos. Neg. Cirrhosis B7 165

H36 HCC 64 male smoker Non alcoholic 218 52 3.9 2.2 3.2 1.7 Pos. Neg. Cirrhosis B8 1.6

B7 Chronic HCV 60 male non Non alcoholic 29 11  1.54 0.7 3.6 1.28 Pos. Pos. cirrhosis NA 2.3

Benign smoker

B10 Chronic HCV 55 male  Smoker Non alcoholic 24 32 22 0.6 3.8 1.9 Pos. Pos. Non-cirrhosis NA 2.2

Benign

C1 Chronic HCV 60 male non Non alcoholic 29 11  1.54 0.7 3.6 1.28 Pos. Pos. Cirrhosis NA 2.3
smoker

c2 Chronic HCV 55 male smoker Non alcoholic 24 32 22 0.6 3.8 1,9 Pos. Pos. Non-Cirrhosis NA 2.2

C3 Chronic HCV 55 female non Non alcoholic 30 18 0.5 0.5 4 1.1 Pos. Pos. Cirrhosis NA 3.4
smoker

Cc4 Chronic HCV 50 male smoker Non alcoholic 28 18 0.3 0.3 4.2 1 Pos. Pos. Cirrhosis NA 1.8

N1 Normal 50 female non Non alcoholic 24.0 22.0 0.923 0.52 3.5 1 Neg. Neg. Non-Cirrhosis NA 7
smoker

N2 Normal 52 male non Non alcoholic 30.0 19.0 0.85 0.34 4 1.28 Neg. Neg. Non-Cirrhosis NA 13
smoker

(continued on next page)
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Sample NO. Group Age Sex Smoking Alcohol AST ALT Total Direct ~ Albumin INR HCV Abs HBVs Ag Cirrhosis BCLC stage AFP (ng/ml)
U/L  U/L bilirubin bilirubin mg/dl
N3 Normal 53 male non Non alcoholic 12.0 11.0 1.10 0.7 3.6 0.98 Neg. Neg. Non-Cirrhosis NA 7
smoker
N4 Normal 59 male smoker Non alcoholic 29.0 32.0 1.54 0.5 4.3 0.8 Neg. Neg. Non-Cirrhosis NA 39
N5 Normal 56 female smoker Non alcoholic 16.0 20.0 2.2 0.6 5 1.1 Neg. Neg. Non-Cirrhosis NA 59
N6 Normal 56 female Non smoker Non alcoholic 127 17 0.5 0.2 5 0.7 Neg. Neg. Non-Cirrhosis NA 3.1
N7 Normal 60 male smoker Non alcoholic 19 18 0.5 0.2 4 1.1 Neg. Neg. Non-Cirrhosis NA 2.3
N8 Normal 59 male non-smoker Non alcoholic 13 18 0.5 0.3 4.8 0.8 Neg. Neg. Non-Cirrhosis NA 3.6
N9 Normal 56 female non Non alcoholic 17 19 0.3 0.1 4.9 0.9 Neg. Neg. Non-Cirrhosis NA 3
smoker
N10 Normal 56 female smoker Non alcoholic 18 18 0.5 0.3 4.8 0.8 Neg. Neg. Non-Cirrhosis NA 2.6
N11 Normal 60 male smoker Non alcoholic 17 18 0.5 0.2 4 1.1 Neg. Neg. Non-Cirrhosis NA 2.9
N12 Normal 60 male Nonsmoker Non alcoholic 18 19 0.3 0.1 4.9 0.9 Neg. Neg. Non-Cirrhosis NA 1.9
N13 Normal 58 male smoker Non alcoholic 17 13 0.3 0.1 4.9 0.8 Neg. Neg. Non-Cirrhosis NA 1.4
N14 Normal 50 female smoker Non alcoholic 18 17 0.5 0.2 5 0.7 Neg. Neg. Non-Cirrhosis NA 4.1
N15 Normal 49 female non Non alcoholic 18 18 0.5 0.3 4.8 0.8 Neg. Neg. Non-Cirrhosis NA 4.3
smoker
N16 Normal 50 female smoker Non alcoholic 19 17 0.5 0.2 5 0.7 Neg. Neg. Non-Cirrhosis NA 3.6
N17 Normal 45 female smoker Non alcoholic 18 18 0.5 0.2 4 1.1 Neg. Neg. Non-Cirrhosis NA 2.4
N18 Normal 55 female smoker Non alcoholic 18 12 0.3 0.2 5.1 0.9 Neg. Neg. Non-Cirrhosis NA 3.2
N19 Normal 45 female smoker Non alcoholic 19 18 0.5 0.2 4 1.1 Neg. Neg. Non-Cirrhosis NA 1.5
N20 Normal 55 female non Non alcoholic 13 18 0.5 0.3 4.8 0.8 Neg. Neg. Non-Cirrhosis NA 2.5
smoker
N21 Normal 45 female smoker Non alcoholic 17 19 0.3 0.1 4.9 0.9 Neg. Neg. Non-Cirrhosis NA 2
N22 Normal 59 male smoker Non alcoholic 18 18 0.5 0.3 4.8 0.8 Neg. Neg. Non-Cirrhosis NA 2
N23 Normal 45 female smoker Non alcoholic 17 18 0.5 0.2 4 1.1 Neg. Neg. Non-Cirrhosis NA 1.8
N24 Normal 61 male non Non alcoholic 18 16 0.34 0.1 3.6 1 Neg. Neg. Non-Cirrhosis NA 1,5
smoker

