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Abstract 

Background:  Current dose-finding designs for phase I clinical trials can correctly select the MTD in a range of 
30–80% depending on various conditions based on a sample of 30 subjects. However, there is still an unmet need for 
efficiency and cost saving.

Methods:  We propose a novel dose-finding design based on Bayesian stochastic approximation. The design features 
utilization of dose level information through local adaptive modelling and free assumption of toxicity probabilities 
and hyper-parameters. It allows a flexible target toxicity rate and varying cohort size. And we extend it to accommo-
date historical information via prior effective sample size. We compare the proposed design to some commonly used 
methods in terms of accuracy and safety by simulation.

Results:  On average, our design can improve the percentage of correct selection to about 60% when the MTD 
resides at a early or middle position in the search domain and perform comparably to other competitive methods 
otherwise. A free online software package is provided to facilitate the application, where a simple decision tree for the 
design can be pre-printed beforehand.

Conclusion:  The paper proposes a novel dose-finding design for phase I clinical trials. Applying the design to future 
cancer trials can greatly improve the efficiency, consequently save cost and shorten the development period.
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Introduction
The past decade has witnessed a fast growing trend in 
investigational new drug application and early phase clin-
ical trial. However, the probability of (transition) success 
for phase I trials is still as low as about 50%, especially 
for oncology drugs [1]. The quality and performance of 
dose-finding design becomes the key to the success for 
late phase development. We focus on the design to deter-
mine the maximum tolerated dose (MTD) for anti-cancer 

drugs where the probability of toxicity is assumed mono-
tonically increasing in dose. Given a finite sample as 
small as 30 subjects, the current designs can correctly 
select/estimate the MTD at about 50% [2], which still has 
substantial room for improvement to meet clinical needs. 
Denote the probability of experiencing dose-limiting tox-
icity (DLT) event at dose x by π(x) = Pr(y = 1|x) , where 
y is the binary response of DLT. Then, in a nutshell, given 
a prespecified acceptable toxicity rate α , such as 20% or 
30%, the dose-finding design can be treated as a sequen-
tial estimation of the quantile from a finite collection of 
candidate doses C , i.e., d∗ = argmind∈C |π(d)− α|.

There is a rich literature on methods for this problem, 
which can generally be classified in three categories: 
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the algorithm-based methods, the model-based meth-
ods, and the model-assisted methods. The 3+ 3 method 
[3] is the most popular algorithm-based design. Simple 
rules for dose-escalation make it easy to use and acces-
sible by clinicians. Even though it is inefficient with a cor-
rect selection rate as low as 30% [4, 5], it is still widely 
adopted by pharmaceutical companies and authorities. 
The model-based methods allow borrowing information 
across doses. They usually consist of two steps. The first 
step is to postulate some parametric model for the under-
lying dose response curve. The second step uses a Bayes-
ian paradigm to update the posterior distribution of the 
parameters and the induced distribution of the toxicity 
rate upon which the decision for the next dose is made. 
Some popular methods include the continual reassess-
ment method (CRM) [6], the escalation with overdose 
control (EWOC) [7, 8] and the Bayesian logistic regres-
sion model (BLRM) [9]. Recently, model-assisted interval 
designs have gained popularity. Such designs first parti-
tion the toxicity probability space into three subintervals 
representing decision regions of escalation, stay and de-
escalation, respectively. The designs decide the next dose 
based on the posterior coverage of the three intervals. 
Specifically, Ji  et  al. [10] proposed a modified toxicity 
probability interval (mTPI) to sequentially determine the 
next dose based on unit probability mass. An improved 
version, called mTPI-2, was proposed by Guo et al. [11] 
to avoid some suboptimal solution. It was later showed to 
be equivalent to the Keyboard design of Yan et al. [2, 12]. 
Liu and Yuan [13] proposed a Bayesian optimal inter-
val (BOIN) design which determines the next dose by 
thresholding the observed toxicity rate to minimize the 
decision error from a hypothesis testing perspective.

