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Summary
Objective To investigate the effects of high-frequency 
oscillatory ventilation (HFOV) and partial liquid ventila-
tion (PLV) on apoptosis of lung tissue induced by steam 
inhalation injury in rabbit.

Design A prospective, randomized, controlled, multi-
ple-group study.

Setting An animal research laboratory centre in a uni-
versity burns centre.

Subjects New Zealand rabbits (n = 32; 2.25 ± 0.25 kg) of 
either sex.

Interventions The animals were ventilated by HFOV 
with a mean airway pressure of 10 cm H2

O, a frequency of 
10 Hz, an amplitude of 20 cm H

2
O, an inspiratory:expiratory 

ratio of 1:1, and an FiO
2
 of 1.0. After the induction of acute 

lung injury (ALI) by steam inhalation, the animals were 
randomly divided into four groups: CMV, HFOV, CMV + 
PLV, HFOV + PLV group. Then they were ventilated for 4 h 
by CMV, HFOV, CMV + PLV and HFOV + PLV, respectively. 
After the experimental period, cell apoptosis and apopto-
sis indexes in the lung tissue were assessed with TUNEL 
FragELTM (Fragment End Labeling).

Results Lung tissue apoptosis indexes in HFOV group 
and HFOV + PLV group were lower than that of in CMV 
group and CMV + PLV group; between-group compari-
son had significant difference (P < 0.01). HFOV + PLV 
group showed lowest apoptosis indexes.

Conclusion HFOV combined with PLV can suppress 
lung tissue apoptosis induced by steam inhalation.

Keywords High-frequency oscillatory ventilation  · Par-
tial liquid ventilation · Cell apoptosis · Inhalation injury

Introduction

Mechanical ventilation is usually necessary to achieve 
sufficient gas exchange in severe respiratory failure 
caused by adult respiratory distress syndrome (ARDS) or 
ALI [1]. Although conventional mode ventilation (CMV) 
or synchronized intermittent mandatory ventilation with 
lung protective strategy reduces the complication and 
improves outcome, however it may still cause mechani-
cal injury to the lungs [2−4]. High-frequency oscillatory 
ventilation (HFOV), a technique of rapid ventilation with 
use of very small tidal volume has a potential of reduc-
ing ventilator associated lung injuries [5−6], particularly 
when started early, before significant lung damage has 
been caused by tidal ventilation [7].

HFOV addresses all of these mechanisms of injury 
while maintaining adequate gas exchange, and may 
thereby serve as the optimal mode of ventilation in 
patients with ARDS [8]. Meta-analysis shows that HFOV 
can reduce mortality of adult ARDS, reduce intractable 
hypoxemia, hypotension, barotrauma and incidence of 
hypercapnia [9]. In paediatric patients with acute respira-
tory failure, failing conventional ventilation (CV), HFOV 
can improve hypercapnia and gas exchange in a rapid and 
sustained fashion [10−11]. It is a safe option for the treat-
ment of ARDS and severe small airway diseases [12].
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Partial liquid ventilation (PLV) has been shown to 
markedly improve oxygenation through recruitment of 
a collapsed alveolar space and reduce histologic evi-
dence of injury in a number of lung injured models [13]. 
In addition to improving lung function in animal models 
of ALI, PLV also attenuates the inflammatory response 
and reduces pulmonary neutrophil accumulation. This 
phenomenon occurs in numerous models of ALI [14]. 
HFOV and PLV developed as a rescue and lung-protec-
tive ventilation strategy have become major concerns in 
recent years. HFOV represents an ‘open lung’ approach 
to mechanical ventilation that uses tidal volumes less 
than physiologic dead space and sustained mean airway 
pressures to maintain lung recruitment. The appropri-
ate mean airway pressure can improve the functional 
residual capacity, increase the oxygen diffusion area and 
improve oxygenation state. During HFOV, tidal volume 
(Vt) and associated swings in alveolar pressure are very 
small [15−16]. It can improve arterial oxygenation, reduce 
ventilator-associated lung injury. HFOV achieves oxy-
genation and ventilation by oscillating the lung around a 
constant mean airway pressure, with small tidal volumes 
at a high frequency. Patients with ALI have a high mortal-
ity and often require the assistance of mechanical venti-
lation, which may further aggravate the ALI owing to the 
risk of barotraumas, polytrauma and bio traumas. Severe 
steam inhalation injury can cause all mild, moderate and 
severe type of ARDS; according to the Berlin Definition, is 
also associated with increased mortality [17].