The rows and column of the spectral image I of size M x N is shown in
Eq. (3):

Ay Ap.eeens AN
Ay Agpeeen AN

- | ®
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Where M and N are the number of rows and columns in an image respectively,
and A is the pixel value (Corresponds to any value called pixel intensity where
the intensity of an image varies with the spatial location of a pixel).

Then, for computing the column-mean and row mean of an image I
with size M x N, returns a vector Ia as shown in Egs. (4) and (5) for
column-mean and Ib Egs. (6) and (7) for the row mean:
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Ia = the column-mean of the spectrum imagel.

i=1
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1b = the row-mean of the spectrum imagel.

2.4.2. Spectral image column and row root mean square error calculations

The highest spectrum response precise difference between the normal
and the HCC groups has been revealed by the calculation of the root-
mean-square error (RMSE) as shown in [Figure 3b] and represented by
Egs. (8) and (9).

f 2

RMSE (column mean) = \/ (L(normal) - ia(abnormal)) (€))

i 2
RMSE(TOW mean) = \/ (ih(nnrmal) - ih(ahnormal)) 9

Where; Ia= the column-mean of the spectrum imagel, and Ib = the row-mean
of the spectrum imagel.

2.4.3. Spectral signature algorithm for the cube image

After resolving the wavelengths, with the highest RMSE between the
two groups, Refining the spectral signature algorithm has been produced
by averaging all the 128 frames at 5 nm resolution of the cube image
through the entire wavelengths for rigorously determine the Spatial
mean using Eq. (10).

T_GZN;(E)) =T+ L4 i, +1y

N

(10)

Where: N is the number of rows; while T the column-mean of the spectral

image, and Tis the spatial mean (the mean of I).
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Schematic setup for the system
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Figure 2. Experimental setup schematic/Real
representation of the proposed optical imaging
system including hardware and software pro-
cessing. (a) Schematic setup for the system in-
cludes a Halogen lamp as a polychromatic light
source, a collimated lens, and the tube containing
the total RNA extracted from serum. The field of
view is 10°, and the Hyperspectral camera cap-
tures the image, producing the cube image which
is subjected to software processing; (b) Real setup
for the system: (1) Polychromatic source light
(Halogen lamp,10 W, 340-1000 nm), (2)The
investigated RNA specimen, (3)The HS camera

Real setup for the system

2.4.4. Spectral signature normalization and cross-correlation

Amplitude neutralization has been achieved by the normalization of
the obtained spectral signature, at the allocated wavelength, between the
two groups [Figure 5].

Finally, a cross-correlation matrix has been done for computing the
specific spectral signature differences between the different group
targets.

2.5. Spectral signature of clinical samples with different criteria

To apply the obtained spectral signature, and measure its specificity
and sensitivity, various clinical samples have been analyzed using
Hyperspectral camera and analyzed using the above mentioned algo-
rithms. Specimens selection was done not only for HCC and normal
samples, but also samples with liver benign tumors, and other with
chronic HCV infection 3 cirrhotic and one non-cirrhotic.

2.6. Thermal effect on RNA by hyperspectral camera/laser source

Normal and HCC groups have been subjected to heating at 80 °C for 2
min and then cooled to room temperature for 5 min. Then, Spectral
images have been taken by a Hyperspectral camera, illuminated with the
selected laser source has 650nm =+ 10 illumination range; which is the
determined spectral signature wavelength. Images have been acquired twice
before and after heating to elucidate the thermal energy effect on RNA
folding behavior and their spectral signatures.