One important advantage of the rule-based meth-
ods, including both algorithm-based and model-assisted 
methods, is transparency. A statistician can tabulate all 
scenarios of possible outcomes and the corresponding 
decisions for dose assignment in advance so that clini-
cians can implement it easily without resorting to extra 
computational tools. On the other hand, the inefficiency 
of these rule-based methods stems from the ignorance 
of the exact dose information (as only ranks of doses 
are used) and the trajectory of the search path. The 3+3 
method targets the DLT probability from 1/6 to 1/3 
and only uses the frequency information at the current 
dose to make decisions [14]. The model-based methods 
can lose efficiency in two aspects. First, they may overly 
emphasize the global fit for the dose-toxicity curve while 
the actual interest is the point estimation of a local quan-
tile. For example, it is not wise to use data collected at 
low dose levels to update the distribution of parameters 
while the MTD resides in the high dose region. Sec-
ond, the methods rely on some subjective assumptions/

specifications about priors, hyper-parameters, and 
threshold values. Different specifications can lead to sig-
nificantly different results in MTD selection.

In a different route, the quantile estimation problem 
has been dealt with using stochastic approximation 
[15] in sensitivity experiments. Some useful variants 
have been proposed to improve efficiency over the 
years [16, 17]. However, for the dose-finding problem, 
it suffers from the discrete barrier [18].

In this paper, we attempt to fix these inefficiency prob-
lems and improve the estimation accuracy. We propose 
a novel design based on the Bayesian stochastic approxi-
mation method introduced by Xu et al. [19] The idea is 
to employ a local linear model and a Bayesian scheme 
to sequentially estimate the interested quantile directly 
alone the search path. We show that the design has 
the desired properties of coherence and consistency. 
Moreover, it enjoys simplicity in the sense that neither 
pre-specification of toxicity probabilities nor subjective 
priors for parameters are required. We show the design 
can be extended to incorporate historical information 
through prior effective sample size. Extensive simulation 
demonstrates its superior performance to some popular 
methods in terms of accuracy and overdose control. On 
average, based on a sample of 30 subjects the proposed 
design can correctly select the MTD at about 60% when 
the MTD resides at a early or middle position in the 
search domain and perform comparably to other com-
petitive methods otherwise.

A free package at https://​bsa4df.​shiny​app.​io/​BSA_​app 
is provided to facilitate the application with a pre-printed 
decision tree for the next three cohorts that can to be 
easily used by practitioners.

Methods
Design
Suppose K doses are considered. To facilitate the model, 
we need two simple preprocesses. The first preprocess is 
to scale the dose levels in (0,1] and sort them in ascend-
ing order in C = {d1, . . . , dK } . This can be done by a linear 
map based on the range of the dose levels in their original 
scale or log scale so that the dose levels are well spread 
over the interval (0, 1]. For example, the dose levels 1, 2, 
3, 4, 5 are converted to 0.1, 0.3, 0.5, 0.7, 0.9 by the trans-
formation (x − 0.5)/5 and the dose levels 100, 200, 400, 
800 are converted to 0.28, 0.59, 0.77, 0.91 by the trans-
formation {log(x)− 4}/2.2 (A generic rule is described in 
Supplementary Materials.). The second preprocess is to 
divide (0, 1] equally into s subintervals. It is essential for 
local modeling as we shall focus on one of these subin-
tervals at a time. The value s decides the length of subin-
tervals. Due to the scarcity of sample size in phase I trial, 

https://bsa4df.shinyapp.io/BSA_app
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we recommend a small integer such as 3 or 4 in practice. 
Sensitivity analysis is provided later.

We apply the Bayesian stochastic approximation (BSA) 
[19] to construct the sequential design. The procedure is 
summarized as follows.

Fix the cohort size to be three as usual. We start 
to treat the first cohort at the lowest dose level. For 
n = 1, 2, . . . , suppose the dose level for the current 
nth cohort is xn , which corresponds to dk . Then, xn is 
uniquely contained in the subinterval (v0, v1] , where 
v0 = (⌈xns⌉ − 1)/s , v1 = ⌈xns⌉/s and ⌈·⌉ is the ceiling 
function. For example, xn = 0.2 ∈ (0, 1/3] with s = 3 . 
Let yna denote the binary response of the ath patient 
of cohort n. Denote the cumulative data up to the nth 
cohort by Dn = {(xi, yia) : i = 1, . . . , n, a = 1, . . . , 3} . It is 
worth noting that the design allows varying cohort sizes 
throughout the trial, e.g., three subjects for cohort one 
and one subject for cohort two. We provide more discus-
sion in a sensitivity analysis.

