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Abstract

 

During T cell development in the thymus, pre–T cell receptor (TCR) complexes signal CD4

 

�

 

CD8

 

� 

 

(double negative [DN]) thymocytes to differentiate into CD4

 

� 

 

CD8

 

� 

 

(double positive
[DP]) thymocytes, and they generate such signals without apparent ligand engagements. Although
ligand-independent signaling is unusual and might be unique to the pre-TCR, it is possible
that other TCR complexes such as 

 

�� 

 

TCR or 

 

�� 

 

TCR might also be able to signal the DN
to DP transition in the absence of ligand engagement if they were expressed on DN thy-
mocytes. Although 

 

�� 

 

TCR complexes efficiently signal DN thymocyte differentiation, it is
not yet certain if 

 

�� 

 

TCR complexes are also capable of signaling DN thymocyte differentiation,
nor is it certain if such signaling is dependent upon ligand engagement. This study has addressed
these questions by expressing defined 

 

�� 

 

TCR transgenes in recombination activating gene
2

 

�

 

/

 

� 

 

pre-T

 

�

 

�

 

/

 

� 

 

double deficient mice. In such double deficient mice, the only antigen receptors
that can be expressed are those encoded by the 

 

�� 

 

TCR transgenes. In this way, this study defin-
itively demonstrates that 

 

�� 

 

TCR can in fact signal the DN to DP transition. In addition, this
study demonstrates that transgenic 

 

�� 

 

TCRs signal the DN to DP transition even in the absence
of their specific MHC–peptide ligands.
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��
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Introduction

 

Lymphocytes respond to their environment by integrating
signals generated by interaction of plasma membrane re-
ceptors with extracellular ligands. Mature T lymphocytes
use the multicomponent TCR to respond to their ligands
that are MHC–peptide complexes. In developing 

 

�� 

 

lin-
eage T cells, rearrangement and expression of TCR

 

� 

 

genes
initiate at the CD4

 

� 

 

CD8

 

� 

 

(double negative [DN]) stage of
thymocyte differentiation. DN thymocytes differentiate
into CD4

 

� 

 

CD8

 

� 

 

(double positive [DP]) cells if they are
signaled by pre-TCR complexes that consist of newly
generated TCR

 

� 

 

proteins associated with nonrearranging
pre-T

 

� 

 

chains and CD3 components (1). However, it is
not known how pre-TCR signals are generated. Because
pre-TCR complexes do not require an extracellular domain
to transduce signals in DN cells, their ability to transduce
signals in DN thymocytes might be ligand independent (2,

3). In fact, unlike the 

 

�� 

 

TCR, the pre-TCR has no
known ligands.

Whether ligand-independent signaling by the pre-TCR
is a property unique to this receptor or a general property
of DN thymocytes is a matter of debate. The ability of the
pre-TCR to localize in lipid rafts in the absence of ligand
engagement has argued for the uniqueness of this recep-
tor (4). The palmitoylation of a juxtamembrane cysteine
residue uniquely present on pre-T

 

� 

 

chains was initially
thought to be necessary for pre-TCR raft associations, but
this residue has recently been shown to be dispensable for
pre-TCR signaling (5–8). Alternatively, there are data that
support the perspective that ligand-independent signaling is
a general property of antigen receptors on DN thymocytes.
Haks et al. (7) have shown that retrovirally induced TCR

 

�

 

chains successfully substituted for pre-T

 

� 

 

in signaling DN
thymocytes to differentiate into DP cells, and they did so
whether or not MHC ligands were present. These observa-
tions demonstrated that engagement of MHC ligands was
not required for TCR

 

�

 

-dependent signaling in pre-T

 

�

 

�

 

/

 

�

 

DN thymocytes, but the receptor complexes doing the sig-
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naling were not necessarily 

 

�� 

 

TCR, as they might have
been 

 

�� 

 

TCR complexes. Indeed, TCR

 

� 

 

expression in
RAG

 

� 

 