----- used (Surface Optics, SOC710, USA),(4) Com-
puter with HS camera software for acquiring cube
images, (5) A one pixel spectral signature con-
cerning sample under test. (6) Computer with

image processing software and data analysis.

2.7. Real time-PCR (qPCR) quantification of RNA cancer panel

Expression of the selected LncRNAs, miRNAs, and mRNAs in
sera samples in the different groups have been done using: RT?
SYBR Green ROX gPCR (Qiagen, USA) and commercial RT? IncRNA
gqPCR Assay, QuantiTest SYBR® Green qPCR (Qiagen, USA) was
used along with the specific primers, and MiScript SYBR® Green
gPCR kit with compatible commercial primers respectively. The
qPCR was performed according to the manufacturer's protocol of
each kit. One Step One Plus™ System (Applied Biosystems Inc.,
Foster, CA) was used for qPCR reactions. The 2722Ct method was
employed for the calculation of the relative quantification of the
RNA cancer panel. RNU6 (Hs_SNORD682_11 MiScript Primer Assay)
served as the housekeeping gene for the miRNAs and f-actin (RT?
IncRNA qPCR Assay for Human ACTB) for IncRNA and mRNA. Also,
the raw data were analyzed in comparison with control samples. All
the data has been analyzed by using Statistical Package for the
Social Sciences (SPSS, Chicago, IL) version 20. The data are shown
in Figure 8.

2.8. Commercial laser source and HSI experimental procedures

Herein, the illumination system is composed of a commercial laser
pointer (650nm + 10, max output power < 5mW), and the image was
acquired using CCD mobile phone camera, and analyzed using the same
algorithms that have been used for HSI.
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Figure 3. The image processing protocol for
the Determination of the spectrum response
for both the HCC and normal in RNA sera
samples. (a) A flowchart for the acquired
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3.1. Spectral cube image processing and computing spatial mean

To compute spectral images spatial mean, many steps have been
followed, firstly, we have used Egs. (1) and (2) (using our custom algo-
rithm) for calibration and noise removal of the obtained spectral cube
images (Calibration + Noise removal using a moving average filter).
Consequently, the optimum wavelength wavelength/s with the highest
difference between the normal and HCC groups have been processed by
selecting thirteen frames concatenated normal images for HCC group and
13 concatenated images for normal groups covering the entire wave-
lengths as depicted in [Figure 4a], high attenuation of the light with a
low transmission; has been observed with HCC samples, compared to the
normal samples that shown; low attenuation of light and high trans-
mission. The next step is the evaluation of the light transmission rate
from the cross bonding images for selecting the discrimination optimal
wavelength between different groups; by using Egs. (3), (4), (5), (6), and
(7) for calculation the row and column mean for each spectrum image.
Solving Egs. (3), (4), (5), (6), and (7); represents the amount of trans-
mitted and scattered light of image pixel as shown in [Figure 4b and c],
The amount of scattered light for normal have shown higher intensity
than HCC samples for both column and row mean. Furthermore, the

Y

= Normal

spectral patterns for the normal sample showed relatively higher in-
tensity (transmission) than the HCC sample in the wavelength ranged
between 400 and 1000 nm. For precisely, indentifying and confirming
the wavelength with maximum difference between the two groups, the
Root Mean Square Error (RMSE), which is the standard deviation of the
prediction errors that measure how column and/or row mean of normal
samples are far from the column and/or row mean of the abnormal
samples. The RMSE has been calculated for the 26 concatenated images
shown in [Figure 4a] using Egs. (8) and (9); which has increased grad-
ually till maximum at 600 nm, and then decreased gradually till 1000 nm.
Moreover, RMSE was significantly high (more than 100) between 500nm
and 700nm for both row mean and column mean which refer to the
spectral response of both samples [Figures 4d & 3b].

3.2. Spectral signature algorithm for the cube image

Finally, after resolving the maximum differences of the wave-
length ranges between the two group; their Spectral signatures have
been revealed, by computing the average of the spatial mean (column +
row mean) for the entire spectral images (128 frames) from 400 to
1000nm with 5nm resolution, using Eq. (10). Consequently, the optimum
wavelength for discrimination between different groups; has been allo-
cated precisely.


https://www.statisticshowto.com/probability-and-statistics/standard-deviation/
https://www.statisticshowto.com/prediction-error-definition/
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3.3. Spectral signature normalization and cross-correlation

The whole algorithm steps for actuary determining the specific
spectral signature for each group, within the obtained optimum
discrimination wavelength (accurately calculated spatial mean) is shown in
[Figure 5a]. Normalization has been done for neutralization of spectral
signature amplitude. The accurate spectral signature obtained is shown
in [Figure 5b].