During the mechanical ventilation period, pulmo-
nary endothelial cells are simultaneously subjected to 
mechanical stretch and fluid shear because of its func-
tion, position and special structure. Mechanical ven-
tilation and pulmonary stretch directly change the 
configuration of the cell, affect the function of endothe-
lial cells, also make the fluid shearing stress cyclically 
change with the rhythmic mechanical ventilation, which 
further influence the endothelial cells [18−21].

The pathogenesis of inhalation injury has not been 
completely elucidated; studies have shown that cell 
apoptosis is involved in the pathological process fol-
lowing inhalation injury [22]. For further observations 
of lung cell apoptosis to inhalation injury, the change 
of apoptosis after mechanical ventilation therapy and 
its relationship with apoptosis will help to reveal the 
essence of inhalation injury.

In our study, we use four modes of ventilation treat-
ment in the rabbit model of steam inhalation injury and 
acute respiratory failure to observe the changes in ven-
tilation of apoptosis lung tissue and to investigate the 
treatment mechanism of the high-frequency oscillation 
ventilation combined PLV on inhalation injury.

Materials and methods

All the protocols used in this study were in accordance 
with the guidelines for the care and uses of laboratory 
animals published by the National Institute of Health in 

China and were approved by the Committee of Jiangxi 
Science Council, Nanchang, China.

Animal preparation and ventilation treatment

We utilized 32 healthy adult New Zealand white rabbits 
(2.25 ± 0.25 kg) of either sex, adopted the method of the 
Chinese People’s Liberation Army Third Military Medi-
cal University [23], to reproduce the rabbits model of 
steam inhalation injury. When the arterial blood oxygen 
partial pressure was less than 60  mmHg, the model is 
completed. Then the rabbits were randomly divided into 
CMV (n = 8), treated with CMV only; CMV + PLV (n = 8), 
treated with a combined therapy of CMV + PLV; HFOV 
(n = 8), treated with CMV only; HFOV + PLV treated with 
a combined therapy of HFOV + PLV. The CMV and CMV 
+ PLV groups were conducted using CMV with VT 10 ml/
kg, 30 breathes/min, inspiratory oxygen fraction 100 %, 
inspiratory time 1 s and positive end-expiratory pressure 
(PEEP) 0  cm H2

O. The HFOV and HFOV + PLV groups 
were switched to HFOV with mean airway pressure set at 
12 cm H

2
O, an FiO

2
 of 1.0, a frequency of 10 Hz, an ampli-

tude of 20 cm H
2
O, inspiratory to expiratory ratio of 1:1.

Throughout the experiment, heart rate (HR) and mean 
blood pressure (MBP) was monitored and recorded, 
and femoral artery blood was withdrawn every 0.5, 1.5, 
2.5 and 3.5  h for arterial blood gas analysis during the 
mechanical ventilation treatment period.

With its characteristics of high density, perfluorocar-
bons (PFCs) can be deposited on the prolapse part of 
lung because of the effect of gravity. A certain volume 
of liquid can make the atelectatic alveoli to be opened 
again; its action is similar to “liquid” PEEP. PFC (per-
fluorodecalin; F2 Chemical’s Ltd., Lea Lane, LeDifferent 
positional Town, Preston, Lancashine, PR4 OPZ, UK) is 
injected two times via an endotracheal tube at different 
body positions of mechanical ventilation in CMV + PLV 
and HFOV + PLV groups, initially 1  ml/kg, and 30  min 
later, additional 0.5 ml/kg at a different body position—a 
total of 3 ml/kg implemented as PLV.

