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Abstract

Motivation: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment.
Our strategy is focused on ‘multiple network analysis’ in which we try to improve cancer diagnostics by using biological
networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in
regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single
mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative
bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in
order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and
(3) predict what are the primary and secondary effects of gene mutations involved in human diseases.
Results: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what
are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma
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(mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the
individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our
pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense
combined mutation were considered.
Availability: The procedures used in this paper are part of the Cytoscape Core, available at (www.cytoscape.org). Data used
here on mCRC patients have been published in [55].
Supplementary Information: A supplementary file containing a more detailed discussion of this case study and other cases
is available at the journal site as Supplementary Data.
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Introduction
Recent studies suggest that cancer can be better understood
through the study of mutated or dysregulated pathways/net-
works [1]. Human diseases are not caused by single molecular
defects but driven by complex interactions among a variety
of molecular mediators [2, 3]. The analysis of human diseases
using graphs and/or biological networks plays an extremely
critical role in the field of precision oncology [4, 5]. The study
of these complex networks can reveal new disease-associated
genes and/or pathways and identify possible targets for new
drug development, as well as new uses for existing drugs [6].

Network-based approaches could be the most promising
strategies for identifying the specific mediators who are
responsible for altering the networks, trying to facilitate the
development of new combinations of drugs based on the
complex interactions involved in tumor-growth, thus improving
personalized medicine [7, 8]. It is well known that not all patients
respond at the same extents to the same pharmacological
treatments. This is true also for targeted therapies. Although
patients are selected on the basis of specific biomarkers that
are often represented by genetic alterations, only a fraction
of patients usually respond to treatment. To further develop
precision medicine, it is essential to get an in-depth view of what
are the factors that determine the resistance to a therapeutic
treatment and identify which patients can better respond to
specific therapies [9].

Targeted therapy is based on the identification of driver
alterations that allow therapeutic intervention with specific
inhibitors. For example, the presence of BRAF mutations in
metastatic colorectal carcinoma (mCRC) predicts the response
to combinations of BRAF inhibitors, MEK inhibitors and anti-
EGFR monoclonal antibodies [10]. However, mCRC have been
found to carry often multiple genomic alterations. The effects of
these multiple driver alterations on the probability to respond
to targeted agents are not known. In this respect, recent
data suggested that personalized treatment with combination
therapies would improve outcomes in patients with refractory
malignancies as compared with single agents [11], thus high-
lighting the importance of taking into consideration the complex
genomic alterations of cancer in order to improve precision
medicine. In the present work, we illustrate an innovative
bioinformatics pipeline based on the design and analysis of
biomedical and molecular networks aimed at improving the
disease diagnosis, identifying the patients that could better
respond to a given drug treatment, and predicting the primary
and secondary effects of gene mutations involved in human
disease.

Our strategy is focused on ‘multiple network analysis’ with
which we look for improving cancer diagnostics using biologi-
cal networks, and on generating statistical inference predictive

models to probe regulatory relationships between molecular
components such as genes or proteins [12, 13]. This approach
allows us to represent the human physio-pathological system
and biological processes in a simple and complete way [14]. It
arose great interest among scientific community [15]. Once the
disease-mutated genes of the patient are known, it is possible to
understand how they are involved in pathological processes and
what are their combined effects on the modification of molecu-
lar mechanisms in order to evaluate the correct treatment and
to help physicians for what concerns diagnosis, prognosis and
therapy.

Methods
Pipeline workflow

The pipeline developed by us and carried out in this work is
characterized by a multistep design, which concerns different
biological-molecular networks (Fig. 1): disease–disease, gene–
disease, gene-variant-disease, gene–gene, protein–protein
interaction and multilayer drugs. The last three steps can be
performed in both directions, i.e. from gene–gene network to
multilayer drug network and vice versa. All these steps have
been performed through Cytoscape v3.7 Core (with its specific
plugins used for the realization and analysis phase (Table 1)
[16, 17].

Disease–disease network

As shown in the step a of Fig. 1 the realization of this network
is focused on the comprehension of the disease at molecular
level. This is essential to investigate the associations/correla-
tions between our disease and the other ones that directly or
indirectly could be related to them, to try to understand the
disease progression and to explain the secondary symptoms that
a patient could develop over time [46]. In this network, the nodes
are the pathological phenotypes and the edges represent the
correlations between the pairs of pathologies. In the pipeline,
the disease of interest represents the input, while other diseases
related to it are the output generated by Cytoscape. The realiza-
tion of this network allows us to have a useful map that will help
us identify the priority genes and hubs in the next study steps.

Gene–Disease network

After the generation of the disease–disease network, it is possi-
ble to identify the priority genes associated among the disease
of interest and the others, creating the gene-disease network
as shown in step b of Fig. 1 [47]. The output is a network in
which some nodes represent the disease of interest and some



Multiple network-based bioinformatics pipeline 3

Ta
b

le
1.