In the same context, a cross-correlation is a matrix; where, each cell is
showing the correlation coefficient between the spectral signature con-

cerning reference samples(i)), normal samples (fn), and HCC

samples(in). Egs. (11), (12), (13), (14), and (15) have been followed for
correlation coefficient calculations:

m RMSE for row mean

Where:

(pi ), (p=), and (pi) are the mean values of (f,),
T h

In
respectively.
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Figure 4. The spectrum response for both
normal and HCC samples; (a) Spectral images for
the total RNA sera samples (13 normal concate-
nated images in the top +13 HCC concatenated
images in the bottom) at different wavelengths
(400nm:1000nm). The intensity differences be-
tween each target group are distinguishable in
each the images at various wavelengths; (b) Row
means for the spectrum images which represent
the amount of transmitted and scattered light of
image pixel (Normal samples in solid-blue lines
and HCC samples in red-dash lines); (¢) Column
means for the spectrum images which represent
the amount of transmitted and scattered light of
image pixel (Normal samples in solid-blue lines
and HCC samples in red-dash lines); (d) RMSE
between all normal and HCC samples along the y
(row mean) and x (column mean) dimensions.

1D

(12)

13)
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Figure 5. The image processing protocol for
the Specific spectral signature differences
allocation between the HCC and normal in
RNA sera samples. (a) A flowchart for the
acquired cube image to present each step in
extraction of the specific spectral signature
differences for HCC and normal samples
which starts firstly by acquiring the cube
image by the HSC, secondly by cube image
calibration for artifacts and electronic noise
impacts whipping out; (b): Demonstration of
the expected output results in each step in
Extraction of the specific spectral signature
differences for each target group.

Table 2 shows how the correlation coefficient for the normal and HCC
samples has been achieved for precisely revealing the accurate and

Each cell represents the cross correlation coefficient between the
row and the column. Calculations have been done according to Egs.
(11), (12), (13), (14), and (15) (cross correlation coefficient algorithm).
As shown in the table, column 1 represents the cross correlation co-

efficient between the reference, normal and HCC samples, which pro-

duced negative correlation with the normal and positive correlation
with the HCC samples. Moreover, each column such as column 2
showing the correlation between Normal sample 1 and all the other
samples and so on for all the columns. The net result is that the normal

samples are positively correlated with each other and negatively

respectively. specific spectral signatures.
X Z.Z0), + (ZiZa)y + oo + (2.2,
n—<le<z,z“>i>—( )+ Ea) o (Z:Z,)y
i=1
a4
_ 1 (Z2Z0), + (ZZy)y + e + (Z.Zy)y
Rh_(N—l;(ZTZ}')‘>_ N-1
(15)
Where

(Ry) is the correlation coefficient for the normal samples.
(Ry) is the correlation coefficient for the HCC samples.

correlated with the HCC samples and vice versa. This indicates that
there is statistically similarity between the negative samples together
and the HCC samples together, and difference between normal and

HCC samples.
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Table 2. Correlation matrix showing the correlation between the spectral signature of the reference(i), normal ((fn)), and HCC samples respectively.

Groups Ref. Normal 1 Normal 2 Normal 3 Normal 4 Normal 5 HCC1 HCC 2 HCC 3 HCC 4 HCC 5
Ref. 1

Normal 1 -0.3108 1

Normal 2 -0.3761 0.98812 1

Normal 83 -0.4861 0.65536 0.75788 1

Normal 4 -0.6081 0.90601 0.9528 0.85742 1

Normal 5 -0.5524 0.95582 0.97943 0.78053 0.98731 1

HCC1 0.9131 -0.4171 -0.5146 -0.7641 -0.7337 -0.6513 1

HCC 2 0.97176 -0.339 -0.4265 -0.6423 -0.6643 -0.5879 0.98121 1

HCC 3 0.93528 -0.379 -0.4754 -0.7241 -0.7049 -0.6216 0.99724 0.99141 1

HCC 4 0.97418 -0.4281 -0.5047 -0.6511 -0.7214 -0.6593 0.97574 0.99315 0.98285 1

HCC 5 0.3971 -0.0659 -0.2009 -0.7638 -0.3848 -0.2526 0.69381 0.59042 0.67206 0.53179 1

3.4. Spectral signature of clinical samples

Figure 6a shows the whole spectrum using HSI for all the selected
groups, with obvious spectral signatures differences between them,
which allow their characterization, identification, and classification
within 3 min. Interestingly, the benign samples have shown spectral
signature in the same amplitude with the HCC samples but with same
normal signature. Also, all the HCC samples have completely different
signature at the optimum wavelength than the other groups, even sample
HCC 5 which has higher amplitude than the other HCC samples, and have
the same signature of HCC. According to the clinical data, the BCLC stage
(A2, which is early stage HCC), and its AFP level is 20 ng/ml), which
confirms that the tumor is still in its early stage, that's why we speculate
the high amplitude of this sample and in the same time having the same
HCC spectral signature.

