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Background. Automated radiologic analysis using computer-aided detection software (CAD) could facilitate chest X-ray (CXR) 
use in tuberculosis diagnosis. There is little to no evidence on the accuracy of commercially available deep learning-based CAD in 
different populations, including patients with smear-negative tuberculosis and people living with human immunodeficiency virus 
(HIV, PLWH).

Methods. We collected CXRs and individual patient data (IPD) from studies evaluating CAD in patients self-referring for tuber-
culosis symptoms with culture or nucleic acid amplification testing as the reference. We reanalyzed CXRs with three CAD programs 
(CAD4TB version (v) 6, Lunit v3.1.0.0, and qXR v2). We estimated sensitivity and specificity within each study and pooled using IPD 
meta-analysis. We used multivariable meta-regression to identify characteristics modifying accuracy.

Results. We included CXRs and IPD of 3727/3967 participants from 4/7 eligible studies. 17% (621/3727) were PLWH. 17% 
(645/3727) had microbiologically confirmed tuberculosis. Despite using the same threshold score for classifying CXR in every study, 
sensitivity and specificity varied from study to study. The software had similar unadjusted accuracy (at 90% pooled sensitivity, pooled 
specificities were: CAD4TBv6, 56.9% [95% confidence interval {CI}: 51.7–61.9]; Lunit, 54.1% [95% CI: 44.6–63.3]; qXRv2, 60.5% 
[95% CI: 51.7–68.6]). Adjusted absolute differences in pooled sensitivity between PLWH and HIV-uninfected participants were: 
CAD4TBv6, −13.4% [−21.1, −6.9]; Lunit, +2.2% [−3.6, +6.3]; qXRv2: −13.4% [−21.5, −6.6]; between smear-negative and smear-
positive tuberculosis was: were CAD4TBv6, −12.3% [−19.5, −6.1]; Lunit, −17.2% [−24.6, −10.5]; qXRv2, −16.6% [−24.4, −9.9]. 
Accuracy was similar to human readers.

Conclusions. For CAD CXR analysis to be implemented as a high-sensitivity tuberculosis rule-out test, users will need threshold 
scores identified from their own patient populations and stratified by HIV and smear status.

Keywords.  tuberculosis; chest X-ray; deep learning; individual patient data meta-analysis; accuracy.

Chest radiography has been used to evaluate individuals for tu-
berculosis for over a century [1, 2]. As is happening with other 
radiologic modalities, advances in artificial intelligence are 

transforming chest X-ray (CXR) interpretation by offering the 
potential to replace human readers with automated computer 
analysis, often called computer aided detection (CAD) [3].

Although CAD software that analyze CXR for pulmonary 
tuberculosis are commercially available, there remains uncer-
tainty surrounding their diagnostic accuracy. A  systematic 
review found the majority of published studies focused on de-
velopment of CAD algorithms rather than their evaluation in 
clinical contexts, and that common risks of overestimating diag-
nostic accuracy included selection bias and use of human CXR-
reading rather than microbiologic testing as reference standards 
[4]. Meta-analysis could not be performed due to methodologic 
differences [4, 5]. High quality evidence was particularly scarce 
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for deep learning-based CAD—an artificial intelligence method 
that is highly effective for image recognition [4]. Given the small 
evidence base, and that most users will have no field experience 
with this novel technology, it is important to know if accuracy 
varies between populations and by patient characteristics. There 
are no published data on whether human immunodeficiency 
virus (HIV) infection affects accuracy of deep learning-based 
CXR analysis, and effects of other patient characteristics on sen-
sitivity and specificity were reported in only 1 study [6].

We performed an individual patient data (IPD) meta-analysis 
to address gaps in the evidence base on the diagnostic accuracy 
of CXR analysis with CAD for detecting tuberculosis. We fo-
cused on the use of CXR to evaluate individuals self-referring 
for symptoms of tuberculosis. In this context, chest radiography 
functions as a triage test: when the CXR is abnormal, sputum 
microbiologic tests are required to diagnose active pulmonary 
tuberculosis, whereas a normal CXR is sufficient to rule out ac-
tive disease [7].

METHODS

Our reporting follows PRISMA-IPD recommendations [8].

Objectives

We sought to estimate the diagnostic accuracy of CXR analyzed 
by deep learning-based, commercially available CAD software 
for the detection of culture- or nucleic acid amplification test 
(NAAT)-confirmed pulmonary tuberculosis in symptomatic, 
self-referred individuals. Our secondary objective was to iden-
tify patient characteristics that modify diagnostic accuracy.

Search Strategy, Study Selection, and Quality Assessment

Eligible studies were identified through published systematic re-
views [4, 5]. We added 1 study prior to its publication, through 
referral by its principal investigator (author F. A. K.) [6].

Eligible studies consecutively enrolled individuals self-
referring for medical care due to symptoms of pulmonary tuber-
culosis, estimated the diagnostic accuracy of any commercially 
available CAD program for the detection of pulmonary tuber-
culosis, and used either NAAT or mycobacterial culture as the 
reference test. For eligible studies to be included, investigators 
had to share de-identified clinical data and digital CXR images. 
Exclusion criteria are in the Supplementary materials (page 1).

Investigators provided data on age, sex, HIV status, prior tu-
berculosis history, smear status, and results of culture and/or 
NAAT, as well as CXR DICOM files. Data management is de-
scribed in Supplementary materials page 1. We included parti-
cipants who had available CXRs and conclusive microbiological 
results. We excluded participants without CXR images; whose 
CXR could not be analyzed by all 3 CAD programs; and those 
with growth of nontuberculous mycobacteria in culture. One 
reviewer (F. A. K.) performed a quality assessment of each study 
by adapting the QUADAS-2 tool [9].

Ethics

Investigators had local approvals to share data and CXR images. 
The IPD meta-analysis was approved by the Research Ethics 
Board of the McGill University Health Centre.