Let θ denote the root of π(x) = α , i.e., θ = π−1(α) . It 
is unique when we assume π(x) is strictly increasing. 
First, approximate π(x) in (v0, v1] by a segment of the line 
through the point (θ ,α) given by F(x) = α + β(x − θ) . 
See the illustration in Fig. S1. Denote the values of the line 
segment at the two ends by ρ0 = F(v0) and ρ1 = F(v1) . 
By the monotonicity of π , assume β is positive. And, we 
have ρ0 < ρ1 . The local adaptive modeling focuses on 
the neighborhood of the current dose and minimizes the 
unnecessary influence of ‘outsider’ data. It improves the 
efficiency of the subsequent Bayesian estimation. The lin-
ear model suffices for the local modeling and enjoys the 
simplicity for computation and interpretation.

Second, we impose a noninformative uniform prior for 
(ρ0, ρ1) (with the density 2I(0 < ρ0 < ρ1 < 1) , where I 
is the indicator function). This prior reflects the mono-
tonicity assumption of the dose-toxicity relationship 
precisely. It avoids subjective specification of the prior 
of variables that are parameterized in some other way, 
e.g., intercept and slope as in Babb et al. [7] and Neuen-
schwander  et  al. [9]. Based on this prior, we derive the 
induced joint prior for (β , θ).

Third, using the data with doses contained in the cur-
rent subinterval (v0, v1] , compute the posterior distribu-
tion of (β , θ) . Then, compute the marginal posterior of 
θ , denoted by h(θ) , and the posterior mean of θ , denoted 
by E(θ |Dn) , the latter of which is the Bayes estimator of 
the desired quantile. One remarkable consequence of the 
noninformative prior is that the posterior distribution of 
θ can be obtained recursively and analytically so that the 
computation is simple without resorting to Markov chain 
Monte Carlo. (See details in Xu et al. [19])

At last, determine the dose for the next cohort to be 
the dose in the neighborhood of the current dose which 

is closest to the posterior mean of the target dose, i.e., 
xn+1 = da∗ , where

In this way, dose skipping is not allowed as usually 
required in practice.

The proposed design possesses two desirable proper-
ties. First, the design satisfies the coherence property 
introduced by Cheung [20] in the sense that the probabil-
ity of dose escalation (or de-escalation) is 0 when the DLT 
response is 1 (or 0) at the current dose (See the proof in 
Supplementary Materials.). This finite sample property 
is appealing to clinicians in that dose escalation is not 
allowed when a DLT event occurs. Second, by Proposi-
tion 2 of Xu et al. [19] and Theorem 1 of Oron et al. [21] 
we have the consistency of the estimator, i.e., xn con-
verges to d∗ almost surely.

Algorithm
We summarize the algorithm for the proposed design as 
follows. 

Step 1:	Treat the first cohort at the lowest dose d1.
Step 2:	At current dose dk , determine (v0, v1] and the 

data contained in this subinterval. Compute the pos-
terior distribution of θ and determine the next dose 
by (1).

Step 3:	Repeat Step 2 until the sample size is exhausted. 
Choose the next dose as MTD.

In practice, a couple of quick actions can be taken to 
expedite the algorithm without invoking Bayesian cal-
culation in Step 2. First, escalate before having the very 
first occurrence of DLT. That is if no DLT event has ever 
occurred up to the current dose dk , conduct the experi-
ment for the next cohort at dose dk+1 whenever it is 
defined. Such step is adopted by Simon  et  al. [22] and 
Riviere et al. [23].