Pi
p

el
in

e
p

lu
gi

n
s

St
ep

of
p

ip
el

in
e

Pl
u

gi
n

n
am

es
A

lg
or

it
h

m
D

es
cr

ip
ti

on
of

p
lu

gi
n

R
ef

er
en

ce
s

D
is

ea
se

–d
is

ea
se

n
et

w
or

k
au

to
H

G
PE

C
an

d
N

et
w

or
k

A
n

al
yz

er
RW

R
H

(r
an

d
om

w
al

k
w

it
h

re
st

ar
t

on
h

et
er

og
en

eo
u

s
n

et
w

or
k)

al
go

ri
th

m
to

co
m

p
u

te
th

e
si

m
il

ar
it

ie
s

be
tw

ee
n

d
is

ea
se

s
an

d
id

en
ti

fy
w

h
at

ar
e

th
e

m
ai

n
an

d
st

ro
n

ge
st

co
rr

el
at

io
n

s
w

it
h

in
th

e
n

et
w

or
k.

O
rg

an
ic

la
yo

u
t

al
go

ri
th

m
al

lo
w

ed
u

s
to

ev
al

u
at

e
th

e
d

is
ta

n
ce

be
tw

ee
n

d
is

ea
se

s
be

yo
n

d
th

e
ev

al
u

at
io

n
of

lo
ca

la
n

d
gl

ob
al

to
p

ol
og

ic
al

p
ro

p
er

ti
es

.N
et

w
or

kA
n

al
yz

er
al

go
ri

th
m

p
er

fo
rm

s
an

al
ys

is
of

bi
ol

og
ic

al
n

et
w

or
ks

an
d

ca
lc

u
la

te
s

n
et

w
or

k
to

p
ol

og
y.

To
id

en
ti

fy
an

d
p

re
d

ic
t

n
ov

el
d

is
ea

se
-d

is
ea

se
as

so
ci

at
io

n
s.

U
si

n
g

N
et

w
or

kA
n

al
yz

er
it

is
p

os
si

bl
e

to
co

m
p

u
te

ba
si

c
p

ro
p

er
ti

es
of

w
h

ol
e

n
et

w
or

k
(d

eg
re

e
d

is
tr

ib
u

ti
on

,c
lu

st
er

in
g

co
ef

fi
ci

en
ts

,
ce

n
tr

al
it

y,
et

c.
)

[1
8–

21
]

G
en

e–
d

is
ea

se
n

et
w

or
k

an
d

G
en

e-
va

ri
an

t-
d

is
ea

se
n

et
w

or
k

au
to

H
G

PE
C

an
d

D
is

G
eN

et
RW

R
H

al
go

ri
th

m
.L

H
G

D
N

m
ac

h
in

e
le

ar
n

in
g

al
go

ri
th

m
to

ex
tr

ac
t

n
ov

el
ge

n
e-

d
is

ea
se

as
so

ci
at

io
n

s

To
id

en
ti

fy
an

d
p

re
d

ic
t

n
ov

el
ge

n
e-

d
is

ea
se

as
so

ci
at

io
n

s.
U

se
fu

lt
o

an
al

yz
e

th
e

ro
le

p
la

ye
d

by
h

u
b

ge
n

es
an

d
in

ve
st

ig
at

e
h

u
m

an
co

m
p

le
x

d
is

ea
se

s
w

it
h

re
sp

ec
t

to
th

ei
r

ge
n

et
ic

or
ig

in
by

a
va

ri
et

y
of

bu
il

t-
in

fu
n

ct
io

n
s.

[1
8–

24
]

G
en

e–
ge

n
e

n
et

w
or

k
G

en
eM

A
N

IA
p

lu
s

S
tr

in
gA

p
p

an
d

iC
T

N
et

2
(C

yt
os

ca
p

e
p

lu
gi

n
In

te
gr

at
ed

C
om

p
le

x
Tr

ai
ts

N
et

w
or

k
s)

It
u

se
s

tw
o

al
go

ri
th

m
s:

(1
)a

li
n

ea
r

re
gr

es
si

on
al

go
ri

th
m

to
co

m
p

u
te

th
e

fu
n

ct
io

n
al

ge
n

e–
ge

n
e

as
so

ci
at

io
n

n
et

w
or

ks
an

d
(2

)a
G

au
ss

ia
n

fi
el

d
la

be
l

p
ro

p
ag

at
io

n
al

go
ri

th
m

fo
r

p
re

d
ic

ti
n

g
ge

n
e

fu
n

ct
io

n
s

fr
om

th
e

co
m

p
os

it
e

n
et

w
or

k.
It

u
se

s
(1

)a
n

ai
ve

B
ay

es
ia

n
al

go
ri

th
m

to
co

m
p

u
te

co
m

bi
n

ed
sc

or
es

fr
om

d
if

fe
re

n
t

ed
ge

ty
p

es
an

d
(2

)a
n

ap
p

ro
ac

h
ba

se
d

on
th

e
cl

os
es

t
co

m
bi

n
ed

sc
or

es
to

gr
ow

th
e

q
u

er
y

n
et

w
or

k.
It

ap
p

li
es

tw
o

d
if

fe
re

n
t

al
go

ri
th

m
s:

RW
R

H
an

d
PR

IN
C

E,
w

h
ic

h
u

se
s

n
et

w
or

k
to

p
ol

og
ic

al
ch

ar
ac

te
ri

st
ic

s
in

th
e

p
ro

te
in

in
te

ra
ct

io
n

n
et

w
or

k
to

p
ri

or
it

iz
e

ca
n

d
id

at
e

ge
n

es
.

T
h

ey
h

av
e

be
en

u
se

d
to

an
al

yz
e

an
d

in
ve

st
ig

at
e

d
if

fe
re

n
t

ty
p

es
of

bi
om

ed
ic

al
-m

ol
ec

u
la

r
in

te
ra

ct
io

n
s,

by
cr

os
si

n
g

an
d

ve
ri

fy
in

g
th

e
re

su
lt

s
ob

ta
in

ed
w

it
h

w
h

at
is

re
p

or
te

d
in

th
e

sc
ie

n
ti

fi
c

li
te

ra
tu

re
in

th
e

va
ri

ou
s

st
u

d
ie

s.
T

h
ey

h
av

e
be

en
u

se
d

to
in

te
gr

at
e

se
ve

ra
ld

at
a

so
u

rc
es

to
al

lo
w

au
to

m
at

ed
an

d
sy

st
em

at
ic

cr
ea

ti
on

of
n

et
w

or
ks

w
it

h
u

p
to

fi
ve

la
ye

rs
of

om
ic

s
in

fo
rm

at
io

n
:p

h
en

ot
yp

e-
SN

P
as

so
ci

at
io

n
,p

ro
te

in
-p

ro
te

in
in

te
ra

ct
io

n
,

d
is

ea
se

-t
is

su
e,

ti
ss

u
e-

ge
n

e,
an

d
d

ru
g-

ge
n

e
re

la
ti

on
sh

ip
s.

[2
5–

27
]

C
on

ti
nu

ed



4 Dotolo et al.

Ta
b

le
1.

C
on

ti
n

u
ed

St
ep

of
p

ip
el

in
e

Pl
u

gi
n

n
am

es
A

lg
or

it
h

m
D

es
cr

ip
ti

on
of

p
lu

gi
n

R
ef

er
en

ce
s

Pr
ot

ei
n

–p
ro

te
in

in
te

ra
ct

io
n

n
et

w
or

k
G

en
eM

A
N

IA
,F

u
n

M
od

an
d

R
ea

ct
om

eF
IP

lu
gi

n
(R

ea
ct

om
e)

It
u

se
s

tw
o

al
go

ri
th

m
s:

(1
)a

li
n

ea
r

re
gr

es
si

on
al

go
ri

th
m

to
co

m
p

u
te

th
e

fu
n

ct
io

n
al

as
so

ci
at

io
n

n
et

w
or

ks
se

tt
in

g
p

ro
te

in
–p

ro
te

in
in

te
ra

ct
io

n
p

ar
am

et
er

s
an

d
se

tt
in

g
m

ol
ec

u
la

r
m

ec
h

an
is

m
s

an
d

(2
)

a
G

au
ss

ia
n

fi
el

d
la

be
lp

ro
p

ag
at

io
n

al
go

ri
th

m
fo

r
p

re
d

ic
ti

n
g

ge
n

e
fu

n
ct

io
n

s
fr

om
th

e
co

m
p

os
it

e
n

et
w

or
k.

Fu
n

M
od

it
er

at
iv

el
y

se
le

ct
s

al
le

d
ge

s
of

th
e

n
et

w
or

k
an

d
as

si
gn

s
a

fu
n

ct
io

n
al

an
n

ot
at

io
n

to
an

ed
ge

w
h

en
tw

o
li

n
ke

d
n

od
es

ar
e

an
n

ot
at

ed
in

th
e

sa
m

e
bi

ol
og

ic
al

gr
ou

p
or

p
at

h
w

ay
in

th
e

C
on

se
n

su
sP

at
h

D
B

(D
B

)d
at

ab
as

e.
It

u
se

s
d

ff
er

en
t

ki
n

d
of

al
go

ri
th

m
s:

H
ot

N
et

to
se

ar
ch

fo
r

n
et

w
or

k
m

od
u

le
s;

M
C

L
C

lu
st

er
in

g
al

go
ri

th
m

ba
se

d
on

sp
ec

tr
al

p
ar

ti
ti

on
;A

lg
or

it
h

m
s

fo
r

d
et

ec
ti

n
g

si
gn

if
ic

an
tl

y
m

u
ta

te
d

p
at

h
w

ay
s

in
ca

n
ce

rs

T
h

ey
h

av
e

be
en

u
se

d
to

an
al

yz
e

an
d

in
ve

st
ig

at
e

d
if

fe
re

n
t

ty
p

es
of

bi
om

ed
ic

al
-m

ol
ec

u
la

r
in

te
ra

ct
io

n
s.