Index Tests

We analyzed each CXR with 3 commercially available deep 
learning-based CAD programs: CAD4TB version 6 (Delft, 
Netherlands), Lunit INSIGHT version 3.1.0.0. (Lunit, South 
Korea), and qXR version 2 (qure.ai, India). Each software was in-
stalled and run at the Research Institute of the McGill University 
Health Centre. After analyzing a CXR image, each software out-
puts an abnormality score on a 100-point scale (CAD4TB, 0 to 
100; Lunit, 0 to 100; qXRv2, 0.00 to 1.00). A  threshold score 
is selected for categorization: if the abnormality score is below 
the threshold, the CXR is classified as sufficient to rule out pul-
monary tuberculosis; otherwise, the CXR is categorized as con-
sistent with pulmonary tuberculosis. Sensitivity and specificity 
thus depend on the threshold score.

Reference Tests

We classified participants as having pulmonary tuberculosis if at 
least 1 sputum specimen demonstrated Mycobacterium tubercu-
losis in culture or NAAT (Xpert MTB/RIF). Among participants 
not meeting criteria for pulmonary tuberculosis, those with at 
least 1 sputum specimen negative by culture or NAAT were cat-
egorized as not having pulmonary tuberculosis. We classified 
sputum specimens that grew exclusively nontuberculous myco-
bacteria as indeterminate.

Data Analysis

We generated within-study and pooled receiver operating char-
acteristic (ROC) curves and estimated area under the ROC 
curves (AUC). To estimate pooled AUC, we used 1-step par-
ametric linear mixed effects meta-analysis [10, 11], specifying 
common random intercepts.

We used 3 approaches to select threshold scores for 
estimating sensitivity and specificity. From an implementa-
tion perspective, it would be much easier if software came 
with a recommended threshold score for universal ap-
plication. Lunit and qXRv2 come with such developer-
recommended threshold scores, whereas CAD4TBv6 does 
not [12]. To estimate sensitivity and specificity using a 
universal threshold, we applied: (1) for Lunit and qXRv2, 
developer-recommended threshold scores; (2) for all 3 soft-
ware, threshold scores needed to reach a pooled sensitivity of 
90%, which we refer to as “meta-analysis-derived threshold 
scores.” Our third approach to threshold selection was an al-
ternative to using universal threshold scores: (3) the use of 
threshold scores tailored to each site, which we refer to as 
“study-specific threshold scores.” We identified study-specific 
threshold scores by using each study’s ROC curve to find the 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data


1392 • cid 2022:74 (15 April) • Tavaziva et al

score with sensitivity of 90% (the minimum recommended by 
WHO for a tuberculosis triage test) [13].

We first estimated, for each study separately, sensitivity and 
specificity using developer-recommended, meta-analysis-
derived, and study-specific threshold scores. We used forest 
plots to investigate between-study heterogeneity. Next, using 
2-step bivariate random-effects meta-analysis [14, 15], we es-
timated pooled sensitivity and pooled specificity for developer-
recommended and meta-analysis derived threshold scores. We 
did not estimate pooled sensitivity and specificity using study-
specific threshold scores. We estimated pooled negative and 
positive likelihood ratios, across a range of threshold scores, 
using a bivariate modelling approach [14].

In addition to estimating unadjusted accuracy, we estimated 
sensitivity and specificity within predefined subgroups of sex, 
HIV-status, sputum smear-status, prior tuberculosis history, 
and age (details in Supplementary materials, page 1). We first 
identified associations in univariable analyses, within each 
study, and pooling data across studies. To determine whether 
associations remained after adjusting for covariates, we per-
formed generalized linear IPD multivariable meta-regression. 
In these models, parameter estimates are the absolute differ-
ence in sensitivity, or specificity, between subgroups adjusted 
for other variables in the model. We judged absolute differences 
as statistically significant if 95% confidence intervals (95% CI) 
excluded 0.

We estimated diagnostic outcomes at varying prevalence of 
tuberculosis (5%, 17%, 20%) using the meta-analysis-derived 
threshold scores in hypothetical cohorts of 1000 patients 
undergoing CXR analysis with these software, stratified by the 
characteristics that were associated with sensitivity.

In a post-hoc analysis, we sought to compare accuracy of CXR 
analysis by CAD to interpretation by human readers. For these 
analyses, we used the categorical CXR categorizations by human 
readers provided in the original study data to classify images as 
Abnormal (if any abnormality present) or Normal; we chose this 
classification as it is known to maximize sensitivity of human-
read CXR for tuberculosis (details in Supplementary materials, 
page 2) [16]. To compare the accuracy of CAD software to human 
CXR interpretation, we visualized the sensitivity and specificity of 
human readers on plots of the ROC curves of the 3 software.

In another post hoc analysis, we repeated our search of the 
literature on 24 April 2020 to identify potentially eligible studies 
published since our original search.

Statistical analyses were performed with SAS software (ver-
sion 9.4, SAS Institute, Cary, North Carolina, USA) [17] and R 
statistical software (RStudio, version 1.2.5033) [18] using pack-
ages diagmeta [11] and mada [14].

Role of the Funding Source

The funding source had no input on the design, conduct, anal-
ysis, or reporting.

RESULTS

Study Selection and Quality Assessment

The selection of studies for inclusion from the previously 
published systematic review [4] into the IPD meta-analysis is 
depicted in Supplementary Figure 1 (Supplementary mater-
ials, page 3). Of 54 full-text articles reviewed, 7 met inclusion 
criteria, of which 3 were excluded because IPD could not be 
obtained. The IPD meta-analysis includes 4 studies [6, 19–22].

Of 3967 participants for whom IPD were provided, we in-
cluded 3727/3967 (94%), and we excluded 240 (6%) for the 
following reasons (Supplementary Table 1, Supplementary ma-
terials, page 4): 20 missing CXR; 20 whose CXR could not be 
analyzed; 140 with nontuberculous mycobacteria in sputum 
culture; and 60 without reference standard results.

Risks of bias in QUADAS-2 patient selection and flow and 
timing domains were low for all studies; in the reference standard 
domain, was low in 3/4 and unclear in 1/4 (Supplementary 
Figure 2, Supplementary materials, page 5). Applicability con-
cerns were low for 4/4.