Second, in Step  2, after accumulating a certain num-
ber, say m0 , of patients at one dose, we construct a Wald-
type interval to make quick decision for the next dose with 
high confidence. To be specific, let mk denote the number 
of patients treated at dk and let pk denote the relative fre-
quency of DLT at dk . (We apply the pool-adjacent-violators 
algorithm to keep the monotonicity of p̂k . I.e., replace p̂k 
with the average of the relative frequency of DLT at dk and 
the relative frequency of DLT at the previous dose if they are 
not monotonic [13].) Let logit(x) = log{x/(1− x)} denote 
the logit function. When mk is large, say no less than m0 in 
our case, by large sample theory and delta method, logit(p̂k) 
is approximately distributed as N (logit(pk ), {mkpk (1 − pk )}

−1) . 

(1)
a
∗ = argmin

{
|da − E(�|Dn)| ∶ a = max(k − 1, 1), k , min(k + 1,K )

}
.
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Denote zξ as the upper 100ξ percentile of the stand-
ard normal distribution. If pk is close to α , then with 
probability of 1− 2ξ , logit(p̂k) falls in the interval 
(c1, c2) = (logit(�) − z

�
{mk�(1 − �)}−1∕2, logit(�) + z

�
{mk�(1 − �)}−1∕2) . 

Or equivalently p̂k falls in the interval 
({1 + exp (−c1)}

−1, {1 + exp (−c2)
−1
}) . (Note that the logit trans-

formation makes the distribution of logit(p̂k) more sym-
metric (or less skewed) than p̂k .) If p̂k is smaller than the 
lower limit of the interval indicating dk is below the MTD 
with high confidence, escalate to min(dk+1, dK ) . If p̂k is 
greater than the upper limit of the interval indicating that 
dk is above the MTD with high confidence, de-escalate to 
max(dk−1, d1) . In particular, if p̂1 is greater than the upper 
bound of the interval, we shall terminate the trial for toxicity 
[11]. Otherwise, when p̂k falls in the interval, the proposed 
Bayesian method is used to make the transition decision. To 
have high confidence, we set ξ = 0.05 that corresponds to 
a 90% confidence interval and m0 = 12 [13]. In fact, a large 
number of experiments, such as 12 out of 30, on a particular 
dose indicates strongly the convergence of MTD.

Example
We illustrate the application of the proposed design 
and algorithm by an example used in O’Quigley  et  al. 
[6]. The dose-toxicity response curve is generated by 
Pr(y = 1) = [{tanh(x)+ 1}/2]2 , where six candidate lev-
els are chosen as follows.

The target toxicity rate is 20% . Thus, the MTD is the fifth 
dose. For the proposed method, the dose levels are scaled 
by the transformation (x + 1.5)/2 , under which the MTD 
is 0.75. We set s = 3 for the local modeling throughout.

The upper panel of Fig.  1 shows one search path, 
(1,  2,  3,  4,  5,  6,  5,  5,  5,  5), obtained by the proposed 
method. It is seen that the fast escalation proceeded 
until the first DLT was observed on the 18th patient 
in the sixth cohort. Then, the design started to build 
a local model on the subinterval (0.667,  1) containing 
six data points. The posterior mean of θ after the sixth 
cohort was 0.729, which led to the fifth dose level in the 
same subinterval. In the seventh cohort, zero DLT was 
observed and the posterior mean of θ was 0.776, which 
led to the fifth dose level again. In the eighth cohort, 
one DLT was observed and the posterior mean dropped 
to 0.760, which still indicated to stay. The subsequent 
ninth and tenth cohorts did not observe any DLT. 
And the posterior means increased to 0.791 and 0.814 
consecutively, which led to remain at the fifth dose 
level as desired. The lower panel of Fig. 1 presents the 

k 1 2 3 4 5 6

original dose level − 1.47 − 1.1 − 0.69 − 0.42 0.0 0.42

scaled dose level 0.015 0.20 0.405 0.54 0.75 0.96

toxicity probability 0.002 0.01 0.04 0.09 0.24 0.49

evolution of corresponding posterior densities of θ after 
the sixth to tenth cohorts. It is seen that the posterior 
density after observing zero DLT in the seven cohort 
shifted more mass toward right and it shifted more 
mass toward left after encountering one DLT in the 
eight cohort. The posterior densities after the ninth and 
tenth cohorts gradually shifted toward right again as 
no DLT was observed. Overall, we see the search path 
was stable with one oscillation and had a quick conver-
gence. The search pathes by the other methods are also 
provided in the supplementary materials.