Fu
n

M
od

ex
tr

ac
ts

al
lp

ai
rs

of
n

od
es

an
n

ot
at

ed
fo

r
th

e
sa

m
e

p
at

h
w

ay
in

a
n

ew
su

b-
n

et
w

or
k.

Su
bs

eq
u

en
tl

y,
Fu

n
M

od
te

st
s

th
e

st
at

is
ti

ca
ls

ig
n

if
ic

an
ce

an
d

ca
lc

u
la

te
s

th
e

to
p

ol
og

ic
al

p
ro

p
er

ti
es

of
th

e
su

b-
n

et
w

or
k

to
id

en
ti

fy
th

e
su

b-
n

et
w

or
ks

th
at

ar
e

st
at

is
ti

ca
ll

y
en

ri
ch

ed
in

bi
ol

og
ic

al
fu

n
ct

io
n

s
an

d
th

at
ex

h
ib

it
in

te
re

st
in

g
to

p
ol

og
ic

al
fe

at
u

re
s.

T
h

e
st

at
is

ti
ca

l
si

gn
if

ic
an

ce
of

th
e

su
b-

n
et

w
or

k
is

d
et

er
m

in
ed

by
p

er
fo

rm
in

g
a

h
yp

er
ge

om
et

ri
c

te
st

,a
w

el
l-

es
ta

bl
is

h
ed

m
et

h
od

u
se

d
in

ge
n

e
en

ri
ch

m
en

t
an

al
ys

es
It

ex
p

lo
re

R
ea

ct
om

e
p

at
h

w
ay

s
an

d
se

ar
ch

fo
r

d
is

ea
se

s
re

la
te

d
p

at
h

w
ay

s
an

d
n

et
w

or
k

p
at

te
rn

s
u

si
n

g
th

e
R

ea
ct

om
e

fu
n

ct
io

n
al

in
te

ra
ct

io
n

n
et

w
or

k

[2
5;

28
–2

9]

M
u

lt
il

ay
er

d
ru

g
n

et
w

or
k

G
en

eM
A

N
IA

an
d

D
ru

gT
ar

ge
tP

ro
fi

le
r

(D
T

P-
H

D
R

);
p

lu
s

C
li

n
ic

al
tr

ia
ls

.g
ov

-E
u

d
ra

ct
tr

ia
lr

eg
is

te
r

fo
r

d
ru

gs
;C

IV
IC

C
an

ce
r

Po
rt

al
an

d
S

ID
ER

4.
1

w
eb

-s
er

ve
r

in
w

h
ic

h
ar

e
im

p
le

m
en

te
d

D
G

Id
b

3.
0

an
d

G
en

om
ic

s
of

D
ru

g
S

en
si

ti
vi

ty
in

C
an

ce
r

(G
D

S
C

);
C

an
ce

rD
R

w
eb

se
rv

er
im

p
le

m
en

te
d

w
it

h
C

an
ce

r
D

ru
g

n
et

w
or

k
m

ap
:a

ll
ca

n
ce

r
d

ru
gs

p
lu

s
R

es
M

ar
ke

rD
B

It
u

se
s

tw
o

al
go

ri
th

m
s:

(1
)a

li
n

ea
r

re
gr

es
si

on
al

go
ri

th
m

an
d

(2
)a

G
au

ss
ia

n
fi

el
d

la
be

lp
ro

p
ag

at
io

n
al

go
ri

th
m

.
B

ar
n

es
–H

u
t

al
go

ri
th

m
is

an
ap

p
ro

xi
m

at
io

n
al

go
ri

th
m

fo
r

p
er

fo
rm

in
g

an
N

-b
od

y
si

m
u

la
ti

on
an

d
to

re
al

iz
e

m
u

lt
il

ay
er

d
ru

g
n

et
w

or
ks

.H
D

R
is

a
ra

n
d

om
w

al
k

w
it

h
re

st
ar

t
al

go
ri

th
m

ap
p

li
ed

on
a

h
et

er
og

en
eo

u
s

n
et

w
or

k
of

d
ru

gs
an

d
d

is
ea

se
s,

to
p

re
d

ic
t

n
ov

el
d

ru
g–

d
is

ea
se

as
so

ci
at

io
n

s

T
h

ey
h

av
e

be
en

u
se

d
to

an
al

yz
e

an
d

in
ve

st
ig

at
e

d
if

fe
re

n
t

ty
p

es
of

bi
om

ed
ic

al
-m

ol
ec

u
la

r
in

te
ra

ct
io

n
s

an
d

to
st

u
d

y
so

m
e

im
p

or
ta

n
t

si
d

e
ef

fe
ct

s
of

d
ru

gs
se

le
ct

ed
fo

r
p

h
ar

m
ac

ol
og

ic
al

th
er

ap
ie

s.
A

p
p

ly
in

g
d

ru
g-

d
is

ea
se

ce
n

tr
ic

p
ar

am
et

er
s

is
u

se
fu

lt
o

ca
lc

u
la

te
w

h
at

d
ru

gs
ca

n
be

u
se

d
fo

r
a

gi
ve

n
d

is
ea

se
an

d
fo

r
m

u
ta

te
d

ge
n

es
,h

ig
h

li
gh

ti
n

g
w

h
ic

h
gr

ou
p

of
d

ru
gs

af
fe

ct
s

sp
ec

if
ic

ge
n

es
.M

or
eo

ve
r,

it
is

p
os

si
bl

e
to

in
te

rp
re

t
th

e
va

ri
an

t
in

vo
lv

ed
in

d
is

ea
se

of
in

te
re

st
d

es
cr

ib
in

g
th

e
th

er
ap

eu
ti

c,
p

ro
gn

os
ti

c,
d

ia
gn

os
ti

c
an

d
p

re
d

is
p

os
in

g
re

le
va

n
ce

of
in

h
er

it
ed

an
d

so
m

at
ic

va
ri

an
ts

of
al

lt
yp

es
.T

h
is

in
fo

rm
at

io
n

is
u

se
fu

lt
o

re
d

es
ig

n
th

e
d

ru
g–

ge
n

e
in

te
ra

ct
io

n
s,

to
in

ve
st

ig
at

e
th

e
th

er
ap

eu
ti

c
bi

om
ar

ke
r

in
vo

lv
ed

in
ca

n
ce

r
ce

ll
s

an
d

to
id

en
ti

fy
th

e
m

os
t

im
p

or
ta

n
t

D
ru

g-
R

es
is

ta
n

ce
.

[2
5;

30
–4

5]



Multiple network-based bioinformatics pipeline 5

Figure 1. Multiple network-based workflow.

others represent the priority genes mainly involved in it. The
edges represent the role played by the priority genes within
the network. The aim of this process is to identify ‘hubs’ and
understand how a genetic perturbation/mutation can change
the molecular profile. In our pipeline, the disease represents the
input, while the identified hubs are the output of our analysis.

Through this network, we can extrapolate and explore the
driver genes involved in the disease to explain and justify the
onset of secondary symptoms developed over time by a patient
with cancer. Moreover, this network is useful to identify the
hub genes important to investigate how the molecular profile
will change with one or more mutations. Once this network is
created, it is possible to generate the networks of the following
steps and extrapolate the information useful for pharmaco-
logical purposes to identify the best therapies for individual
patients.

Gene-Variant-Disease network

It is useful to identify which are the single/double/multiple
mutations involved in the disease of interest, to investigate the
role played by the mutations involved in the disease as well as
to assess which are the priority genes linked to these muta-
tions. Therefore, it is useful to realize the gene-variant-disease
network as shown in step c of Fig. 1. In this network, there are
some nodes representing the disease of interest, some nodes
representing the priority genes involved in specific diseases and
other nodes that are the principal genetic variants involved in
our context. Furthermore, edges represent one or more associ-
ations between different nodes. This network is realized using
the same pipeline of the gene-disease network, but the input is
a gene, or a disease, or both. This network is useful for identifying
clinically relevant and useful variants or SNPs in the molecular
study in order to select the most suitable therapy.

Gene–Gene network

After the study of the priority genes and of the mutations mainly
involved in our disease, it is possible to create the gene–gene net-
work as shown in step d of Fig. 1, with the aim of identifying the
gene interactions involved in the physiological and pathological
field [48], evaluating their differences and analyzing how molec-
ular behavior changes in the presence of single, double or mul-
tiple mutations [49]. The study of this network can facilitate the

systematic functional annotation of genes [50] and help identify
the hub genes, which may lead to potential clinical applications
[51]. It is a network in which the nodes represent genes (control
or mutated), while the edges represent the gene interactions
(physiological or pathological). In the gene–gene network, the
input is given by our gene panel to which the mutations are
added if the mutated networks are to be realized. Then, control
gene–gene networks (healthy subjects) and mutated gene–gene
networks (subjects affected by the disease resulting from single,
double or multiple mutations) are created [52].