Description of Included Participants

The included studies were undertaken in Pakistan [6], South 
Africa [21, 22], Tanzania [19], and Zambia [20] (Table 1). Age, 
sex, prior tuberculosis, and smear data were unavailable for 1 
study [21, 22]. Women accounted for 47% (1583/3352) of par-
ticipants, and PLWH for 17% (621/3695). NAAT- or culture-
confirmed tuberculosis was diagnosed in 17% (645/3727). 
Smear-positive disease accounted for 73% (417/573) of con-
firmed tuberculosis.

ROC Analyses

ROC curves are in Supplementary Figures 3 and 4 
(Supplementary materials, pages 6–7). The software had sim-
ilar pooled AUC estimates with overlapping confidence inter-
vals: CAD4TBv6, 0.83 (95% CI: .82–.84); Lunit, 0.83 (95% CI: 
.79–.86); qxRv2, 0.85 (95% CI: .83–.88).

Sensitivity and Specificity Within Each Study

For each software, when the same threshold score was applied 
in every study, sensitivity and specificity varied from study to 
study. This between-study variability was observed when using 
developer-recommended threshold scores (Figure 1A) and also 
with meta-analysis derived threshold scores (Figure 1B). When 
study-specific threshold scores were applied, between-study var-
iability in specificity persisted (Figure 1C). The threshold score 
needed to achieve sensitivity of 90% varied between each study.

Pooled Sensitivity and Specificity Estimated From Individual Patient Data 

Meta-Analysis

Pooled sensitivity and specificity (Table 2) of developer-
recommended threshold scores were: Lunit, 87.7% (95% CI: 
82.5–91.5) and 59.2% (95% CI: 48.2–69.3); qXRv2, 84.0% (95% 
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CI: 74.6–90.3) and 69.1% (95% CI: 63.2 to 74.5). At the meta-
analysis derived threshold scores that achieved a pooled sen-
sitivity of 90%, pooled specificities were: CAD4TBv6, 56.9% 
(95% CI: 51.7–61.9); Lunit, 54.1% (95% CI: 44.6–63.3); qXRv2, 
60.5% (95% CI: 51.7–68.6). Pooled likelihood ratios across a 
range of threshold scores are reported in Supplementary Table 2 
(Supplementary materials, page 8). At a threshold score close to 
the maximum abnormality score (95 for CAD4TBv6 and Lunit, 
and 0.95 for qXRv2), positive likelihood ratios were modest for 
CAD4TBv6 (5.4, 95% CI: 3.9–7.3) and Lunit (6.3, 95% CI: 3.8–
10.2), and high for qXRv2 (20.7, 95% CI: 13.5–30.5).

Subgroup Analyses

In within-study univariable analyses (Supplementary Tables 
3–5, Figures 3–5, Supplementary materials, pages 9–21), for all 
3 approaches to threshold score selection, in at least 1 study, 
sensitivity was lower among women versus men, lower amongst 
PLWH versus HIV-uninfected participants, and lower for 
smear-negative versus smear-positive disease. In at least 1 study, 
specificity was lower among men versus women, among PLWH 
versus HIV-uninfected participants, among participants with 
prior tuberculosis, and in the highest age tertile.

In univariable pooled analyses (Table 3), pooled sen-
sitivity was consistently lower among PLWH versus the 

HIV-uninfected, for all 3 software; however, differences 
reached statistical significance only for CAD4TBv6 and 
qXRv2 (with meta-analysis-derived threshold scores, PLWH: 
CAD4TBv6, 80.4% [95% CI: 62.4–91.0], qXRv2, 78.9% [95% 
CI: 61.7–89.7]); versus HIV-uninfected, CAD4TBv6, 94.5% 
[95% CI: 91.5–96.4], qXRv2: 93.9% [95% CI: 90.4–96.1]. 
Pooled sensitivity was also consistently lower for smear-
negative tuberculosis for all 3 software; however, differ-
ences were statistically significant only for Lunit and qXRv2 
with the developer-recommended threshold (pooled sensi-
tivity for smear-positive tuberculosis: Lunit, 95.9% [95% CI: 
88.4–98.6]; qXRv2, 93.2% [95% CI: 86.4–96.7]; vs smear-
negative: Lunit, 74.3% [95% CI: 63.7–82.7], qXRv2, 64.9% 
[95% CI: 39.8–83.8]). Pooled specificity was significantly 
lower amongst individuals with prior tuberculosis (with 
meta-analysis-derived threshold scores, with prior tubercu-
losis: CAD4TBv6, 26.6% [95% CI: 17.2–38.7], Lunit, 29.7% 
[95% CI: 22.3–38.4], qXRv2, 33.7% [95% CI: 24.4–44.4]; 
versus no prior tuberculosis: CAD4TBv6, 66.8% [95% CI: 
60.9–72.2], Lunit, 58.0% [95% CI: 45.9–69.2], qXRv2, 69.3% 
[95% CI: 54.7–80.9]). Pooled specificity was highest in the 
youngest versus oldest age tertile (with meta-analysis de-
rived threshold scores, in 14–23 year-old group: CAD4TBv6, 
73.6% [95% CI: 61.9–82.6], Lunit, 65.9% [95% CI: 53.0–76.9], 

Table 1. Characteristics of 3727 Included Participants

Study

Characteristic Pakistan South Africa Tanzania Zambia Total

N 2298 375 712 342 3727

Age in years

 Median (IQR) 33 (23, 49) Not reported 38 (30, 50) 35 (28, 43) 35 (25, 48)

 Missing 0 375 0 5 380 

Sex

 Women 1098 (48%) Not reported 353 (50%) 132 (39%) 1583 (47%)

 Men 1200 (52%)  359 (50%) 210 (61%) 1769 (53%)

 Missing 0 375 0 0 375 

HIV status

 Uninfected 2287 (99%) 244 (66%) 400 (56%) 143 (43%) 3074 (83%)

 PLWH 3 (1%) 123 (34%) 308 (44%) 187 (57%) 621 (17%)

 Missing 8 8 4 12 32 

Prior TB

 Yes 517 (23%) Not reported 112 (16%) 78 (23%) 707 (21%)

 No 1778 (77%)  600 (84%) 264 (77%) 2642 (79%)

 Missing 3 375 0 0 378

NAAT or culture positive for MTB

 Yes 293 (13%) 70 (19%) 188 (26%) 94 (27%) 645 (17%)

 No 2005 (87%) 305 (81%) 524 (74%) 248 (73%) 3082 (83%)

Smear statusa

 Negative 73 (25%) Not reported 48 (25.5%) 35 (38%) 156 (27%)

 Positive 220 (75%)  140 (74.5%) 57 (62%) 417 (73%)

 Missing 0 70 0 2 72 

All numbers are N (%) unless indicated otherwise. Data provided for South Africa study did not include age, sex, history of prior TB, and smear status. 