Incorporating historical information
When historical information is available, it is desired 
to have design to incorporate it in a sensible way. 
Zhou  et  al. [24] proposed a unified framework to 
incorporate informative prior information using the 
skeleton and prior effective sample size (PESS) and rec-
ommended the method iBOIN. Duan  et  al. [25] pro-
posed the method of Hi3+3 that first determines PESS 
from historical information through the power prior 
approach and then applies the i3+3 procedure [26] to 
the combined data.

Here, we extend the proposed method to incorpo-
rate historical information after Zhou  et  al. [24]. For 
k = 1, . . . ,K  , let pk = π(dk) . Denote the elicited prior 
probability of pk , i.e. skeleton (as in CRM), by qk . Let n0k 
denote the PESS at dose level dk . To determine PESS, we 
follow the two rules of thumb [24]. First, if there is strong 
evidence that the prior is correctly specified, choose large 
PESS to borrow more information to increase the accu-
racy and reliability. Second, if the prior is vague, set n0k to 
be an integer in [N/(3K), N/(2K)], where N is maximum 
sample size allowed. For example, when N = 30 , we set 
n0k = 3 or 2 for K = 5 or 6, respectively. Let ak and bk 
be the nearest integers of n0kqk and n0k(1− qk) , respec-
tively. For instance, when qk = 0.3 and n0k = 3 , ak = 1 
and bk = 2 . Then, we simply assign ak DLT events and 
bk non-DLT events as pre-existing observations at dose 
dk in Step 2 of the algorithm. These ak + bk observations 
and the subsequent observations at dk are combined to 
compute the likelihood function. We refer this modified 
algorithm as hBSA.

Comparisons and evaluation metrics
We compare the proposed BSA method with six pop-
ular methods, namely, 3+3 [3], CRM [6], mTPI [27], 
mTPI-2 [11], BOIN [13] and Keyboard [12]. The 3+3 
method is carried out by the R package UBCRM [28]. 
The CRM, mTPI, mTPI-2, and BOIN are carried out by 
the commercial software ‘East BAYES’ with default set-
tings, which are noted with superscript 1. In addition, 
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the CRM, BOIN and Keyboard are carried out by the 
free softwares at trial​design.​org, which are noted with 
superscript 2.

We use the following four metrics to evaluate the per-
formance of the designs. 

	 I:	 the percentage of correct selection (PCS)
	II:	 the percentage of patients allocated to the MTD 

(MTD%)
	III:	 the percentage of patients treated above the MTD 

(above-MTD%)
	IV:	 the average number of observed DLTs throughout 

the trial (# of DLTs)

Both PCS and MTD% reflect the accuracy of the estima-
tion. The latter also reveals the speed of convergence to 
the MTD. Metrics III and IV evaluate the safety in terms 
of overdose control and overall cost of adverse event, 
respectively. Throughout, we set the maximum sample 

size to be 30 in ten cohorts of size three and set the num-
ber of replications to be 10,000.

Results
Fix scenario case
We adopt the 20 representative scenarios of toxicity rates 
from Yan et al. [12] in Table S1, where the target toxicity 
rates are 20% for the first 10 scenarios and 30% for the 
last 10 scenarios, such that the MTD is located from low 
level to high level out of five doses. We first convert the 
dose levels to 0.1, 0.3, 0.5, 0.7, 0.9 as described earlier and 
set the number of subintervals s to be three throughout. 
Sensitivity study about s is given later.