L LT T T
. .

Moreover [Figure 6b], shows the amplitude normalized spectral
signature within the optimum wavelength red band (633-700 nm), of the
clinical samples in Figure 6a. Normalization has been done to confirm the
unique spectral pattern for each sample of the different groups. These
results agreed with Duan et al. who reported that the spectral signature of
the liver tumor was distinguishable from that of the normal tissue at
600-900 nm wavelength [50]. Duan et al, has done HSI on liver normal
tissues and HCC tissues, and his data revealed that the tumor liver tissues
has shown a significant reflection peak at 700 nm at the red band, with no
band for the normal tissues at this wavelength. Accordingly, as our work
is on RNA extracted from the HCC and normal subjects, our obtained
spectral signature is around the area obtained by Duan et al. Moreover,
Oranit, B., et al [51], has classified the HCC using Hyperspectral imaging
on histopathological images, and he concluded that the green spectrum
has the highest classification with 99.8%, and the red spectrum with
98.34%, which is not significant difference in addition, the authors

Figure 6. Spectrum signatures for Control and
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declared that the five colors used in the study have similar classification
performance. Taking together these data performed on liver tissues and
histopathological images using HSI, with the signature obtained in this
study, that is in the red band is confirmation that our generated signature
is significantly related to the HCC; taking into consideration that we have
analyzed total RNA extracted from normal and HCC samples, neither
tissues nor histopathological images, and that extracted RNA is related to
liver cancer.

3.5. Cross correlation and spectral shift of the normalized spectral
signature

To determine the spectral signature shift (difference in the wave-
length pattern), between the different samples, cross-correlation of the
normalized spectral signature that obtained at the red band (633-700
nm) has been implemented with respect to the reference as shown in
[Figure 7a]. The spectral signatures shift between the normal group and
the reference are ranged from 30 to 40 nm; while the difference between
the HCC group and reference ranged from 5 to 15 nm. That means a
significant difference between the normal and HCC samples compared to
the reference, that confirms the unique pattern and hence, the specific
spectral signature for each group.

Heliyon 7 (2021) e06388

To ensure the integrity of the data obtained, a comparison between
the HCC gold standard biomarker, the AFP level, and the spectral sig-
natures differences for each sample, has been performed. As shown in
[Figure 7b], significant relation between the AFP level and the spectral
shift has been observed; which is in concordance with the AFP level
between samples, with the exception of one HCC sample 5, which has a
higher spectral shift than the other HCC samples. This sample has low
level of AFP (20 ng/ml), and its BCLC stage of A2 (early HCC stage).
Interestingly, normal samples 4 and 5 have a higher level of AFP than
HCC sample 5; and at the same time; their spectral signal differences are
much higher than the HCC sample 5. This confirmed that the spectral
signature is highly specific and is superior to the AFP level, even if the
AFP is low, the HCC could be determined by our generated specific
spectral signature. Consequently, the spectral signature could be used as
a sensitive early prognostic marker for HCC, even in the very early stage
of HCC.

3.6. Expression of serum RNA cancer panel in HCC and healthy control

The RNA serum panel expression has been done for all the samples in
the study. We have selected different types of RNA (mRNA, LncRNAs,
miRNAs) with differential expression levels between the normal and HCC

Figure 7. Spectral signature differences between
normal and HCC samples within the red-band

Cross correlation samples

Il |

(633-700 nm); (a) Spectral shift calculated
using cross-correlation algorithm with respect to
the reference sample, where normal and HCC
samples are in blue and red lines respectively,
and reference sample in black line; the horizontal
axis shows the different wavelengths in nano-
meters and the vertical axis shows the cross-
correlation samples; (b) Spectral signature shift
(in green bars) compared to AFP counting (in
blue bars). As shown, as the AFP level decreases
the spectral shift increases and vice versa.
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groups, as another confirmation step at a molecular level. In HCC sera
samples, miRNA 23a-3p, miRNA 221-3p, and miRNA 106b-3P, in
addition to, the transcripts FOXM1 mRNA, MCM6 mRNA, and LATI1
mRNA, expression were at a level higher than that of the healthy control.
Moreover, LncRNAs RNAs, (IncRNA-WRAP53, LncRNA-CTBP1-AS,
and Inc-RNA-RP11-513115) expression profile in HCC were higher
than the normal healthy control. On the other hand, sera HCC samples
have shown lower expression of ATG12 and STAT1 mRNA compared
with control. These data are in full agreement and well established as
expression profile panel for HCC in cells and serum; as described in de-
tails in the discussion section [Figure 8].