Abbreviations: HIV, human immunodeficiency virus; IQR, interquartile range; MTB, Mycobacterium tuberculosis; NAAT, nucleic acid amplification testing; PLWH, people living with HIV; TB, 
tuberculosis.
aSmear status in Table 1 is only among individuals who are NAAT- or culture-positive for MTB. Among those without reference-standard confirmed TB, 10/3082 (0.3%) had positive smears.
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qXRv2, 74.4% [95% CI: 61.2–84.2]; in 43–90 year-old group: 
CAD4TBv6, 43.0% [95% CI: 39.4–46.8], Lunit, 45.0% [95% 
CI: 40.1–50.0], qXRv2, 57.3% [95% CI: 54.2–60.5]).

Adjusted absolute differences in pooled sensitivity and 
pooled specificity between subgroups estimated using 
multivariable IPD meta-regression are shown in Table 4. In 

Figure 1. Within-study sensitivity and specificity of chest X-ray analysis with deep learning-based software as a tuberculosis triage test in self-referred, symptomatic in-
dividuals. A, Developer-recommended threshold scores. B, Meta-analysis derived threshold scores. C, Study-specific threshold scores. * We used the prespecified developer-
recommended threshold score to classify chest X-rays as either consistent with tuberculosis or tuberculosis ruled-out. † For each software, the following threshold scores 
were applied in all studies: CAD4TBv6, 54; Lunit, 16.68; qXRv2, 0.44. These threshold scores were chosen as each was required to reach a pooled sensitivity of 90%. ‡ For 
each particular study, we identified the threshold score needed to reach a within-study sensitivity of 90% and estimated its within-study specificity. When no threshold score 
reached a sensitivity of exactly 90%, we selected the score achieving sensitivity >90%. The following threshold scores were used: CAD4TBv6: Pakistan, 62, South Africa, 50, 
Tanzania, 48, Zambia, 60; Lunit: Pakistan, 6.52, South Africa, 3.13, Tanzania, 23.11, Zambia, 54.79; qXRv2: Pakistan, 0.62, South Africa, 0.25, Tanzania, 0.27, Zambia, 0.47. 
Abbreviations: CAD, computer-aided detection software; CI, confidence interval.
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analyses adjusted for sex, HIV status, and smear status, for all 
3 software, there were no significant differences in sensitivity 
between women and men (absolute difference in sensitivity 
between women and men: with developer-recommended 
threshold scores: Lunit, −2.1% [95% CI: −7.3, 2.5]; qXRv2, 
−2.1% [95% CI: −6.9, 1.5]; with meta-analysis-derived 
threshold scores: CAD4TBv6, −2.4% [95% CI: −6.4, .7]; 
Lunit, −1.9% [95% CI: −6.7, 2.4], qXRv2: multivariable model 
did not converge). HIV status was not associated with sensi-
tivity of Lunit; however, sensitivity was lower among PLWH 
using CAD4TBv6 and qXRv2 (adjusting for sex and smear 
status, absolute difference in sensitivity between PLWH and 
HIV-uninfected: with meta-analysis derived threshold score, 
CAD4TBv6, −13.4% [95% CI: −21.1, −6.9]; qXRv2 (adjusted 
for smear-status only), −13.4% [95% CI: −21.5, −6.6]). For 
all 3 software, sensitivity was lower for smear-negative di-
sease (adjusting for sex and HIV-status, absolute difference 
in sensitivity between smear-negative and smear-positive 
participants: with meta-analysis-derived threshold scores: 
CAD4TBv6, −12.3% [95% CI:−19.5, −6.1]; Lunit, −17.2% 
[95% CI:−24.6, −10.5], qXRv2 (adjusting for HIV-status): 
−16.6% [95% CI:−24.4, −9.9]).

For all 3 software, in multivariable IPD meta-regression 
models that included sex, HIV-status, prior TB, and age 
group, specificity was significantly lower in: men vs women 
(with meta-analysis-derived threshold scores: CAD4TBv6, 
−6.7% [95% CI: −9.9, −3.6], Lunit, −5.7% [95% CI: −9.1, 
−2.2], qXRv2, −5.0% [95% CI: −8.1, −1.9]); PLWH vs HIV-
uninfected (CAD4TBv6, −5.8% [95% CI: −10.5, −1.2], 
Lunit, −6.5% [95% CI:−12.9, −.1], qXRv2, −8.5% [95% CI: 

−15.1, −2.0]); participants with prior tuberculosis vs with 
no prior tuberculosis (with meta-analysis-derived threshold 
scores: CAD4TBv6, −34.2% [95% CI: −38.1, −30.2], Lunit, 
−28.1% [95% CI: −32.2, −24.0], qXRv2, −35.7% [95% CI: 
−39.9, −31.4]), and in older age groups vs the youngest (with 
meta-analysis-derived threshold scores, 23–43  year-old vs 
14–23 year-old groups: CAD4TBv6, −12.9% [95% CI: −16.9, 
−8.9], Lunit, −13.4% [95% CI: −17.8, −9.0], qXRv2, −10.8% 
[95% CI: −14.8, −6.9]; 43–90  year-old vs 14–23  year-old 
groups: CAD4TBv6, −31.7% [95% CI: −35.6, −27.7], Lunit, 
−24.1% [95% CI: −28.3, −19.9], qXRv2, −18.0% [95% CI: 
−21.8, −14.1]).

Table 5 provides expected outcomes of CXR analysis in hypo-
thetical cohorts at varying tuberculosis prevalence.