Apoptosis steps monitoring by TUNEL assay

Phlebotomize after 4-h ventilation treatment in each 
experimental group, apoptotic cells in pulmonary tis-
sue from all groups were detected by the FragELTM 
(Fragment-end-labeling technique). The terminal 
deoxynucleotidyl transferase-mediated dUTP nick end 
labeling (TUNEL) assay was performed using an In Situ 
Apoptosis Detection kit according to the manufacturer’s 
instructions (Promega, Michigan, USA). Briefly, paraf-
fin-embedded sections were deparaffinized with xylene 
and dehydrated through graded alcohols. After washing 
with PBS, the slides were permeated with 0.1 % Triton 
X-100 in 0.1 % sodium citrate for 2 min once. And endog-
enous peroxidase activity was quenched by incubation 
of the sections for 10  min with 3 % hydrogen peroxide 
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However, the values of PaCO
2
 in four groups have 

increased after induction of ALI, but fluctuated with 
30 ~ 42  mmHg during the ventilatory treatment, there 
are no significant changes within the group and between 
groups. The changes of MBP during the 3.5-h observa-
tion period within the group and between groups have 
no statistical significance (P > 0.05) after four groups of 
different ventilation mode treatment.

Table 3 showed lung tissue apoptosis index of HFOV + 
PLV group is lowest, as 13.52 %, CMV group is highest, as 
39.57 %. HFOV and HFOV + PLV group were significantly 

in PBS. Slides were placed in equilibration buffer and 
then placed in working-strength TdT enzyme, followed 
by working-strength stop/wash buffer. After two drops 
of anti-digoxigenin-biotin were applied to the slides, 
diaminobenzidine was used to detect peroxidase and 
then washed with deionized water. Counterstaining of 
nuclei was performed with Immunomaster’s Hematoxy-
lin by incubating the sections at room temperature for 
10 min. Reactive nuclei that were brownish tinge served 
as positive controls. Slides without being placed in TdT 
served as negative controls. The assessments of the num-
ber of apoptotic cells by TUNEL assay were performed 
using captured high-quality images obtained with an 
image analysis system (HMIAS–2000; Video Technology 
Co., Ltd, Wuhan, China). The apoptosis index was calcu-
lated as: the number of apoptotic cells/total cells × 100 %, 
the results are expressed with mean ± SEM.

Statistical analysis

The indicators are expressed as the mean ± standard error 
of the mean, all data are performed by SPSS12.0 statistics 
software analysis, Comparisons of each group were made 
using a paired t-test, comparison among the groups were 
evaluated by analysis of variance. Difference was defined 
for values of P < 0.05. Difference was significantly defined 
for values of P < 0.01.

Result

PaO
2
, PaCO

2
, HR and MBP significantly change in these 

animals immediately after four different ventilation 
treatments.

Changes in arterial blood gases during the 3.5 h obser-
vation period are presented in Table 1. PaO

2
 displayed a 

trend of improvement after half an hour ventilation treat-
ment. There were significant changes compared with 
other periods (P < 0.01).

Table 1 showed PaO
2
 was at a higher level during the 

whole experiment, after 0.5-h of treatment, PaO
2
 began 

to rise, all groups had their best PaO
2
 at the 2.5  h time 

point. HFOV showed better results with PaO
2
 over time 

versus the CMV group; CMV + PLV group also had the 
PaO

2
 increase after 0.5-h treatment. Both the HFOV and 

the CMV + PLV groups showed better results with PaO
2
 

over time versus the CMV group. HFOV + PLV showed 
significantly better results with PaO

2
 compared with the 

other three groups, after 3.5-h treatment, HFOV + PLV 
HFOV had better results of PaO

2
. The values of PaO

2
 with 

HFOV + PLV group were significantly higher than the 
CMV + PLV group after 2.5 and 3.5 h treatment.