3.7. Heating effect on spectral signature behavior of RNA samples

The heating effect on the spectral signatures of normal and HCC
samples behavior have been studied using a commercial laser source
(650nm) as an illumination system, and the data was acquired using a
Hyperspectral camera. The effect of heating and cooling on the RNA
samples has a significant effect on RNA folding (spatial organization),
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and the refolding behavior (Figure 9). This is a key experiment in this
pilot study, and the data obtained are highly crucial for proving that
light interaction behavior is affected by the RNA molecules spatial
organization (RNA folding),and hence, the spectral signature. As
shown in [Figure 9], when the cancer samples were heated, and then
cooled no significant effect has been observed in their spectral
signature, which is attributed to their less compact structure (RNA
folding is somehow wobbly) as we proposed. On the other hand, a
significant change in the normal samples has been observed after
heating/cooling procedures. The spectral signature of the normal
samples after denaturation (heating) and then cooled to room tem-
perature; their spectral signature has approached the HCC signature;
which means that the RNA in the normal were more compact due to
their dense folding structure, and has been affected by heating and
refold into smaller or compact structure, making its interaction with
the light behaves like the HCC samples. Interestingly, the samples
were analyzed at wavelength 650 nm which is in agreement with the
spectral signature that has been generated; and it is known that no
absorbance for the nucleic acids at this wavelength.
Bl Lnc-RNA-WRAPS3 fold change Figure 8. BOXPLOT represents serum RNA can-
1_,.2'3“"”‘ 1513115 fold cer panel expression as determined by qRT-PCR
BLncRNA-CTBPI-AS fold chang®  1otveen all the HCC and healthy control groups
in this study. The data expressed as fold change in
gene expression (P < 0.05). (a) LncRNAs, (b)
mRNAs and (c) mi-RNAs. The expression profiles
of the selected RNAs of different types are in
concordance with the Hepatocellular carcinoma
expression profile. The line inside the box is the
median. The top and bottom lines of the box are
the first and third quartiles, respectively. The top
and bottom whiskers are the 5th and 95th per-
centiles, respectively.
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.“,..........................................................................................................,_... Figure 9. Spectral signatures variation with heat
effect: Spectral signatures when using laser
pointer (650nm) with a Hyperspectral camera;
Normal samples before heating in solid blue line
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Further data were acquired using the custom simple setup shown in
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the Hyperspectral camera and a commercial laser pointer (650nm) as an

illumination system. This experiment aims to produce a simple, afford- Hepatocellular carcinoma is a complex disease. The progress in the
able, and cheap detection technique [Figure 10b]. is showing, the transcriptome analysis has paved the way to understand HCC
Uk sl Figure 10. A simple, low-cost optical imaging
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development at a molecular level that discloses many pathways; and
documented by many researchers [15, 31, 52]. Currently, clinical di-
agnostics professionals are heading for liquid biopsies seeking specific
RNAs as early non-invasive detection of cancer including HCC. Many
panels based on circulating RNAs and/or RNAs within circulating
extracellular vesicles, and circulating tumor cells nucleic acids cargo
have been studied which is based mainly on their differential expression
aiming an early specific and sensitive cancer prognosis and diagnosis.