Post hoc Analysis

Results of human CXR readers were available for 2/4 studies, 
so we did not pool results. In Tanzania, 3 human readers in-
terpreted each CXR (sensitivity range: 83%–97.3%; spec-
ificity, 12.0%–58.6%) [19]. In Zambia, a single reader was 
used (sensitivity, 96.8%; specificity, 48.8%) [20]. In both set-
tings, confidence intervals for each human reader’s sensitivity 
and specificity intersected with each software’s ROC curves 
(Supplementary Figure 6, Supplementary materials, page  22), 
indicating accuracy of CAD and human readers were similar. 
As was seen for CAD in within-study analysis, sensitivity and 
specificity of human CXR reading were modified by sex, HIV, 
sputum smear, prior tuberculosis, and age (Supplementary 
Table 6, Supplementary materials, page23).

Table 2. Pooled Unadjusted Sensitivity and Specificity of Chest X-ray Analysis With Deep Learning-Based Software as a Tuberculosis Triage Test in Self-
referred, Symptomatic Individuals, Stratified by Type of Threshold Score and Software

(a) Developer-Recommended Threshold Scoresa

Software

 Lunit qXRv2

Measure Studies n/N Pooled Estimate [95% CI] n/N Pooled Estimate [95% CI]

Sensitivity 4 563/645 87.7 [82.5–91.5] 553/645 84.0 [74.6–90.3]

Specificity 4 1919/3082 59.2 [48.2–69.3] 2247/3082 69.1 [63.2–74.5]

(b) Meta-analysis Derived Threshold Scoresb

 Software

CAD4TBv6 Lunit qXRv2

Measure Studies n/N Pooled Estimate [95% CI] n/N Pooled Estimate [95% CI] n/N Pooled Estimate [95% CI]

Sensitivity 4 584/645 90.4 [82.2–95.1] 574/645 90.3 [82.9–94.7] 581/645 90.0 [80.8–95.1]

Specificity 4 1854/3082 56.9 [51.7–61.9] 1762/3082 54.1 [44.6–63.3] 2033/3082 60.5 [51.7–68.6]

Pooled sensitivity and specificity estimated using bivariate random effects 2-step individual patient data meta-analysis. Point estimates are not always equivalent to division of numerator by 
denominator as they were estimated via meta-analysis.

Abbreviation: CI, confidence interval.
aEach software’s threshold score, which we applied in all studies, was prespecified by the software developers.
bEach software’s threshold score, which we applied in all studies, was identified using meta-analysis as the one that reached an unadjusted pooled sensitivity of 90%: CAD4TBv6, 54; Lunit, 
16.68; qXRv2, 0.44.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
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Table 3. Subgroup Pooled Sensitivity and Specificity of Chest X-ray Analysis With Deep Learning-Based Software in Self-referred, Symptomatic 
Individuals, Stratified by Type of Threshold Score and Software

(a) Developer-Recommended Threshold Scores a

Software

Lunit qXRv2

Subgroup Studies n/N Sensitivity [95% CI] n/N Sensitivity [95% CI]   

Unadjusted 4 563/645 87.7 [82.5–91.5] 553/645 84.0 [74.6–90.3]   

Women 3 201/235 82.9 [70.0–91.0] 192/235 78.2 [53.1–91.9]   

Men 3 307/340 93.1 [82.3–97.5] 305/340 89.0 [82.8–93.2]   

PLWH 3 144/179 80.7 [68.6–88.9] 123/179 69.4 [59.6–77.6]   

HIV uninfected 4 413/460 91.2 [83.3–95.6] 425/460 92.1 [89.2–94.3]   

Smear-positive 3 390/417 95.9 [88.4–98.6] 392/417 93.2 [86.4–96.7]   

Smear-negative 3 116/156 74.3 [63.7–82.7] 103/156 64.9 [39.8–83.8]   

Prior TB 3 71/77 90.8 [80.7–95.9] 67/77 86.6 [76.6–92.8]   

No prior TB 3 437/498 88.1 [84.6–90.9] 430/498 85.3 [71.4–93.1]   

Age 14–28 years 3 191/211 91.3 [85.5–94.9] 195/211 92.6 [88.2–95.5]   

Age 28–43 years 3 193/221 86.9 [81.4–91.0] 178/221 81.8 [65.8–91.3]   

Age 43–90 years 3 123/142 86.5 [78.8–91.7] 123/142 84.3 [65.8–93.7]   

Subgroup Studies n/N Specificity [95% CI] n/N Specificity [95% CI]   

Unadjusted 4 1919/3082 59.2 [48.2–69.3] 2247/3082 69.1 [63.2–74.5]   

Women 3 870/1348 61.1 [53.4–68.2] 1033/1348 74.3 [68.8–79.1]   

Men 3 841/1429 51.5 [36.9–65.8] 1015/1429 66.6 [56.9–75.1]   

PLWH 3 217/439 49.8 [34.9–64.7] 279/439 62.9 [55.7–69.6]   

HIV uninfected 4 1681/2614 62.4 [56.3–68.1] 1947/2614 71.5 [66.0–76.4]   

Prior TB 3 238/630 34.9 [27.7–42.8] 286/630 40.9 [30.9–51.8]   

No prior TB 3 1471/2144 62.2 [48.0–74.6] 1760/2144 78.5 [69.9–85.3]   

Age 14–28 years 3 685/914 68.7 [52.6–81.3] 775/914 80.8 [70.9–87.9]   

Age 28–43 years 3 529/886 52.8 [36.0–69.0] 637/886 67.6 [55.0–78.1]   

Age 43–90 years 3 495/973 51.2 [47.5–54.8] 633/973 66.0 [62.3–69.4]   

(b) Meta-analysis-derived Threshold Scoresb 

  Software

  CAD4TBv6 Lunit qXRv2

Subgroup Studies n/N Sensitivity [95% CI] n/N Sensitivity [95% CI] n/N Sensitivity [95% CI]

Unadjusted 4 584/645 90.4 [82.2–95.1] 574/645 90.3 [82.9–94.7] 581/645 90.0 [80.8–95.1]

Women 3 209/235 89.2 [74.2–96.0] 206/235 86.2 [78.7–91.4] 206/235 87.9 [63.7–96.8]