PCS of MTD Figure  2 shows the comparison of PCS 
obtained by 3+3, CRM2 , BOIN2 and BSA. (The values 
of the number of DLTs are replaced by the counterparts 
from CRM1 , BOIN1 since they are not available from 
the freeware.) The results from the commercial software 
(mTPI, mTPI-2, CRM1 , BOIN1 ) are either close to their 

Fig. 1  Upper panel: one search path up to 10 steps for the target toxicity probability 0.2, where the observed values of yn are depicted along 
the dose level by empty circles for 0 and filled bullets for 1. Lower panel: evolution of the posterior densities (multiplied by a certain constant for 
illustration purpose) of θ after the sixth to tenth cohort. The dotted lines indicate the limits of the subintervals and the solid line indicates the root at 
0.75

https://trialdesign.org/


Page 6 of 12Xu et al. BMC Medical Research Methodology          (2022) 22:258 

respective counterparts by freeware or uniformly infe-
rior to BOIN2 . The results by Keyboard are found very 
close to those by BOIN2 , as reported by Yan  et  al. [12]. 
Therefore they are excluded in the graphical comparison. 
The complete results of all seven competing methods are 
given in Table S2.

The 3+3 method exhibits its inefficiency with average 
PCSs of 37.5% and 32.0% for α = 20% and 30%, respec-
tively. Under α = 20% , the proposed BSA method yields 
the highest PCS in five scenarios (sc 1–4 and 6), where 
the MTD is located in lower levels. The superiority mar-
gin to the second best is as wide as 10%. The CRM2 pro-
duces the highest PCS in the remaining five scenarios 

(sc 5, 7–10) where the MTD is located in higher levels. 
In average, the PCS of the best two performers BSA and 
CRM2 are 51.4% and 53.3%, respectively. These reveal the 
conservativeness of BSA pointed out before especially 
when the target DLT probability is small and the MTD is 
late positioned. Under α = 30% which is most common 
in practice, BSA yields the highest PCS (all above 50%) 
in the first eight scenarios (sc 11–18), where the MTD 
is located in the first four levels. The superiority margin 
to the second best varies from 3% to 20%. This shows a 
remarkable improvement over the existing methods 
under the most representative scenarios. The CRM2 pro-
duces the highest PCS in the remaining two scenarios (sc 

Fig. 2  PCS and MTD% obtained by four competing designs. A higher value is better
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19–20) where the MTD is located in the highest (fifth) 
level. In average, the PCS of the best two performers 
BSA and CRM2 are 62.5% and 56.4%, respectively. At 
last, we note that scenarios 9, 10, 19, 20 with MTD at the 
last level are rare in reality as clinician would propose a 
search domain elicited from historical trials or PK/PD 
studies and specify candidates so that the guessed MTD 
is not close to the end of the search window.

MTD% The results of MTD% are in alignment with 
those of PCS. The best performer with the highest value 
is either BSA for the lower level MTD case (sc 1–4 under 
α = 20% and sc 11–16 under α = 30% ) or CRM2 for the 
higher level MTD case (sc 5–10 under α = 20% and sc 
17–20 under α = 30% ). See complete results in Table S3.

above-MTD% Besides the excellent performance of 
BSA in estimation accuracy, its advantage in overdose 
control is more pronounced. Figure 3 and Table S4 show 
that BSA yields the lowest above-MTD% among seven 
competing methods uniformly across 20 scenarios. The 
averaged improvement margin to the second best is 
about 6%. This is resulted from the conservativeness and 
monotonic search path of BSA as illustrated before. On 
the other hand, the methods like CRM and BOIN are 
more library in dose escalation.

number of DLTs We note that the comparison with 
3+3 should not be accounted as its known tendency to 
underestimate. The proposed BSA method yields the 
minimum number of DLTs under 16 scenarios (sc 3–10 
and 13–20) when the MTD is not at the first level (out 
of six competing methods excluding 3+3). When the 
MTD is at the first level (in scenarios 1–2 and 11–12), the 
performance of BSA is comparable to the others within 
maximum 0.7 number of DLTs in average. See complete 
results in Table S5.

quick actions by BSA The quick actions of BSA 
described in Section 2.2 depends on the actual probabil-
ity of toxicity. For instance, in scenarios 9, 10, 19 and 20, 
where the probabilities of toxicity are rather small in the 
early doses and the MTD is located at the last dose, the 
quick actions invoked by either zero DLT event (2.49∼
3.73 times out of ten) or Wald-type interval (0.64∼0.99 
times out of ten) take more places than in the other sce-
narios. We emphasize that the hybrid of these frequentist 
actions with the proposed Bayesian method saves com-
putational cost and has nearly no impact to the estima-
tion accuracy. The detailed results are given in Table S6.