Both networks are generated using our gene panel and
adding specific single/double/multiple mutations involved in
the disease in case of mutated networks. Mainly missense
mutations are analyzed. The generation of the gene–gene
network is very important because it allows to understand how
the molecular profile of the network changes for the individual
patient in the presence of one or more missense or other
mutations.

In this way, we can analyze the joint effect derived from
the combination of multiple mutations, creating the protein–
protein interaction network using the gene–gene net as input. As
a result, it is possible to identify which molecular mechanisms
are changing and which could be the pharmacological therapies
applicable for the individual patient.

Protein–Protein interaction network

Once the gene–gene networks are generated and analyzed, it
is necessary to trace the molecular mechanisms involved both
at physiological and at pathological levels, evaluating the joint
effects deriving from the presence of one or more mutations.
This is the result of the realization of the protein–protein net-
works as shown in step e of Fig. 1 [53]. These are networks in
which some nodes represent proteins (involved either in con-
trol or in pathological conditions), while the others represent
mechanisms (either physiological or pathological). The edges
represent the molecular associations between protein–protein
interactions (involved in the disease) and molecular mecha-
nisms involved in this network. The input of the network is rep-
resented by the genes derived from the gene–gene network. The
result is a network in which there are molecular mechanisms
and proteins involved in the disease of interest. The applied
algorithms are the same used in the case of gene–gene networks;
the step related to compute the protein enrichment is added to
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evaluate all the intermediate proteins involved in the protein–
protein interaction network, which helps us trace the molecular
mechanisms involved in control and mutated networks.

Multilayer drugs network

Once all the main networks are created, it is possible to accom-
plish the multilayer drugs network as shown in step f of Fig. 1. It
contains all the information derived from the networks built in
the previous steps. It is a network in which some nodes represent
genes, others represent various types of gene mutations (not
only missense ones), and, finally, others represent the drugs
approved by FDA or present in clinical trials (phase 1/2/3 of clin-
ical experimentation) or in the preclinical phase. Furthermore,
edges represent all the interactions between the drugs and the
mutated genes and all the calculated pharmacological parame-
ters. The input is represented by genes or mutated genes, while
the output is a multilayer drugs network [54]. The user-specified
network is constructed based on integrated bioactivity data,
namely dose-response measurements (IC50, EC50, XC50, AC50, Kd,
Ki, binding activity and potency) to extrapolate the most suitable
therapeutic combinations or single therapies and to evaluate the
side effects, adverse effects and contraindications of single or
combined therapies for the individual patient.

Results and discussion
Case study development

As an application of this pipeline, the clinically relevant case
studies belonging to a cohort of 182 metastatic colorectal cancer
(mCRC) patients [55] were considered and here we show one of
most interesting cases, which is related to a tumor carrying both
the BRAFV600E and the TP53I195N missense variants. A more
detailed discussion of this case study and of other five cases is
reported in the Supplementary Data. The mCRC mutations we
analyzed in this study are all pathogenic mutations [55, 80, 81]. In
this case, the study of combined mutations is more useful than
that performed for single mutations, as it allows us to study the
‘joint effect’ derived from the presence of two or more mutations.

In this way, it is possible to analyze other molecular mech-
anisms, identifying new potential pharmacological therapies,
which are able to block or slow down the tumor growth
[56–58]. A disease–disease network was built starting from
mCRC to identify novel direct/indirect associations with other
diseases and to confirm old ones. The parameters used for the
realization of this network were focused on two aspects: (i)
biological aspect to study the first biological interactors linked
to the first and second level of bio-clinical analysis without
taking into consideration the role played by the MSI genes; (ii)
informatics aspect based on application of RWRH algorithm
to help us to compute the similarities between diseases and
to identify what are the main and strongest correlations within
the network (a more detailed description of the parameters used
and how they were applied has been reported in section 2 of the
Supplementary Data). The results showed that there are some
inflammatory diseases at intestinal level and other tumors that
are directly or indirectly associated with CRC (Fig. 2).

This information allowed us to identify the driver and priority
genes involved in mCRC and to investigate their role played in
mCRC realizing the gene-disease network (Fig. 3).

Next, the study of a disease–disease network and of the gene–
disease network associated with it allowed us to cross data

obtained from both networks, and to accomplish the extrap-
olation of some important disease–disease and gene–disease
associations (as shown in the Supplementary Data). This infor-
mation was the basis for the realization and propagation of the
gene–gene network and protein–protein interaction network.

Once the biological role played by both these hub genes is
known, it is possible to investigate how their molecular pro-
file changes due to BRAFV600E-TP53I195N combined mutation
and what are the joint effects of a change at the molecular
level, through the molecular analysis of the gene-gene network
(reported in the Supplementary Data, Fig. 4a-b;) and the pro-
tein–protein interaction network (reported in the Supplemen-
tary Data, Fig. 5a-b).