Men 3 314/340 92.8 [80.6–97.6] 311/340 95.3 [81.7–98.9] 316/340 93.1 [87.3–96.4]

PLWH 3 140/179 80.4 [62.4–91.0] 152/179 86.3 [68.3–94.9] 137/179 78.9 [61.7–89.7]

HIV-uninfected 4 439/460 94.5 [91.5–96.4] 416/460 92.7 [84.9–96.6] 438/460 93.9 [90.4–96.1]

Smear-positive 3 397/417 94.8 [86.1–98.2] 394/417 97.4 [87.0–99.5] 402/417 96.3 [89.7–98.7]

Smear-negative 3 124/156 81.6 [56.2–93.9] 121/156 79.0 [65.4–88.2] 118/156 77.9 [48.8–92.9]

Prior TB 3 73/77 92.2 [81.8–96.9] 71/77 90.7 [80.8–95.8] 71/77 91.9 [82.8–96.4]

No prior TB 3 450/498 90.8 [78.9–96.3] 446/498 91.2 [84.8–95.0] 451/498 91.7 [79.1–97.0]

Age 14–28 years 3 199/211 93.5 [88.2–96.5] 194/211 92.1 [84.2–96.2] 203/211 96.1 [92.5–98.1]

Age 28–43 years 3 192/221 89.0 [75.7–95.4] 198/221 90.2 [82.6–94.7] 189/221 88.5 [72.9–95.7]

Age 43–90 years 3 131/142 91.8 [74.9–97.7] 574/645 90.3 [82.9–94.7] 129/142 90.9 [77.4–96.7]

Subgroup Studies n/N Specificity [95% CI] n/N Specificity [95% CI] n/N Specificity [95% CI]

Unadjusted 4 1854/3082 56.9 [51.7–61.9] 1762/3082 54.1 [44.6–63.3] 2033/3082 60.5 [51.7–68.6]

Women 3 879/1348 64.6 [60.9–68.2] 809/1348 57.4 [51.0–63.6] 944/1348 65.4 [55.1–74.5]

Men 3 811/1429 51.9 [42.6–61.1] 766/1429 46.8 [34.1–59.8] 913/1429 58.2 [45.6–69.8]

PLWH 3 232/439 52.0 [41.0–62.8] 199/439 45.2 [30.6–60.7] 232/439 51.6 [40.1–63.0]

HIV uninfected 4 1604/2614 58.6 [53.0–64.1] 1542/2614 57.5 [53.8–61.1] 1782/2614 64.4 [58.5–69.9]

Prior TB 3 203/630 26.6 [17.2–38.7] 209/630 29.7 [22.3–38.4] 240/630 33.7 [24.4–44.4]

No prior TB 3 1486/2144 66.8 [60.9–72.2] 1364/2144 58.0 [45.9–69.2] 1615/2144 69.3 [54.7–80.9]

Age 14–28 years 3 713/914 73.6 [61.9–82.6] 651/914 65.9 [53.0–76.9] 726/914 74.4 [61.2–84.2]

Age 28–43 years 3 561/886 60.3 [51.5–68.5] 494/886 48.9 [32.7–65.3] 572/886 58.6 [42.4–73.2]

Age 43–90 years 3 415/973 43.0 [39.4–46.8] 428/973 45.0 [40.1–50.0] 557/973 57.3 [54.2–60.5]

Subgroup estimates with nonoverlapping confidence intervals (CIs) are in bold.

Abbreviations: HIV, human immunodeficiency virus; PLWH, people living with HIV; TB, tuberculosis.
aEach software’s threshold score, which we applied in all subgroups and all studies, was prespecified by the software developers.
bEach software’s threshold score, which we applied in all studies, was identified using meta-analysis as the one that reached an unadjusted pooled sensitivity of 90%: CAD4TBv6, 54; Lunit, 
16.68; qXRv2, 0.44. 



Deep Learning for TB: IPD Meta-Analysis • cid 2022:74 (15 April) • 1397

Findings From Updated Literature Search

On 24 April 2020, we repeated our search strategy to identify 
relevant studies published since our initial search in February 
2019. We identified 570 unique records, excluded 557 based 
on title and abstract screening and 12 after full-text screening, 
leaving 1 study [23] eligible for inclusion had IPD been avail-
able (study selection is summarized in Supplementary Figure 8, 
Supplementary materials, page 24). The study by Qin et al ret-
rospectively estimated the diagnostic accuracy of CAD4TBv6, 
Lunit, and qXRv2, against a reference of a single sputum spec-
imen tested by NAAT [23]. Data originated from 2 TB referral 
centers in Nepal and Cameroon. Among 1196 individuals, 38 
(3.2%) were PLWH, and 109 (9.1%) had NAAT-positive sputum 
of whom 76/109 (69.7%) were sputum smear-positive. AUCs 
were higher compared to what we reported: CAD4TBv6 (0.92, 
95% CI: .90–.95), Lunit (0.94, 95% CI: .93–.96), and qXRv2 
(0.94, 95% CI: .92–.97). Sensitivity and specificity stratified by 
smear and HIV status were not reported. Similar to our study, 
the authors found that application of the same threshold score 

resulted in sensitivity and specificity differing between study 
sites.

DISCUSSION

Through meta-analysis of data from 3727 individuals self-
referring for tuberculosis symptoms, we evaluated the diag-
nostic accuracy of CXR analyzed by commercially available, 
deep learning-based CAD software, as a triage test for NAAT- 
or culture-confirmed tuberculosis. For each software, applying 
the same threshold in all studies resulted in sensitivity and 
specificity varying from study to study. In adjusted analyses, 
sensitivity was associated with HIV status for CAD4TBv6 and 
qXRv2, and with sputum-smear status for all 3 software. For 
all 3 software, specificity was associated with age, sex, prior tu-
berculosis, and HIV status. In 2 studies where human interpre-
tation of CXR was reported, accuracies of human readers and 
CAD software were comparable, and patient characteristics 
similarly affected human reading.