DN thymocytes promotes formation of novel 

 

��

 

TCR complexes that are very efficient at signaling DN
thymocytes to differentiate into DP thymocytes (9). Pre-
cisely the same caveat also limits conclusions that can be
drawn from other experiments in which transgenic (Tg)

 

�� 

 

TCRs were expressed in RAG

 

� 

 

pre-T

 

�

 

�

 

/

 

� 

 

DN thy-
mocytes, as the possibility was not excluded that alternative

 

�� 

 

TCR complexes, composed of Tg TCR

 

� 

 

and endoge-
nously encoded TCR

 

� 

 

proteins, were in fact the receptor
complexes that signaled the DN to DP transition in these

 

�� 

 

TCR Tg mice (10). In experiments in which bone
marrow progenitors from MHC I–specific 

 

�� 

 

TCR Tg
mice differentiated into DP thymocytes in MHC I–defi-
cient recipients, it was possible that the DN to DP transi-
tion was signaled by pre-TCR (endogenous pre-T

 

� 

 

paired
with Tg TCR

 

�

 

) rather than Tg 

 

�� 

 

TCR complexes (11–
13). Thus, whether 

 

�� 

 

TCRs are able to signal the DN to
DP transition has not yet been definitively demonstrated,
nor has their dependence or independence on ligand en-
gagements been determined.

This study has used two different 

 

�� 

 

TCR transgenes
with defined ligand specificities. Unlike endogenously en-
coded 

 

�� 

 

TCRs that are first expressed at the DP stage,
these transgene-encoded 

 

�� 

 

TCRs are first expressed in DN
thymocytes as a result of the transcriptional control elements
each transgene used (14, 15). To unequivocally determine
the ability of these two different 

 

�� 

 

TCR complexes to sig-
nal the DN to DP transition, they were expressed in RAG-
2

 

�

 

/

 

� 

 

pre-T

 

�

 

�

 

/

 

� 

 

double deficient mice that are genetically
incapable of expressing any endogenously encoded TCR
subunit (TCR

 

�

 

, 

 

�

 

, 

 

�

 

, 

 

�

 

, pre-T

 

�

 

) so that the only antigen
receptors expressed were the 

 

�� 

 

TCRs encoded by the 

 

��

 

TCR transgenes. Thus, this study definitively documents
that 

 

�� 

 

TCR complexes are capable of signaling the DN to
DP transition. In addition, even though 

 

�� 

 

TCRs require
specific ligand engagements to transduce signals in DP thy-
mocytes and mature T cells, this study further indicates that
these same 

 

�� 

 

TCRs do not require those ligands to trans-
duce signals in DN thymocytes.

 

Materials and Methods

 

Mice.

 

C57BL/6 (B6) mice were purchased from The Jackson
Laboratory. The TCR

 

� 

 

transgene containing the 2B4 TCR

 

�

 

cDNA under the control of a human CD2 (hCD2) enhancer/
promoter was described previously (9). TCR

 

�

 

�

 

/

 

�

 

, RAG-2

 

�

 

/

 

�

 

,
pre-T

 

�

 

�

 

/

 

�

 

, A

 

�

 

�

 

/

 

� 

 

(CD45.1

 

� 

 

CD45.2

 

�

 

), 

 

�

 

2m

 

�

 

/

 

� 

 

(CD45.1

 

�

 

CD45.2

 

�

 

), AND 

 

�� 

 

TCR Tg, and HY 

 

�� 

 

TCR Tg mice were
bred in our colony and were previously described (14–20). Each

 

�� 

 

TCR transgene was introduced into a RAG-2 and pre-T

 

�

 

gene knockout background by breeding and screened for the
presence of the transgene and the absence of RAG-2 and pre-T

 

�

 

genes by PCR. Experimental mice were confirmed to be RAG-2
and pre-T

 

� 

 

knockout by PCR on tail DNA. DNA samples that
did not amplify a genomic band using the oligos pta1 (TAA CCA
GTG AGC CCA AAG GGT CTG CCT GTC TAC) and pta2
(CCC ACA CAC ACA CAC ACA CGG AAC CTA TTC) in a