Table 2 showed the changes in HR (MBP) during the 
3.5-h observation period. After four groups of differ-
ent ventilation mode treatment, the HR remained fairly 
stable over time, changes within the group and between 
groups have no statistical significance (P > 0.05).

Table 1 Changes in arterial PaO2 over time in the various 
treatment groups (mmHg X  ± s, n = 8)

Group 0 h 0.5 h 1.5 h 2.5 h 3.5 h

CMVa 58 ± 4 209 ± 50 175 ± 47 187 ± 53 179 ± 55

CMV + PLVb 55 ± 9 213 ± 44 238 ± 42 243 ± 49 186 ± 50

HFOVc 576 ± 7 209 ± 38 239 ± 36 272 ± 41 215 ± 38

HFOV + PLVd 55 ± 7 214 ± 51 269 ± 45 291 ± 39 277 ± 42

CMV conventional mode ventilation, HFOV high-frequency oscillatory 
ventilation alone, HFOV + PLV combined therapy of HFOV + PLV, PLV partial 
liquid ventilation
0.5 h time point between group analysis: P > 0.05
1.5 h time point between group a and b, a and c analysis: P < 0.05, a and d 
analysis: P < 0.01; between other groups analysis: P > 0.05
2.5 h time point between group a and b analysis: P < 0.05, a and c, a and 
d analysis: P < 0.01, b and d analysis: P < 0.01, c and b, c and d analysis: 
P > 0.05
3.5 h time point between d and other groups analysis: P < 0.01 between 
other groups analysis: P > 0.05
Data are expressed as the mean ± SEM

Table 2 Changes in heart rate (HR) in various treatment 
groups ( X  ± s, n = 8)

Group 0 h 0.5 h 1.5 h 2.5 h 3.5 h

CMVa 286 ± 18 286 ± 13 281 ± 14 280 ± 14 284 ± 16

CMV + PLVb 281 ± 13 278. ± 16 282 ± 13 281 ± 17 285 ± 16

HFOVc 286 ± 20 284 ± 17 283 ± 15 286 ± 18 283 ± 15

HFOV + PLVd 286 ± 18 287 ± 21 283 ± 16 282 ± 17 286 ± 14

CMV conventional mode ventilation, HFOV high-frequency oscillatory 
ventilation alone, HFOV + PLV combined therapy of HFOV + PLV, PLV partial 
liquid ventilation
Within-group analysis: P > 0.05 vs post-injury. Between-group analysis: 
P > 0.05
Data are expressed as the mean ± SEM

Table 3 Apoptosis index in lung tissue ( X  ± s, n = 8)

Group Apoptosis indexes (%)

CMV 39.57 ± 6.36

CMV + PLV 25.83 ± 7.15

HFOV 21.64 ± 3.80

HFOV + PLV 13.52 ± 5.33

CMV conventional mode ventilation, HFOV high-frequency oscillatory 
ventilation alone, HFOV + PLV combined therapy of HFOV + PLV, PLV partial 
liquid ventilation
Apoptosis indexes: Between HFOV and CMV + PLV, HFOV and HFOV + PLV 
analysis (P > 0.05), Between other groups analysis (P < 0.01)
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tissue; after repeatedly being closed and opened, the 
mechanical ventilation and shearing damage induced 
the release of inflammatory mediators, and also can 
accelerate vascular endothelial cells and alveolar epithe-
lial cell apoptosis [26]. Hammerschmidt experiment con-
firmed that excessive tension can directly cause alveolar 
epithelial cell apoptosis [27]. While the conclusion is the 
opposite in Mr. Imai and Fisher reports: Despite a high 
degree of invasive mechanical ventilation, the number of 
apoptosis is reduced [28]. The exact mechanism of effect 
of mechanical ventilation on the apoptosis will be further 
investigated in the future.