performance with the use of historical information 
For the sake of space, we defer the comparison of the 
proposed hBSA with iBOIN in the presence of historical 
information to Supplementary Materials. In summary, 
the proposed hBSA outperforms iBOIN in estimation 
accuracy in average when the skeleton is correctly speci-
fied. The superiority is more prominent when the MTD 

is at the early or middle position of the search domain. 
When the skeleton is mis-specified, hBSA performs 
comparable to iBOIN with superiority for MTD at early 
or middle position and inferiority for MTD at late posi-
tion. hBSA has significant better overdose control than 
iBOIN no matter the skeleton is correctly specified or 
mis-specified.

Random scenario case
Now fix the target rate at 30%. We repeat the comparison 
in Section  3.1 under more scenarios that are randomly 
generated. We adopt the pseudo-uniform algorithm by 
Clertant et al. [29] to generate 200 random scenarios (of 
the probabilities of toxicity) for K = 5 and 6 respectively 
with the MTD equally probably located at the first four 
doses, where the toxicity probability gap between the 
MTD and its adjacent doses is within (0.05,  0.3) [24]. 
Twenty random scenarios for K = 5 and 6 are shown in 
Fig. S4.

For the proposed BSA method, we first use the same 
dose levels (derived from the ranks) as in Section  3.1, 
referred as ‘BSA (fixed)’. Second, to examine the perfor-
mance of using exact dose information, we randomly 
generate dose levels. To be specific, we first set the MTD, 
say dk , at 0.3, 0.5, 0.7 to represent the early, middle and 
late position in the search domain, respectively, and then 
generate k − 1 doses in (0, dk − 0.05) and K − k doses in 
(dk + 0.05, 1) , where the vicinity (dk − 0.05, dk + 0.05) 
of MTD is created to make it distinguishable from other 
doses. We refer BSA under these three settings as ‘BSA 
(exact, early)’, ‘BSA (exact, middle)’ and ‘BSA (exact, late)’, 
respectively. Note that the other competing methods do 
not distinguish such location specifications since only 
ranks are used.

Figures  4 and 5 compare the performance (in four 
metrics averaged over 200 random scenarios) of 3+3, 
CRM2 , BOIN2 and BSA. The complete report of all seven 
methods is given in Table  S13. In general, the results 
are seen consistent to the findings of the fixed scenario 
case. Regarding the estimation accuracy, the 3+3 method 
performs the worst with the average PCS below 30% for 
both K = 5 and 6. The mTPI and mTPI-2 produce the 
average PCS around 47–51%. The CRM, BOIN, and Key-
board perform comparably with the average PCS around 
53% ( ±1% ) (for both K = 5 and 6). The proposed BSA 
(fixed) produces improved results with the average PCS 
of 57.1% and 58.0% for K = 5 and 6, respectively. The 
BSA (exact, early) yields the average PCS of 60.5% and 
58.0% for K = 5 and 6, respectively. The BSA (exact, mid-
dle) yields the average PCS of 64.8% and 64.4% for K = 5 
and 6, respectively, implying a minimum 10% superior-
ity lead to the other competing methods. The BSA (exact, 
late) yields the average PCS of 56.7% and 56.8% for K = 5 



Page 8 of 12Xu et al. BMC Medical Research Methodology          (2022) 22:258 

and 6, respectively, which still outperforms the other 
competing methods. The outcomes of the second accu-
racy metric, MTD%, show consistent results with those 
of PCS. The proposed BSA method (either fixed or exact) 
outperforms the other competing methods with the larg-
est values of MTD% under both K = 5 and 6. It is noted 
that the results about accuracy of the other six compet-
ing methods are consistent with the findings reported in 
Zhou  et  al. [2]. Regarding the other two metrics about 
safety, the proposed method demonstrates significant 
superiority to the other six methods with a reduction 
in overdose (above-MTD) rate varying in 3-10% from 

the second best performer depending on the location 
of MTD. The proposed method controls the number of 
DLTs comparably as the other methods after excluding 
the conservative 3+3 method.