Table 4. Adjusted Absolute Differences in Sensitivity and Specificity Between Subgroups of Sex, HIV Status, and Smear Status, Applying Developer-
Recommended Thresholds, or Meta-Analysis-Derived Threshold Scores With Pooled Sensitivity of 90%

Characteristic

Developer-recommended Threshold Scores Meta-analysis-derived Threshold Scores

Lunit qXRv2 CAD4TBv6 Lunit qXRv2

Difference in Sensi-
tivity [95% CI]

Difference in Sensi-
tivity [95% CI]

Difference in Sensi-
tivity [95% CI]

Difference in Sensi-
tivity [95% CI]

Difference in Sensi-
tivity [95% CI]

Sex

 Women −2.1 [−7.3, 2.5] −2.2 [−6.9, 1.5] −2.4 [−6.4, .7] −1.9 [−6.7, 2.4] Not in modela

 Men Ref Ref Ref Ref Ref

HIV status

 PLWH −1.0 [−8.1, 4.4] −17.6 [−26.4, −9.7] −13.4 [−21.1, −6.9] 2.2 [−3.6, 6.3] −13.4 [−21.5, −6.6]

 Uninfected Ref Ref Ref Ref Ref

Smear status

 Negative −18.6 [−26.4, −11.4] −23.0 [−31.5, −15.1] −12.3 [−19.5, −6.1] −17.2 [−24.6, −10.5] −16.6 [−24.4, −9.9]

 Positive Ref ref ref ref ref

Characteristic Difference in Speci-
ficity [95% CI]

Difference in Speci-
ficity [95% CI]

Difference in Speci-
ficity [95% CI]

Difference in Speci-
ficity [95% CI]

Difference in Speci-
ficity [95% CI]

Sex

 Men −4.8 [−8.2, −1.5] −3.8 [−6.7, −1.0] −6.7 [−9.9, −3.6] −5.7 [−9.1, −2.2] −5.0 [−8.1, −1.9]

 Women Ref Ref Ref Ref Ref

HIV status

 PLWH −7.2 [−13.8, −.6] −7.2 [−14.1, −.9] −5.8 [−10.5, −1.2] −6.5 [−12.9, −.1] −8.5 [−15.1, −2.0]

 Uninfected Ref Ref Ref Ref Ref

Prior TB

 Prior TB −29.0 [−33.1, −24.8] −35.3 [−40.0, −31.1] −34.2 [−38.1, −30.2] −28.1 [−32.2, −24.0] −35.7 [−39.9, −31.4]

 None Ref Ref Ref Ref Ref

Age tertiles

 14–23 years Ref Ref Ref Ref Ref

 23–43 years −12.4 [−16.7, −8.2] −8.8 [−12.3, −5.4] −12.9 [−16.9, −8.9] −13.4 [−17.8, −9.0] −10.8 [−14.8, −6.9]

 43–90 years −21.1 [−25.2, −17.0] −15.3 [−18.9, −11.8] −31.7 [−35.6, −27.7] −24.1 [−28.3, −19.9] −18.0 [−21.8, −14.1]

Differences with confidence intervals (CI) that exclude the null value are shown in bold. For sensitivity, N = 567; for specificity N = 2742. For sensitivity we used fixed effects individual patient 
data multivariable meta-regression, and for specificity we used random effects individual patient data meta-regression. 

Abbreviations: HIV, human immunodeficiency virus; PLWH, people living with HIV; TB, tuberculosis.
aModel for differences in sensitivity with qXRv2 did not converge when sex was included. Estimates are the absolute difference in sensitivity (or specificity) comparing subgroups, after 
adjusting for the other co-variates in the model. For example, the estimate for Lunit with its developer-recommended threshold score for HIV status means that Lunit sensitivity was 1.0% 
lower among PLWH compared to the HIV-uninfected, after adjusting for sex and smear-status, but the CI and P-value indicate that the difference was not statistically significant.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab639#supplementary-data
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The high sensitivity and moderate to low specificity of CXR 
analysis by these software, and our observed associations be-
tween certain patient characteristics and software accuracy, are 
similar to what has been reported for human-read CXR [19, 
24–30]. Hence, the evidence suggests that CXR analysis by 
CAD software would lead to similar diagnostic outcomes for 
tuberculosis as CXR interpretation by humans. Based in part on 
our findings, WHO recently issued new guidance, supporting 
the use of CAD as a replacement to humans for analyzing CXR 
for tuberculosis. Use of CAD software will improve reliability 
of CXR analysis by eliminating intra- [31] and inter-reader [25, 
31–37] variability that occur with human reading and would 
also eliminate problems tied to human reader fatigue [38, 39]. 
However, implementation should take into consideration three 
important limitations of current software.

First, we found that the accuracy of threshold scores varied 
between studies, such that users will face uncertainty about the 
sensitivity and specificity achieved in their particular setting. To 
reduce uncertainty, users will need estimates of sensitivity and 
specificity at different threshold scores identified using ROC 

curve analysis of data from individuals sampled from their 
own patient population. Developers and other implementation 
partners will need to provide all de novo users with resources, 
protocols, and tools to undertake these analyses. Given the im-
portance of minimizing bias when estimating diagnostic accu-
racy [40], WHO provides a draft protocol for new CAD users 
to undertake threshold selection for their patient populations 
[41]. In areas where HIV-associated or smear-negative tubercu-
losis are epidemiologically important, users should be provided 
with estimates of accuracy at different thresholds within strata 
of these variables. We recognize that this represents an impor-
tant implementation challenge. However, a cautious approach 
is warranted considering this is a novel technology, and ours is 
not the only study to report between-setting heterogeneity [23].