To understand different mechanical ventilation treat-
ment with rabbit induced by steam inhalation injury, the 
mechanism and function pathway of effect on apopto-
sis of lung tissue, we adopt TUNEL technique to moni-
tor lung tissue apoptosis. The ventilation experiment 
HFOV + PLV treatment group apoptosis index is the low-
est, CMV group apoptosis index is the highest. Apoptosis 
index of HFOV group and HFOV + PLV group is signifi-
cantly less than that of CMV and CMV + PLV group, which 
shows that high-frequency oscillation ventilation can 
reduce lung tissue apoptosis in rabbit induced by steam 
inhalation injury, which is due to the characteristics of 
HFOV, high-frequency, low tidal volume, and a constant, 
less variable airway pressure can alleviate mechanical 
stimulation of the tension stress and shearing stress of 
lung tissue, avoid the alveolar epithelial cells stretching 
by excessive force, therefore, it reduces the occurrence 
of apoptosis. In this experiment, cell apoptosis of CMV 
+ PLV group and HFOV + PLV is less than CMV group 
and HFOV group, showing that PLV can decrease the 
rate of lung tissue apoptosis, the mechanism may be due 
to the following ways: (1) the PFC can improve lung of 

lowered than of the CMV and CMV + PLV group, respec-
tively comparison between groups had significant differ-
ence (P < 0.01). And CMV + PLV group is lower than CMV 
group without PLV, compare between groups had sig-
nificant difference (P < 0.01); HFOV + PLV group is lower 
than HFOV group, but there was no significant difference 
(P > 0.05).

TUNEL-positive staining nuclei emerge tan; karyo-
pyknosis emerge rounded (Fig. 1). Some irregular chro-
matin is gathered together and distributed on the brink 
of nucleus, which conforms to the morphology of apop-
totic cells; apoptotic body can be found in several cells.

Discussion and conclusions

Apoptosis is a programmed cell death; cell apoptosis is 
closely associated with inhalation injury [24]. Apoptosis 
participates in inhalation injury, and the pathological 
process of ventilator-associated lung injury [25], inhib-
iting the excessive apoptosis of lung tissue cells can 
reduce lung injury; it may be a new way of lung injury 
prevention. Steam inhalation injury can accelerate lung 
tissue apoptosis; its mechanism is related to the follow-
ing factors: (1) the tissue is ischaemic and hypoxic; (2) 
inflammatory mediators, cytokines, oxygen, free radi-
cals, reactive oxygen species, metabolic intermediate, 
etc., directly or indirectly, interfere with apoptosis con-
trol gene expression, and promote cell apoptosis; (3) 
thermodynamic effects of the steam. Mechanical ventila-
tion can improve alveolar ventilation function, which is 
an important means of treatment of severe burns com-
plicated by inhalation injury, but mechanical ventilation 
can cause excessive tension in atelectatic lung alveolar 

Fig. 1 Lung tissue cell 
apoptosis (× 200) of rabbits 
with steam inhalation injury in 
the various modes of ventila-
tory therapy were assessed 
with TUNEL FragELTM. CMV 
conventional mode ventilation, 
HFOV high-frequency oscil-
latory ventilation alone, PLV 
partial liquid ventilation
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gas exchange in the lungs, potentially useful adjunct in 
the management of severe respiratory failure [34].

Many animal studies indicated that PLV can alleviate 
the histological damage of ALI induced by meconium 
aspiration (MAS) and increased survival chance and 
therefore PLV would be a useful treatment for MAS [35]. 
And PLV with PFCs may protect the lung from acute pul-
monary inflammation more effectively than CV or HFOV 
does [36].

Future studies on combined therapy with HFOV + PLV 
will need to identify those patients who might benefit 
most from HFOV and to determine the best oscillator set-
tings. Both goals require an improved capability of moni-
toring recruitment and over distension, and oscillatory 
volumes. Moreover, future directions with potential new 
technical advances and the use of new bedside monitor-
ing techniques needed to be addressed.
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