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Abstract

The longitudinal muscle layer in gut is the functional opponent to the circular muscle layer during peri-
stalsis. Differences in innervation of the layers allow for the contraction of one layer concurrently with the 
relaxation of the other, enabling the passage of gut contents in a controlled fashion. Differences in develop-
ment have given the cells of the two layers differences in receptor populations, membrane lipid handling, and 
calcium handling profiles/behaviors. The contractile activity of the longitudinal muscle is largely mediated 
by cholinergic neural input from myenteric plexus. Activation of muscarinic receptors leads to rapid activa-
tion of several kinases including MLC kinase, ERK1/2, CaMKII and Rho kinase. Phosphorylation of myosin 
light chain (MLC20) by MLC kinase (MLCK) is a prerequisite for contraction in both circular and longi-
tudinal muscle cells. In rat colonic longitudinal muscle strips, we measured muscarinic receptor-mediated 
contraction following incubation with kinase inhibitors. Basal tension was differentially regulated by Rho 
kinase, ERK1/2, CaMKII and CaMKK. Selective inhibitors of Rho kinase, ERK1/2, CaMKK/AMPK, and 
CaMKII each reduced carbachol-induced contraction in the innervated muscle strips. These inhibitors had 
no direct effect on MLCK activity. Thus unlike previously reported for isolated muscle cells where CaMKII 
and ERK1/2 are not involved in contraction, we conclude that the regulation of carbachol-induced contrac-
tion in innervated longitudinal muscle strips involves the interplay of Rho kinase, ERK1/2, CaMKK/AMPK, 
and CAMKII.
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Introduction

Gastrointestinal motility requires coordinated activity of the two muscular layers of the gut, the circular 
muscle layer and the longitudinal muscle layer (1–4). The circular muscle layer consists of muscle cells ori-
ented around the circumference of the gut lumen, forming adjacent rings of muscle that extend throughout the 
gut. Upon local activation of these cells, the circular muscle tissue contracts, and these muscular rings decrease 
their diameter and therefore the caliber of the gut lumen. The longitudinal muscle layer is comprised of cells 
oriented along the long axis of the gut, parallel to the overall direction of the movement of contents. Upon local 
activation of the peristaltic reflex, contraction of the longitudinal muscle causes the gut to shorten while the 
relaxation of the circular muscle layer causes an increase in the diameter of the lumen. Thus, the two muscular 
layers are not normally activated at the same location simultaneously (5–7); however, when these opposing 
actions occur in the longitudinal and circular muscle layers at contiguous locations, the contents of the lumen 
can be propelled distally in a controlled fashion. Functional differences are evident between the two muscle 
layers and reflect distinct receptor expression, calcium handling, and signaling pathways involved in muscle 
contraction (7–14). 

Muscle activity is driven by the interaction of the proteins actin and myosin, which facilitates the inherent 
ATPase activity of the heavy chains of myosin. The phosphorylation of the 20 kDa myosin regulatory light 
chain (MLC20) at a serine residue at position 19 is sufficient to cause cross-bridge formation and cycling, ATP 
hydrolysis, and muscle contraction (15, 16). Myosin light chain kinase (MLCK) is a dedicated serine-threonine 
kinase that has MLC20 as its sole substrate. Upon binding with the calcium-calmodulin complex, MLCK phos-
phorylates MLC20 at serine 19 (15–17). Myosin light chain phosphatase (MLCP) is the opposing enzyme to 
MLCK, removing the phosphate from Serine 19 on MLC20. It is a trimer composed of protein phosphatase 1c-
delta, the myosin phosphatase target subunit 1 (MYPT1), and a small 20kDa subunit MP20. MYPT1 targets the 
phosphatase subunit to MLC20, while increasing the specificity of PP1c-delta through a conformational change 
that occurs when bound to MYPT1. The MP20 subunit is of unknown function (18, 19).

Many studies have shown that MLC20 phosphorylation can be regulated, either directly or through the 
regulation of MLCP activity and associated proteins, by several other kinases including Rho kinase, ERK1/2, 
CaMKII, PAK and CaMKK (20–35). This regulation is important during the agonist-induced sustained con-
traction as MLCK activity is transient and in synchronization with the transient nature of increase in Ca2+ 
levels (16, 36, 37). The activity of MLCK itself can be affected by its phosphorylation at several site(s); kinases 
that phosphorylate can increase or decrease MLCK activity, and may do so by either altering the rate of en-
zyme activity or the affinity of MLCK for Ca-CaM (38–42). 

Our previous studies have shown that in both circular and longitudinal intestinal smooth muscle, con-
traction in response to G protein-coupled receptor agonists is biphasic (36, 37). However, the mechanisms 
that mobilize Ca2+ for initial contraction and regulate MLCP activity for sustained contraction are distinct in 
these types of muscle (8, 13). The aim of the present study is to characterize the role of various kinases that 
are activated in response to contractile agonists in the regulation of MLCK activity and muscle contraction in 
response to muscarinic receptor activation in innervated longitudinal muscle strips. Our results demonstrate 
a distinct pattern of regulation. Similar to studies in isolated muscle cells, inhibition of both Rho kinase and 
ERK1/2 leads to diminished contraction in innervated muscle strips, but unlike isolated cells, inhibition of 
CaMKK/AMPK and CaMKII also diminished contraction. 