35-cycle PCR reaction at 67

 

�

 

C were considered to be pre-T

 

�

 

knockout. The same DNA samples were confirmed to be RAG-
2 knockout by the amplification of a 1,100-bp targeted genomic
band and not an 851-bp WT genomic band in a PCR reaction at
55

 

�

 

C using the oligos rag1 (GAT AAA AGA CCT ATT CAC
AAT C) and rag2 (TTT CAA TCG TGT TGT CCC C). The
same DNA samples were confirmed to be positive for the AND
or HY transgene in a 35-cycle PCR reaction at 59

 

�

 

C using the
oligos and1 (GAC TTG GAG ATT GCC AAC CCA TAT
CTA AGT) and and2 (TGA GCC GAA GGT GTA GTC GGA
GTT TGC ATT), or hy1 (GCA TGG GCT GAG GCT GAT
CCA TTA) and hy2 (TGA GAG CTG TCT CCT ACT ATC
GAT). All Tg mice used in this study were heterozygous for the
transgene. All mice used in this study were cared for in accor-
dance with National Institutes of Health (NIH) guidelines.

 

Antibodies, Flow Cytometry, and Analysis of Donor-derived Cell
Populations.

 

Thymocytes from donor mice were surface stained
with FITC-conjugated anti-HY TCR

 

� 

 

(T3.70), anti-TCR V

 

�

 

11
(RR8-1) or anti-IA

 

b 

 

(25-9-17), Cy5-conjugated anti-CD8

 

�

 

(CT-CD8

 

�

 

; Caltag), and PE-conjugated anti-CD4 (GK1.5).
Single cell suspensions of thymocytes from A

 

�

 

�

 

/

 

� 

 

(CD45.1

 

�

 

)
recipient mice that had been intrathymically injected with
AND 

 

�� 

 

TCR Tg pre-T

 

�

 

�

 

/

 

� 

 

RAG-2

 

�

 

/

 

� 

 

donor thymocytes
were assessed by four color flow cytometry using anti-CD45.1
biotin (A20; BD Biosciences) plus streptavidin Texas red, anti-
CD45.2 FITC (104; BD Biosciences), anti-CD8 CY5 (CT-
CD8

 

�

 

; Caltag), and anti-CD4 PE (GK1.5; Becton Dickinson).
Staining with antibodies to both CD45 alleles allowed us to un-
ambiguously identify donor-derived cells as CD45.1

 

� 

 

CD45.2

 

�

 

in every experiment. Single cell suspensions of thymocytes from
A

 

�

 

�/� (CD45.1) or �2m�/� (CD45.1) recipient mice that had
been injected with AND �� TCR Tg RAG-2�/� pre-T��/� or
HY �� TCR Tg RAG-2�/� pre-T��/� (CD45.2) donor bone
marrow were assessed in a similar fashion. Cell fluorescence was
typically measured on 1.25 	 105 cells using a FACS Vantage™
SE (Becton Dickinson) and analyzed with software designed by
the Division of Computer Research and Technology at the NIH.
Dead cells were excluded from analysis of surface staining by
electronic gating on forward scatter light and propidium iodide
staining.

Cell Purification, Intrathymic Injections, and Bone Marrow Chimeras.
DN thymocytes were purified using MACS beads conjugated with
anti-CD8� (50-3-6.7) and anti-CD4 (GK1.5) according to the
manufacturer’s instructions (Miltenyi Biotec). Purified thymocyte
populations from AND �� TCR Tg pre-T��/� RAG-2�/� mice
(CD45.2) were injected into the thymi of unirradiated A��/�

(CD45.1) mice as described previously (21). 106 DN IAb� cells
were resuspended in a volume of 10 
l PBS with 1% B6 mouse
serum and injected intrathymically. Analysis of recipient mice was
performed 3–4 d after injection. Radiation bone marrow chimeras
were prepared as described previously (22). Recipient mice were
lethally irradiated with 950 rad and reconstituted with 107 T cell–
depleted bone marrow cells injected into the tail vein. Analysis of
chimeras was performed 4–6 wk after reconstitution.