Again, we defer the results of the comparison with 
iBOIN in the presence of historical information to Sup-
plementary Materials. The findings are similar to those 
from the fixed scenarios.

Sensitivity analysis
We first conduct sensitivity analyses for the proposed 
method with respect to the number of subinterval s 

Fig. 3  Above-MTD% and # of DLTs obtained by four competing designs. A lower value is better
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by repeating the simulation in Section  3.1. Recall that s 
determines the length of subintervals based on which 
the most recent data are collected and the local model is 
built. Tables S15 and S16 report the four metrics of BSA 
with s set to be 5 and 7, respectively. It is seen that the 
performance are comparable to those under s = 3 (Tables 
S2-S5) with a slight variation within 1% in average PCS. 
In general, the number of subinterval regulates the quan-
tity of local information to be used for transition decision 
making. Smaller value of s implies larger subinterval or 
more local data points, which leads to more conservative 

transition action. Therefore, it is in favor of the scenario 
with MTD in early position. On the other hand, larger 
value of s results in more aggressive decision making and 
favors the scenario with MTD in late position. To balance 
the relevancy and accuracy, we recommend setting s = 3 
(with the subinterval width of 1/3) for K ≤ 6 and s = 5 
(with the subinterval width of 1/5) for K ≥ 7 in practice. 
Of course, for large K more sample size is needed.

Second, we examine the impact of cohort size. We set 
the cohort size to be one (i.e., full sequential design), two 
and a randomly varying number in {1, 2, 3} , respectively, 

Fig. 4  Performance of four competing designs under random scenarios with K = 5
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while keeping the maximum sample size to be 30. (So 
that the corresponding numbers of cohort become 30, 
15 and a number between 10 and 30, respectively.) Such 
settings make the design more liberal as fewer samples 
are needed to make a move at each cohort. We carry out 
the BSA design with these settings under the same 20 
representative scenarios. Tables S17 and S18 show that 
in contrast to the design with fixed cohort size of three, 
the performance with smaller cohort sizes and vary-
ing cohort size in {1, 2, 3} improves in accuracy, espe-
cially for the scenarios where the MTD resides at a late 

position and declines sensibly as necessary scarification 
in overdose control, which is still superior to the other 
competing methods in average. This suggests that the 
proposed design is well suitable for flexible accrual.

Third, we repeat the simulation in Section  3.2 with 
the MTD randomly assigned to all K doses. In parallel 
to Tables  S13 and S14, Tables  S19 and S20 report the 
four metrics in comparison with the respective com-
peting methods in the absence and presence of histori-
cal information. It is seen that the results are similar to 
those when MTD is in the first four doses.

Fig. 5  Performance of four competing designs under random scenarios with K = 6
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Discussion
We have proposed a novel dose-finding design for phase I 
clinical trials. The design employs the Bayesian stochastic 
approximation method that (i) takes the dose level infor-
mation into account to improve the estimation efficiency 
and (ii) requires no pre-specifications of parameters. 
One remarkable advantage of the proposed design is that 
it allows varying cohort size throughout the trial. This 
flexibility enables the design to accommodate different 
accrual situations, e.g., to use small cohort size for slow 
accrual and a large cohort for fast accrual.

By comparing with some popular methods through 
either commercial software or free softwares, we show 
that based on a sample of 30 subjects the proposed BSA 
design produces the estimation accuracy with PCS of ∼
60% for the common case of MTD at an early or middle 
level. And it is much safer in overdose control. The com-
putation of the new design is simple. We provide a free 
online package to facilitate the application, which pre-
prints the decision rules graphically. See an illustration 
of the use of the R Shiny application in Supplementary 
Materials. The R code for simulation is provided in Sup-
plementary Materials as well.

Like the other designs for estimating MTD, the proposed 
design assumes the monotonicity of the dose-toxicity rela-
tionship. Therefore, it is not applicable for optimal biologi-
cal dose where the assumption does not necessarily hold.

At last, we note that extensions of the design to handle 
combination drugs and to incorporate covariates such as 
regional or ethnic effects are worth further investigation.
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