Regulation of longitudinal muscle contraction

— 105 —

Materials and Methods

Materials
Y27632, PD98059, STO-609, and KN62 were purchased from Calbiochem (La Jolla, CA). 15% Tris-HCl 

Ready Gels and DC Protein Assay Kit were products of Bio-Rad (Hercules, CA), Myelin Basic Protein was 
purchased from Upstate Biotechnology (now Millipore, Billerica, MA) and [γ-32P]ATP from Perkin Elmer Life 
Sciences (Boston, MA). Antibody for MLCK and protein A/G agarose beads are products of Santa Cruz Bio-
technology (Santa Cruz, CA). All other chemicals were obtained from Sigma-Aldrich (St. Louis, MO).

Sprague-Dawley Rats were purchased from Charles River Laboratories and housed in the animal facility 
of the Division of Animal Resources, Virginia Commonwealth University. All procedures followed guidelines 
of and were in accordance with the Institutional Animal Care and Use Committee of Virginia Commonwealth 
University.

Animal Preparation
Rats were euthanized by CO2 asphyxiation under approved protocols. The colon was dissected out, emp-

tied of contents and placed in a warmed (37°C) oxygenated Krebs solution of the following composition (in 
mM): 118 NaCl, 4.75 KCl, 1.19 KH2PO4, 1.2 MgSO4, 2.54 CaCl2, 25 NaHCO3, 11 mM glucose (pH 7.4). 2–3 
cm sections of colon were removed and threaded onto a glass rod, where the longitudinal muscle/myenteric 
plexus (LM-MP) was removed by radial abrasion with a lab wipe. The resultant strip of muscle was freed of 
excess fat and mesenteric attachments and held in oxygenated Krebs buffer until use for tension recording or 
molecular assay.

Muscle Strip Preparation
Strips destined for recordings of contractile behavior were tied at both ends with surgical silk so that one 

end had a simple loop for attachment to a glass hook and the other end had a length of silk tied to a brass ring. 
The strip was then placed in a vertical orientation with the loop secured to a glass hook and the brass ring 
to a Model FT03C Force Transducer (Grass Technologies, Quincy, MA). An organ bath (Radnoti, Monrovia, 
CA) was raised to submerge the strip in 5 mL of continuously oxygenated and warmed Krebs solution. Force 
recordings were amplified by a 15A12 model amplifier (contained within a Model 15LT Amplifier System), 
relayed to a PVA-16 Polyview Adaptor Unit (A/D-D/A converter), and displayed/stored by a PC running Poly-
view Version 1.3 (Grass Technologies, Quincy, MA). Force was recorded in grams. 

Strips destined for molecular assay were treated as those intended for recordings and the time scales for 
inhibitor incubation and agonist exposure were identical. Following prescribed incubation times, tissue strips 
were submerged in a bath of Krebs with 1 µM carbachol. After 60 seconds of immersion in carbachol/Krebs 
(corresponding to a normal vigorous response seen in strips), strips were flash frozen in liquid nitrogen and 
placed into TPER (Tissue Protein Extraction Reagent, Pierce, Rockford, IL) or lysis buffer with composition 
50 mM Tris-HCl (pH 7.5), 150 mM NaCl. 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40, 10 mM sodium 
pyrophosphate. In addition, a protease/phosphatase cocktail (100 µg/mL PMSF, 10 µg/mL leupeptin, 30 mM 
sodium fluoride and 3 mM sodium vanadate) was added at a concentration of 2 µL/mL. Tissue was homog-
enized and solubilized in the above solutions. Following centrifugation at 20000 g for 15 min at 4°C, the pro-
tein concentration of the supernatant was assessed with a DC protein assay kit. These supernatant lysates were 
stored at –80°C until needed for immunokinase assay.
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Isometric force measurement
Force experiments were conducted in the following manner. Following hanging of the strip and submer-

sion in the organ bath, strips were subjected to approximately 1 gram of pre-tension via the mounting rack-and-
pinion. Strips were allowed to equilibrate for no less than 30 minutes before experiments were conducted and 
data collected. Exposure to inhibitors, blockers, and carbachol occurred within the organ bath. Concentrations 
were appropriate and in agreement with current literature and are noted in the results. Following an experi-
ment, strip data were reviewed and analyzed from within the Polyview software suite. One way ANOVA and 
paired t-tests were conducted in GraphPad (GraphPad Software, La Jolla, CA), and significance set at P<0.05. 
All tests of significance were done by comparison of raw data between control and experimental groups.

Data Analysis
Contractile data was viewed from three perspectives as to the effects of kinase inhibition: changes to 

basal tone upon kinase inhibitor administration, peak contractile amplitude following agonist exposure, and as 
area under the curve measurement. The latter was used to quantify the contraction as viewed during the first 
two minutes of the contraction in an effort to determine differences in force development/decay. All numerical 
values are expressed as mean ± S.E.M.