Results and Discussion
DN thymocytes have the capacity to express different

types of TCR complexes, even in the presence of TCR
transgenes. We recently demonstrated that early expression
of TCR� in DN thymocytes leads to the formation of
novel �� TCR complexes that bypass TCR� selection and
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efficiently signal the differentiation of DN into DP thy-
mocytes (9). The ligand specificities of novel �� TCR
complexes are entirely unknown (9). To determine if en-
gagement by MHC ligands were required for the biological
activity of �� TCR complexes, we introduced a TCR�
transgene into MHC�/� mice. The telltale sign of signaling
in DN thymocytes by �� TCR complexes in TCR� Tg
mice is the generation of TCR�� DP thymocytes because
�� TCR signals bypass the �-selection checkpoint and
promote the differentiation of TCR�� DN thymocytes
into DP cells. Therefore, we examined if TCR� Tg
MHC�/� mice contained any TCR�� DP thymocytes
(Fig. 1). DP thymocytes in non-Tg MHC�/� mice were all
TCR�� by intracellular staining, indicating that they were
all generated by pre-TCR signals. In contrast, TCR� Tg
MHC�/� mice contained nearly 50% of DP thymocytes
that were TCR�� by intracellular staining and so had been
signaled by �� TCR. In these mice, the 50% of DP thy-
mocytes that were TCR�� were presumably generated by
pre-TCR signals, although some TCR�� cells might have

also been induced by �� TCR signals. Thus, this experi-
ment indicates that �� TCRs can signal the DN to DP
transition in the absence of MHC ligands. Importantly, the
demonstration that �� TCRs can efficiently signal the gen-
eration of DP thymocytes in the absence of MHC ligands
raises the possibility that �� TCR complexes might have
actually signaled the DN to DP transition in experiments
that attributed the generation of DP thymocytes to ��
TCR signals (7, 11–13). Notably, it is impossible to ex-
clude such a possibility in RAG� �� TCR Tg mice be-
cause all DP thymocytes in such mice would be forced to
express the TCR� transgene, even if they were generated
in response to �� TCR signals.

To exclude �� TCR complexes and to ensure that Tg
�� TCR were the only TCRs that DN thymocytes could
express, we bred �� TCR transgenes into RAG-2�/� pre-
T��/� double deficient mice that were incapable of ex-
pressing any endogenously encoded TCR or pre-TCR
complexes. We used two �� TCR transgenes that encode
clonotypic receptors with defined ligand specificities in

Figure 1. �� TCRs can signal inde-
pendently of MHC ligands. A transgene
encoding a TCR� cDNA under the
control of human CD2 promoter/en-
hancer elements was introduced into
MHC�/� mice. Thymocytes from
transgene� or transgene� MHC�/� mice
were stained for CD4, CD8 surface ex-
pression, and intracellular TCR� (TCR-
�ic). CD4 and CD8 expression are shown
as two parameter contour plots, whereas
intracellular TCR� expression is shown
as a histogram. Numbers under the con-

tour plots indicate the total number of thymocytes (� SEM) in each strain (calculated from at least three mice for each group), whereas numbers above
the contour plots indicate the percentage of DP thymocytes. Intracellular TCR� staining of DP thymocytes (solid lines) is compared with that of
TCR�� thymocytes from TCR��/� mice as a negative control (shaded areas). The percentages of TCR�� and TCR�� DP thymocytes are indicated.