Four gene–gene networks have been created. The gene–gene
control network on healthy subjects (not affected by CRC) (Fig.
4a, shown in the Supplementary Data) was built by using the
genes of the specific panel for this study. Its aim is to identify
(a) the gene–gene interactions involved in a healthy subject and
(b) the main sub-networks around which the entire network was
organized. Then, they were used as inputs for the realization of
the control protein–protein interaction network (Fig.5a, shown
in the Supplementary Data), which allowed us to trace and
explore the molecular mechanisms that are normally triggered
in humans.

The second gene–gene network (Fig. 4b, shown in the
Supplementary Data) was created taking into consideration a
patient (extracted from the group of 182 patients mentioned
above) with BRAFV600E-TP53I195N combined mutation, to verify
how the molecular profile (Fig. 5b, shown in the Supplementary
Data) of the network changed by using this approach. The
other two gene–gene networks were related to single mutations
BRAFV600E and TP53I195N. As in the control, the gene–gene
networks were used as input for the realization of the three
protein–protein interaction networks, which allowed us to
trace and explore the molecular mechanisms in all the three
cases.

The innovative result was that the networks obtained from
the combined mutations exhibit a different behavior with
respect to the two single mutation networks, not only for the
presence of the first and second gene interactors and for the
molecular mechanisms involved, but also for the therapeutic
choices. In fact, by crossing the data obtained from the study
of the mutated gene–gene network and the mutated protein–
protein interaction network, it was possible to examine the joint
effects derived from BRAFV600E-TP53I195N combined mutation
within the network.

Therefore, it was seen that the joint effects did not derive
from the sum of the effects of the individual mutations, but
there was a combination of triggered events that imply strong
molecular changes inside the network. This study allowed us
to extrapolate for single and combined mutations the lists of
the top ranked genes and molecular mechanisms involved in
the disease, by calculating the EdgeBetweenness parameter
(Table 2; more details are shown in Supplementary Data), to
get as much information as possible to help us understand the
most suitable therapy and the organization of the multilayer
network.

By crossing the data extrapolated from the gene–gene network
and from propagation phase of the protein–protein interaction
network, it was possible to demonstrate that in presence of the
combined mutation BRAFV600E-TP53I195N, the main molecular
mechanisms altered are those that regulate the process of dif-
ferentiation, survival, DNA damages and apoptosis, as shown in
Table 2.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
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Figure 2. Disease–disease network.

Figure 3. Gene–disease network.

Moreover, gene–gene networks are all directed graphs and so
it is possible to understand the direction followed by the priority
genes within each network. In this way, the last multilayer
drugs network was created and only the FDA-approved drugs as
well as drugs in Phase 3 clinical trials for single and combined
mutation were extrapolated. This network, generated by using
the combined mutation BRAFV600E-TP53I195N, is able to iden-
tify the most suitable therapy based on some pharmacological
indicators as reported in the general case in section 2.7 of the
Methods. As a result of this process, we obtained a table showing

the FDA-approved and Phase 3 drugs with their molecular mech-
anisms and drug resistance parameter calculated for single-
combined mutations (Table 3; a detailed discussion is shown in
Supplementary Data).

The analysis of the multilayer network highlighted some
important differences between the drugs indicated for single
mutations (BRAF and TP53) and the drugs suggested for the
combined mutation (BRAF+TP53). For the single mutation BRAF
V600E, the best treatment is the triplet drugs combination of
Binimetinib (MEK) plus Encorafenib (BRAF) plus Cetuximab

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
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(EGFR) giving rise to a synergistic effect that increases overall
survival in mCRC patients [59–61]. In contrast, if there is a
combined mutation (i.e. BRAF V600E+TP53 I195N), it is suggested
to use cytotoxic drugs as Methotrexate (MTX).

The rationale of such different therapeutic approach might
reside in the complex interactions between TP53 mutations,
BRAF mutations and sensitivity to MTX. MTX inhibits the
synthesis of DNA, RNA, thymidylates and proteins because it is a
potent inhibitor of the dihydrofolate reductase (DHFR) enzyme,
which converts dihydrofolate to tetrahydrofolate (THF) [62]. TP53
mutations induce an increase of E2F1 and are associated with
DHFR gene amplification to start the invasion and metastasis
process [63]. These mechanisms decrease the ability of tumor
cells to be responsive to MTX or other antifolate drugs involved
in intracellular folate metabolism, DNA synthesis and cell
growth [64, 65].