A second implementation consideration is that these soft-
ware do not provide differential diagnoses as would radiolo-
gists. Third, none of the software are validated for use in infants 
and young children. Taken together, these limitations of existing 
software mean that they cannot yet fully replace human CXR 
readers, hence their deployment should not preclude efforts to 

Table 5. Outcomes of Triage Testing Using Chest X-rays Interpreted by Deep Learning-Based Computer-Aided Detection Software in 1000 Individuals 
Self-Referred for Symptoms of Tuberculosis, Applying Meta-Analysis Derived Threshold Scores With 90% Pooled Sensitivity

Subgroup

Diagnostic Outcomes per 1000 Patients Tested (95%CI)

5% Tuberculosis Prevalence 17% Tuberculosis Prevalence 20% Tuberculosis Prevalence

CAD4TBv6 Lunit qXRv2 CAD4TBv6 Lunit qXRv2 CAD4TBv6 Lunit qXRv2

HIV-uninfected

 Tuberculosis detected 47  
(46–48)

46  
(42–48)

47  
(45–48)

161  
(156–164)

158  
(144–164)

160  
(154–163)

189  
(183–193)

185  
(170–193)

188  
(181–192)

 Tuberculosis missed 3  
(2–4)

4  
(2–8)

3  
(2–5)

9  
(6–14)

12  
(6–26)

10  
(7–16)

11  
(7–17)

15  
(7–30)

12  
(8–19)

 Correctly classified as no tuberculosis 557  
(504–609)

546  
(511–580)

612  
(556–664)

486  
(440–532)

477  
(447–507)

535  
(486–580)

469  
(424–513)

460  
(430–489)

515  
(468–559)

 Incorrectly classified as tuberculosis 393  
(341–447)

404  
(370–439)

338  
(286–394)

344  
(298–390)

353  
(323–383)

295  
(250–344)

331  
(287–376)

340  
(311–370)

285  
(241–332)

PLWH

 Tuberculosis detected 40  
(31–46)

43  
(34–47)

39  
(31–45)

137  
(106–155)

147  
(116–161)

134  
(105–152)

161  
(125–182)

173  
(137–190)

158  
(123–179)

 Tuberculosis missed 10  
(5–19)

7  
(3–16)

11  
(5–19)

33  
(15–64)

23  
(9–54)

36  
(18–65)

39  
(18–75)

27  
(10–63)

42  
(21–77)

 Correctly classified as no tuberculosis 494  
(390–597)

429  
(291–577)

490  
(381–599)

432  
(340–521)

375  
(254–504)

428  
(333–523)

416  
(328–502)

362  
(245–486)

413  
(321–504)

 Incorrectly classified as tuberculosis 456  
(353–561)

521  
(373–659)

460  
(352–569)

398  
(309–490)

455  
(326–576)

402  
(307–497)

384  
(298–472)

438  
(314–555)

387  
(296–479)

Smear-positive

 Tuberculosis detected 47  
(43–49)

49  
(44–50)

48  
(45–49)

161  
(146–167)

166  
(148–169)

164  
(152–168)

190  
(172–196)

195  
(174–199)

193  
(179–197)

 Tuberculosis missed 3  
(1–7)

1  
(0–7)

2  
(1–5)

9  
(3–24)

4  
(1–22)

6  
(2–18)

10  
(4–28)

5  
(1–26)

7  
(3–21)

Smear-negative

 Tuberculosis detected 41  
(28–47)

40  
(33–44)

39  
(24–46)

139  
(96–160)

134  
(111–150)

132  
(83–158)

163  
(112–188)

158  
(131–176)

156  
(98–186)

 Tuberculosis missed 9  
(3–22)

11  
(6–17)

11  
(4–26)

31  
(10–74)

36  
(20–59)

38  
(12–87)

37  
(12–88)

42  
(24–69)

44  
(14–102)

Prevalence of 17% is shown as this was the prevalence of pulmonary tuberculosis in the present study. Prevalence of 5% and 20% are shown by convention. The same threshold score was 
applied in each group. Estimates calculated using pooled sensitivity and specificity of the meta-analysis-derived threshold score (CAD4TBv6, 54; Lunit, 16.68; qXRv2, 0.44). 

Abbreviations: CAD, computer-aided detection software; HIV, human immunodeficiency virus; PLWH, people living with HIV.
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expand access to human readers with expertise in radiologic 
interpretation.

This study has a number of strengths. First, the quality of the 
included studies reduces the likelihood of selection or measure-
ment bias. Second, we substantially expanded the evidence base 
for deep learning-based CAD by reanalyzing CXR images from 
studies that had initially reported on older, non-deep learning-
based programs. Third, through IPD meta-analysis we identi-
fied patient characteristics modifying diagnostic accuracy and 
were able to estimate the associated absolute changes in sensi-
tivity and specificity—which have not previously been reported. 
Fourth, we conducted our study independently of companies 
who have a commercial interest in this field. Finally, our eval-
uation was based on CXR that had not been used for software 
training, which could have overestimated accuracy [4].

Some limitations should also be considered. First, we did not 
have data from 3 [25, 27, 42] of 6 eligible studies identified from 
our initial literature search, nor from the 1 study [23] identi-
fied in the updated search. However, we think their inclusion 
would not have changed our main results of conclusions, for a 
number of reasons. Two of the studies for which data could not 
be obtained [25, 42] were conducted by the same investigators 
and in the same 2 countries as 2 studies that we did include [6, 
20]. Another study we could not include [27] evaluated an older 
CAD4TB version in Bangladesh, against a single NAAT as the 
reference and without sputum smear data. In a preprint [43], 
AUCs of CAD4TBv6, Lunit, and qXR on the Bangladesh data 
set were similar to our estimates from Pakistan (both low HIV 
prevalence settings). Importantly, our finding of between-site 
variability in diagnostic accuracy was also reported by Qin et al 
[23]. A second limitation of our study is that we did not have 
data on CD4 counts, which could have further explained heter-
ogeneity amongst PLWH. Another limitation is that over 1 year 
has passed since the updated literature search.

Future research should focus on reducing between-
population heterogeneity in accuracy, validation for use in 
childhood tuberculosis, and re-evaluation in the era of Covid-
19, which could reduce CAD specificity for tuberculosis due to 
shared manifestations.

In summary, among individuals self-referring for pulmo-
nary tuberculosis symptoms, CXR analysis with these deep 
learning-based CAD software can be a high sensitivity rule-
out test. Moreover, tuberculosis diagnostic outcomes when 
using these software will be similar to those achieved with 
human CXR readers. However, to reduce uncertainty related 
to diagnostic heterogeneity, developers should provide de 
novo users with threshold scores and estimates of accuracy 
derived from their own patient populations, and stratified by 
HIV and smear status.
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