Figure 2. Expression of �� TCR transgenes is sufficient
to signal thymocyte differentiation. The HY and AND ��
TCR transgenes were introduced into RAG-2�/� pre-
T��/� mice. CD4 and CD8 expression on thymocytes is
shown as contour plots. Numbers under the contour plots
indicate the number of thymocytes (� SEM) for each
strain (n � 3 mice for each group). Thymocytes were also
stained with anti-TCR antibodies: T3.70 for HY trans-
genes and V�11 for AND transgenes (solid lines) or nega-
tive control antibodies (shaded areas). Tg mice were con-
firmed to be RAG-2�/� pre-T��/� by PCR analysis of
their tail DNA. Tail DNA from experimental HY Tg
RAG-2�/� pre-T��/� and AND Tg RAG-2�/� pre-T��/�

mice was purified and PCR amplified using oligonucle-
otides that amplify the WT and knockout alleles of the
RAG-2 gene or the WT allele of the pre-T� gene. Unlike
control DNA from mice heterozygous for RAG-2 and
WT for pre-T� (lane 1), DNA from RAG-2�/� pre-T��/�

(lane 2), HY Tg RAG-2�/� pre-T��/� (lane 3), and AND
Tg RAG-2�/� pre-T��/� (lane 4) mice amplified only the
knockout band for RAG-2 (top) and failed to amplify the
WT band for pre-T� (bottom).
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H2b mice: the HY �� TCR that is specific for Db plus pep-
tide, and the AND �� TCR that is specific for IAb plus
peptide (Fig. 2). Expression of both Tg �� TCRs initiates
at the DN stage as a result of the transcriptional control el-
ements used to drive transgene expression (23). We con-
firmed that �� TCR Tg RAG-2�/� pre-T��/� mice were
indeed deficient for both RAG-2 and pre-T� molecules by
performing PCR on their tail DNA (Fig. 2). Introduction
of either the HY or AND �� TCR transgene overcame
the developmental block that existed at the DN stage and
generated both DP and single positive (SP) thymocytes. In
accordance with their ligand specificities, the HY �� TCR
generated only CD8 SP thymocytes, and the AND ��
TCR transgene generated only CD4 SP thymocytes (Fig.
2). More important for the purposes of this study, both ��
TCR transgenes signaled RAG-2�/� pre-T��/� DN thy-
mocytes to differentiate into DP thymocytes (Fig. 2).

To determine if ligand engagement was required for
these Tg �� TCRs to signal DN thymocyte differentiation
into DP cells, we attempted to generate �� TCR Tg
RAG-2�/� pre-T��/� mice that were additionally defi-
cient in the specific MHC ligands engaged by each Tg
TCR. Unfortunately, �2 microglobulin and RAG-2 gene

loci are both located on mouse chromosome 2, whereas
MHC and pre-T� gene loci are both located on mouse
chromosome 17. Consequently, it was not possible to gen-
erate either HY Tg RAG-2�/� pre-T��/� �2m�/� or
AND Tg RAG-2�/� pre-T��/� MHC II�/� mice by sim-
ple breeding. Rather, screening for a relatively infrequent
crossover recombination event was required. However, we
failed in our attempts to identify any recombination event
in Tg offspring.

We then constructed radiation bone marrow chimeras as
an alternative way of assessing a potential requirement for
MHC ligand engagements in �� TCR signaling in DN
thymocytes (Fig. 3). In these experiments, CD45.2� donor
bone marrow from MHC I–specific HY Tg RAG-2�/�

pre-T��/� mice were injected into 950R irradiated �2m�/�

(MHC I–deficient) CD45.1� host mice (Fig. 3, top), and
CD45.2� donor bone marrow from MHC II–specific
AND Tg RAG-2�/� pre-T��/� mice were injected into
950R irradiated A��/� (MHC II–deficient) CD45.1� host
mice (Fig. 3, bottom). In both cases, TCR Tg donor bone
marrow gave rise to DN and DP thymocytes, but not to
SP thymocytes (Fig. 3). That is, in a �2m�/� host thymus,
HY Tg TCRs were able to signal DN thymocytes to dif-
ferentiate into DP thymocytes, but were unable to signal
DP thymocytes to differentiate into mature CD8� T cells.
And, similarly, in an MHC II�/� host thymus, AND Tg
TCRs were able to signal DN thymocytes to differentiate
into DP thymocytes, but were unable to signal DP thy-
mocytes to differentiate into mature CD4� T cells. These
results indicated that ligand engagements were required for
signaling by �� TCRs in DP thymocytes, but apparently
were not required for signaling by the same �� TCRs in
DN thymocytes.