In this pilot study, we have retrieved a panel of genes related to HCC
pathogenesis and implicated in different molecular pathways linked to
carcinogenesis [Figure 8]. shows the Real-Time PCR results for the
selected genes panel. The cell cycle-related transcripts MCM6 mRNA
[53, 541, FOXM1 mRNA [55, 56], are up regulated and down regulated in
the HCC and control groups respectively, while the, apoptosis, and
immune checkpoint regulation: STATI mRNA [57, 58], LATI mRNA
[59, 60]1) and autophagy: ATG12 mRNA [61, 62] are down regulated and
up regulated in the HCC and normal groups respectively (Figure 8b)..
Furthermore, we have selected miRNA 23a-3 [63,64,65], miRNA 221-3p
[66,67], and miRNA 106b-3p [68,69], based on computation prediction
that they are the epigenetic regulators of the chosen mRNAs, and their
deregulation in HCC as reported in previous literature. Their pathway
enrichment analysis revealed that the chosen miRNA is linked to
PI3K-Akt signaling pathway, Jak-STAT signaling pathway and Chemo-
kine signaling pathway (miR-23a-3p), p53 signaling pathway, and cell
cycle signaling (miR-221-3p and miR-106b-3p), and they are all up
regulated in the HCC group(Figure 8c). Finally, the 3 Long non-coding
RNAs (IncRNA-WRAP53), (LncRNA-CTBP1-AS), and (Lnc-RN
A-RP11-513115) [70-73] are linked to HCC; and they up regulated in
the HCC group compared to the control group (Figure 8a). These
LncRNAs are targeting and interacting with either the chosen miRNAs or
mRNAs. Briefly, there is a significant differential expression pattern in
the chosen RNA cancer panel between HCC and control groups; which
proof that the extracted RNA from the different samples are falling be-
tween either the HCC or normal samples. This experiment was done as a
molecular evidence for the total RNA extracted origin.

These differential expressions of the different groups are in agreement
with the obtained spectral signatures that were observed by HSIL.

Herein, an advanced data acquisition algorithm with cube image
processing techniques has employed using a Custom optical imaging
system for the discrimination between normal, cirrhotic, and HCV
chronic infected patients and HCC using total RNA extracted from sera.
HSI is a potential tool in medical diagnostics with many applications in
discriminating between cancer and non-cancerous tissues, sensing and
detecting the abnormal lesions. We have recently exploit the HIS in
developing custom optical imaging system for diagnosis and imaging of
ex-vivo breast cancer [74, 75], in addition to, using HIS in liver tissue
characterization for liver thermal ablation [76]. However, to the best of
our knowledge, this is the first study to use a Hyperspectral camera in
producing distinctive spectral signatures based on total RNA extracted
from sera samples.

The difference or evolving of genetic alterations in cancer cells
compared to the normal cells, one of the main causes of developing
cancer. This could be explained by the accumulation of aberrant RNA
differential expression rate pattern in the cancer cells. Also, the RNA
Binding Proteins (RBPs), which plays a major role in temporal and spatial
organization of RNA in the cell, mutated RBPs are significantly influ-
encing the final RNAs expression. Moreover, the small size of the cyto-
plasm, and organelles, the aberrant splicing, loss of polarity of
cytoskeleton, adhesion molecules (stickiness), with poorly defined tumor
boundaries, and overall loss of normal cell specialized cell features, with
immature differentiation of cancer cell, high rate of cell division, results
in the presence of RNAs (coding and non-coding), with many mutations
and inappropriate spatial organization, and affecting RNA stability thus,
affecting the final RNA folding(tertiary structure) [19, 77, 78, 79].

Minimum free energy achievement is the key required for RNA ter-
tiary structure stabilization. The stability and the dynamics of the native
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RNA tertiary structure depend mainly on minute changes in the base
sequence. Additionally, as mentioned above cellular proteins as RBPs
affect the folding rate and its pathway.

Therefore, we hypothesize that in cancer cells, the dipole-dipole and
RNA molecules staking are loose and not highly stable due to their
imbalance and high rate of mutations that prevent the establishment of
the native RNA folding in normal cells. Consequently, the spatial orga-
nization (folding) of the different nucleic acids including RNA molecules
is changed.

A compact folding structure of RNAs has been observed in this study
as shown in Figure 4a, where the normal samples have higher reflectance
(scattering) than the cancer samples, which indicates the high condensed
structure of the normal RNA other than the cancer samples. This could be
explained by the well-known factors governing predicting size by scat-
tering; which is: i) wavelength of the incident radiation, ii) refractive index,
and iii) scattering angle. All these three factors in our system were constant
and so, the variation in the reflectance/scattering obtained was due to
the size difference between the different groups, which is mainly the
RNA tertiary structure (Folding behavior). This could be explained; that
the photon energy dissipates in the RNA of cancer samples due to its
primary loose structure with immature spatial organization.

Moreover, the RMSE for both the column and row mean has been
calculated, and as shown in Figures 3a and 4d, the highest difference
between the two groups was found between 500 and 700 nm leading to
narrowing the spectral signature difference. Interestingly, these data are
in concordance with, Akabri et al [43], that found the cancer tissues have
low intensity in a wavelength range between 450-950 nm, and also, with
the reflectance/scattering behavior shown in Figure 4a.