BRAF encodes a serine–threonine kinase that acts upstream
of MAPKK1 and MAPKK2 in response to RAS signals, and is
an essential component of the RAF/MEK/ERK/MAPK kinase cas-
cade as ‘driver’ of tumorigenesis [66]. The RAS/BRAF/MEK/ERK
cascade reduces E2F1 expression level, lowering the levels of
DHFR and thus increasing the sensitivity to MTX [67]. Addi-
tional mechanisms involve the activation of WNT signaling that
induces a higher production of and dependency from reactive
oxygen species (ROS) as well as the interaction with pathways
implicated in DNA repair. In fact, MTX can trigger ROS-associated
cell apoptosis [68] The anti-inflammatory actions of MTX are
critically dependent upon the production of ROS. Finally, a DNA
damaging activity of MTX has been described [69, 70].

BRAFV600E-TP53I195N case study was reported only as an
example, as we focused on targeted therapy that could be imple-
mented in patients with CRC derived from the BRAF muta-
tion. From our studies we have shown that, when the com-
bined BRAF-TP53 mutation is present, it is possible to use MTX
as an alternative therapy, while when we have the combina-
tion of BRAF mutation with other genes such as PIK3CA, we
see that MTX is no longer present in the therapeutic picture.
This combination suggests that MTX is suitable only in patients
mutated in both BRAF and TP53 genes. This knowledge indicates
that using our pipeline it is possible to make new alternative
hypotheses of a therapy for patients with a complex mutational
status, which must be validated in preclinical/clinical studies. A
detailed explanation of biological and molecular processes has
been reported in the added section 3.2 of the Supplementary
Data. To identify the best therapy it has been necessary to
run the whole pipeline, because the information derived from
both the gene–gene network and the protein–protein interaction
network is needed. Two lines of drugs are obtained: the first
line of drugs (directed) acting on our mutation and the second
line (indirected) of drugs, which instead acts mainly on other
mutations of our genes, but which could also be used as support
to the therapy if the first line does not work enough well.

Conclusions and future work
Assessment of genetic mutations is an essential element in the
modern era of personalized cancer treatment. The mutations in
some important hubs or priority genes as BRAF and TP53 play a
critical role in regulating many important molecular processes.

In the literature, the study is focused on the analysis of single
mutations, while by using our pipeline based on the multiple
network approach [14], it was possible to demonstrate and vali-
date that the joint effects and changes of the molecular profile
that occur in a patient with mCRC with double mutation of the

BRAF-TP53 genes are able to identify the most suitable drugs
for the therapy. Through this approach, it is possible to cross-
validate data and extrapolate as much information as possible,
trying to address the physician to the best therapy for the indi-
vidual patient. In this way, on one side, improvements could be
made at the diagnostic level and, on the other hand, personalized
therapy could be accomplished, reducing the research time and
costs.

Furthermore, following this approach, it is possible to
evaluate what are the molecular changes of a network in the
presence of one or more mutations and what it implies at the
pharmacological level. Copy-number variation (CNV) and focal
amplifications are analyzed in clinical diagnostics, but this type
of information is very limited because it depends on the request
from the treating physician. In our series this information was
not available. However, we could include this step as a future
prospective because these data might be introduced in the
pipeline by modifying the last three steps, by integrating some
Cytoscape plugins (i.e. FunMod [71], ClueGO [72], CluePedia [73],
Enrichment Map [74] and STRING [75]). Then, the obtained
information should be integrated with the mutational data,
to realize a new gene–gene network, and, consequently, the
protein–protein and multilayer drugs networks. In a future work,
we will add the study of gene expression profile, to further
validate the results obtained and to have a more complete and
detailed analysis. To include the study of the gene expression
profiles, we will modify our pipeline at the level of the gene–
gene network. In this way, it will be possible to work both
on the mutations and on the expression profile, reanalyzing
the protein–protein interaction network and performing a
more complete study at the drug level, considering both the
mutations and the expression profiles. The Cytoscape plugins
to apply for the analysis of gene expression profile of each
patient are: InsituNet [76], GeneMANIA [25], HyperModules
[77], NetworkAnalyst 3.0 [78] and ExAtlas [79]. Moreover, this
procedure can be applied to any type of disease and not only to
oncological ones.

Key Points
• The tumors often carry mutations of multiple driver

genes. Multiple network analysis is very useful to iden-
tify and investigate joint effects derived by combined
mutations involved in diseases of interest.

• The application of Multiple network-based pipeline
is very important for clinical researchers to find new
pharmacological therapies for sick patients in few
time and low cost.

• The proposed procedure is useful for improving the
diagnosis identifying the patients that could better
respond to a given drug treatment and predicting
what are the primary and secondary effects of gene
mutations involved in the human disease of interest.

Data availability

Patient data used in this work have been already published
in [55]. The data refer to a cohort of metastatic colorectal
cancer patients (mCRC), treated with first-line FOLFIRI plus
Cetuximab in the CAPRI-GOIM trial [80, 81].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab180#supplementary-data
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