Although the relevant MHC ligands were absent from
host thymic elements in these radiation bone marrow chi-
meras, the relevant MHC ligands (i.e., MHC I for the HY
transgene and MHC II for the AND transgene) were nev-
ertheless expressed on donor bone marrow–derived ele-
ments. Although unlikely, it was conceivable that �� TCR
signaling in DN thymocytes had been initiated by engage-
ment of MHC ligands on donor-derived bone marrow
elements in these radiation bone marrow chimeras. Con-
sequently, we performed an intrathymic transfer experi-
ment in which we assessed the differentiation of donor
(CD45.2�) DN thymocytes from AND Tg RAG-2�/�

pre-T��/� mice (that were devoid of surface MHC II ex-
pression) in host (CD45.1�) thymi of MHC II–deficient
(A��/�) mice. Thus, in these experiments, AND TCR Tg
RAG-2�/� pre-T��/� DN thymocytes were differentiating
in host thymi in which both donor and host elements were
devoid of MHC II expression. 4 d after intrathymic injec-
tion, the transferred thymocytes were assessed for CD4 and
CD8 expression (Fig. 4). It can be seen that transferred DN
thymocytes from AND Tg RAG-2�/� pre-T��/� mice
differentiated into DP thymocytes in an MHC II–deficient
host thymus, indicating that the AND TCR had signaled
the DN to DP transition despite the absence of any MHC

Figure 3. Thymocyte precursors from �� TCR Tg RAG-2�/� pre-
T��/� bone marrow donors develop into DP thymocytes in recipient
mice lacking MHC ligands. Donor (CD45.2� CD45.1�) HY �� TCR
Tg RAG-2�/� pre-T��/� bone marrow was transferred into lethally irra-
diated host (CD45.1� CD45.2�) MHC I–deficient (�2m�/�) mice,
whereas donor (CD45.2� CD45.1�) AND �� TCR Tg RAG-2�/� pre-
T��/� bone marrow was transferred into lethally irradiated host
(CD45.1� CD45.2�) MHC II–deficient (A��/�) mice. 1 mo after bone
marrow reconstitution, recipient thymi were harvested and assessed for
CD4 and CD8 surface expression by four color flow cytometry in which
donor thymocytes were identified as CD45.1� CD45.2� cells. Numbers
under the contour plots indicate the number of donor-derived thy-
mocytes (� SEM) for each strain (n � 4 mice for each group).
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II expression. We conclude that �� TCRs with known
MHC ligand specificities do not require those ligands to
signal DN thymocytes to differentiate into DP thymocytes.

This study demonstrates that Tg �� TCRs with defined
MHC I or II ligand specificities can signal DN thymocytes
to differentiate into DP thymocytes, and that they can do so
in the absence of their specific MHC ligands. Unlike previ-
ous experiments with �� TCR transgenes, this study was
performed in RAG-2�/� pre-T��/� double deficient mice
to exclude �� TCR complexes and to ensure that Tg ��
TCRs were the only antigen receptors that DN thymocytes
could possibly express. MHC–peptide complexes are the
defined ligands for �� TCRs. In this study, we constructed
chimeric animals in which �� TCR Tg bone marrow from
RAG-2�/� pre-T��/� mice was transferred into lethally ir-
radiated MHC-deficient host mice. To be even more rigor-
ous in minimizing the potential exposure of �� TCR Tg
DN thymocytes to MHC ligands, we also intrathymically
injected AND Tg DN thymocytes that were MHC II� into
the thymus of MHC II�/� mice. In these ways, developing
thymocytes expressing Tg �� TCR complexes differenti-
ated in host thymi that did not express their relevant MHC
ligands. Indeed, in these experiments, �� TCR Tg thy-
mocytes did not differentiate beyond the DP stage because
of the absence of their relevant MHC ligand. Even though
the Tg AND and HY �� TCRs failed to signal DP thy-
mocytes, they did signal DN thymocytes to differentiate

into DP thymocytes, indicating that the ligand requirements
for signaling by the same �� TCRs were different in DN
and DP thymocytes. Thus, this study supports the perspec-
tive that ligand-independent signaling is a general property
of antigen receptors on DN thymocytes (5, 7).