As shown in Figure 6a, the spectral signatures within 400nm-600 nm
for the HCC group have the same pattern and normal sample amplitudes
in most samples exceeded HCC samples. In the same context, the two
benign samples have shown the same signature as the normal subjects;
however, with a lower amplitude than the HCC sample. The benign tu-
mors approach the HCC in the amplitude, but with the same signature of
the normal samples. Moreover, the four samples with chronic HCV
infection and no HCC have shown the same spectral signature as the
normal control, with lower amplitude, with the only cirrhotic sample and
chronic HCV infection, with higher amplitude. These obtained data
confirm our hypothesis that differential expression of different RNAs and
their spatial organization (folding) plays a great role in the obtained
spectral signature, and hence; the disease stage, and ensures our findings
Figure 6a. Also, spectral signatures within 633nm-700nm for normal
samples had a distinct pattern than that of the HCC samples which were
so obvious with normalized spectral signatures within 633nm-700 nm
normalization of the obtained spectral signature Figure 6b.

To ensure the integrity of the data obtained, a comparison between
the AFP level (the HCC gold standard biomarker, and the spectral sig-
natures shift differences from the reference for each sample, has been
done as shown in Figure 7b, after calculating the spectral shift between
the samples in Figure 7a. A direct correlation has been found between the
level of AFP and the spectral shift signature which is in concordance with
the proposed HCC detection method, with the AFP as an HCC biomarker.
Interestingly, sample HCC 5, with BCLC stage A2 i.e. at an early stage
with no portal hypertension, has shown higher spectral shift (approach
the normal but having the signature of HCC) in addition to, low AFP level
compared to the other HCC samples with higher cancer stages. In the
same context, normal samples 4 and 5 have a higher level of AFP than
HCC 5; their spectral signal differences are much higher than the HCC
sample 5. This confirmed that the spectral signature is highly specific and
sensitive and could differentiate HCC at a very early stage.

The heating effect to proof our RNA folding hypothesis are shown in
Figure 9 in which; Normal samples before heating have a distinct
signature pattern that lies between 160 and 200 on the spatial domain
(lateral/frontal axis- X-axis) which differs from HCC spectral signature
pattern that lies between 105 and 145 spatial domain. After heating; the
normal spectral signature pattern has been changed significantly with
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and lies between 105 and 145 on the spatial domain (lateral/frontal axis)
and approaches that of the HCC spectral signature before heating. On the
other hand, heating HCC samples did not affect the spatial domain
significantly, and the samples have been slightly shifting to the left, with
the same signature pattern. This could be attributed to the high
condensed structure of the normal RNA samples, which on heating and
then cooling the RNA refolds in less compact structure, and approach the
HCC RNA folding which is already, less folded, (tertiary structure is not
accurately folded as the normal RNA samples.

These data confirmed that the differential expression and hence the
spatial organization of RNA are the key players in the obtained specific
spectral signatures.

We have utilized the cumulative data obtained and analyzed in this
pilot study to build a simple system based on the laser pointer and mobile
CCD camera for total RNA based HCC diagnosis, the system is shown in
Figure 10a. By using a laser pointer in the red band, and acquire the
images by the mobile CCD camera, data analyzed using the same algo-
rithms, and spectral signature for the normal and HCC samples are shown
in Figure 10b. The horizontal axis shows the different lateral/frontal axes
in pixels and the vertical axis shows the scattering values; each group has
a distinct pattern and can be easily and specifically differentiated from
each other in less than 2 min using such custom simple, setup, mobile
camera, and commercial laser pointer.

5. Conclusion and future prospective

A custom optical imaging system using HSI has been established for
the first time to detect HCC utilizing a specific spectral signature for
circulating total RNA with high accuracy, sensitivity, specificity, and
short time turnover.

High speed, a high-resolution Hyperspectral camera captured the
change in Transcriptomes structure by determination of its optical
properties after multispectral light source sample interaction, the results
demonstrate the capability to discriminate between normal, benign,
cirrhotic, and HCC samples which agreed with PCR, biochemical, and
tumor staging data for the investigated samples.

Moreover, we have exploited the spectral signatures obtained in
building a simple, affordable, and cheap system based on the commercial
laser pointer and mobile CCD camera. To the best of our knowledge, we
are the first to determine the optimum wavelength for circulating RNA
dependent HCC diagnosis and using a simple system for remote sensing
of HCC specifically and cancer in general. This will open the door for
incorporating machine learning with our proposed system that could be
used in cancer early detection and infectious diseases.
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