Because we found that �� TCR signaling in DN thy-
mocytes was ligand independent, it might be argued that
Tg �� TCRs did not actually signal the further differentia-
tion of DN into DP thymocytes, but simply prolonged
their survival so that DN thymocytes could “spontane-
ously” differentiate into DP thymocytes. Indeed, maneu-
vers that prolong the survival of DN thymocytes do result
in the inefficient differentiation of DN into DP cells (24).
Importantly, spontaneous differentiation of unsignaled DN
thymocytes does not involve a proliferative burst and
therefore results in the generation of very few (106) DP
thymocytes (24). In contrast, our current experiments
found that Tg �� TCRs promoted the generation of �20–
50 	 106 DP thymocytes in the absence of their specific
MHC ligands, indicating that �� TCRs induced a prolifer-
ative burst even in the absence of MHC ligand expression.
Thus, our current findings are most consistent with the
perspective that Tg �� TCRs actively signal the DN to DP
transition independently of ligand engagement.

A number of possible explanations for ligand-indepen-
dent signaling in DN thymocytes have been proposed.
One possibility is that DN thymocyte membranes might be
so enriched in lipid rafts that signaling by all antigen recep-
tor complexes occurs without ligand engagement (4). A
second possibility is that the DN thymocyte membrane
permits �� TCRs and the pre-TCRs to spontaneously ag-
gregate in the absence of ligand, in a manner analogous to
developing pre–B lymphocytes in which spontaneous pre–
B cell receptor aggregation results in ligand-independent
signaling (25–28). A third possibility is that DN thy-
mocytes, because they are developmentally immature, have
an imbalance between intracellular kinase activity and in-
tracellular phosphatase activity, resulting in constitutive
kinase activity that allows TCR signaling even without
ligand engagement (29). We would like to propose an ad-
ditional possibility, namely that a component of the TCR
signal transduction machinery may function to inhibit
ligand-independent signaling and that this inhibitory com-
ponent is specifically absent from TCR complexes on DN
thymocytes. According to this model, the pre-TCR and
Tg �� TCR can signal independently of ligand in DN thy-
mocytes because both receptor complexes lack a ligand-
restricting component of the cellular signaling machinery.
Whatever the molecular basis for ligand-independent sig-
naling turns out to be, this study supports the perspective
that ligand-independent signaling by antigen receptors is a
general property of DN thymocytes.

We thank Drs. Remy Bosselut and Paul Love for critically reading
the manuscript.
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Figure 4. DN thymocytes from AND �� TCR Tg RAG-2�/� pre-
T��/� develop into DP thymocytes in the absence of MHC II ligands.
AND �� TCR Tg RAG-2�/� pre-T��/� donor (CD45.2� CD45.1�)
DN thymocytes were intrathymically injected into CD45.1� MHC II–
deficient (A��/�) mice. 3 d after intrathymic injection, recipient thymi
were harvested and assessed for CD4 and CD8 surface expression by four
color flow cytometry in which donor thymocytes were identified as
CD45.1� CD45.2� cells. An aliquot of donor thymocytes was stained for
CD4 and CD8 surface expression (contour plot) to demonstrate that the
donor inoculum was DN, and was stained for IAb (solid line of histogram
plot) to demonstrate that donor inoculum was MHC II�. A positive con-
trol for IAb staining (shaded area) and a negative control for IAb staining
(dotted line) are shown.
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