Basal tension was measured as the mean tension during a 3 minute period following at least 30 min of 
equilibration (control conditions) or 10 min of inhibitor incubation (basal recording obtained during the inter-
val proceeding carbachol administration). Such measurements were made in multiple strips from multiple ani-
mals, and paired t-tests conducted to determine a significant effect. Peak contraction (amplitude) was defined 
to be the greatest amplitude of tone above basal during the two minute period following agonist administration. 
This two minute period is taken to begin when the contractile response began to rise from basal value. Area 
under curve (AUC) for first two minutes of exposure reflects the development and maintenance of the tension 
and was expressed as gram-seconds.

Kinase Assay
Activity of MLCK activity was measured by an immunokinase assay as described previously (37, 43, 44). 

One hundred µg of protein was transferred from the supernatant of prepared tissue sample to a designated tube, 
1 μg of MLCK goat antibody was added, and this mixture incubated for 2 hours. Protein A/G agarose beads 
were added to each sample, and the mixture again incubated at 4°C overnight. Following centrifugation, super-
natants were withdrawn and the beads/protein washed with lysis buffer three times. The bead/protein pellets 
were resuspended in kinase buffer with composition (in mM): 50 KH2PO4, 15 dithiothreitol (DTT), 10 NaF, 1 
PMSF, 0.5% Triton X-100 and 10 µg/ml aprotinin. Twenty microliters of supernatant were added to a mixture 
containing (in mM) 0.1 Ca2+, 50 Mops, 15 DTT, 10 magnesium acetate, and 0.3 µM calmodulin and 18 µM 
smooth-muscle MLC20. The reaction was initiated with 1 mM [γ-32P]ATP. Aliquots were spotted on Whatman 
filter paper, rinsed successively with 75 mM phosphoric acid, 95% (v/v) ethanol and 100% (v/v) diethyl ether 
and were dried for measurement of radioactivity.

Results

Muscarinic m3 receptor-mediated contraction
Longitudinal muscle strips exposed to carbachol (CCh) at concentrations of 10 nM, 1 µM, and 100 µM 

demonstrated contraction in a concentration-dependent manner and the maximal response was obtained with 
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100 µM of CCh. Peak contractile responses were 0.51 ± 0.06 grams at 10 nM CCh (n=40), 1.00 ± 0.12 grams 
at 1 µM CCh (n=50) and 1.80 ± 0.18 grams at 100 µM CCh (n=54). Contractile responses calculated as area 
under curve (AUC) for first 2 minutes were 34.44 ± 5.84 gram-seconds at 10 nM CCh (n=34), 83.62 ± 11.35 
gram-seconds at 1 μM CCh (n=42), and 133.25 ± 14.67 gram-seconds at 100 μM CCh (n=45) (Fig. 1A and 1B). 

Repeated measurements of peak contraction and area under the curve in response to 1 µM CCh were 
conducted on strips following wash for 15 min in Krebs buffer and contractions were calculated as percentage 
of initial contraction before wash.   There were no significant differences in either peak contraction or AUC 
with repeated measurements. Following a 15 min incubation after initial contraction, peak contraction was 
98.29% ± 3.99% (n=13, 5 animals) and the AUC for 2 min was 102.1% ± 1.88% (n=13, 5 animals) of the initial 
contraction (Fig. 2A and 2B).

Smooth muscle expresses both m2 and m3 muscarinic receptors (45–48). As shown previously in circular 
muscle, CCh-induced contraction in longitudinal muscle is mediated primarily by muscarinic m3 receptors. 
Muscle strips were pretreated with m2 receptor antagonist, methoctramine (1 µM) or m3 receptor antagonist 
4-DAMP (1 µM) and the response to 1 µM CCh was measured. Incubation with methoctramine caused no sig-
nificant changes to peak contraction or AUC in response to CCh (P>0.05, n=7 from 4 animals). Incubation with 
4-DAMP, however, abolished responses to CCh (Fig. 2). These results indicate that contraction in response to 
CCh is mediated mainly by activation of m3 receptors.

To further examine the smooth muscle muscarinic m3 receptors, muscle strips were incubated with 1 μM 
tetrodotoxin (TTX), a Na+ channel blocker, and the contractile response to different concentrations of CCh 
was measured. Consistent with the blockade of CCh-induced contraction with m3 receptor antagonist, incuba-
tion of muscle strips with 1 μM tetrodotoxin (TTX), had no significant changes to peak contraction or AUC in 
response to different concentrations of CCh (P>0.05, n=7 from 4 animals). Peak contractions in the presence 
of TTX exposure were 102.8% ± 5.98% of the control value at 1 μM CCh (n=7), 113.2 ± 8.6% at 10 μM CCh 
(n=7), and 110.5 ± 9.1% at 100 μM CCh (n=7) and the AUC were 112.1 ± 7.3% of the control value at 1 µM, 

Fig. 1. Contractile response of longitudinal muscle strips to carbachol. Longitudinal mus-
cle strips of rat colon were placed in an organ bath and subjected to 1 g of basal 
tension. After 30 min of equilibration, different concentrations of carbachol (CCh, 
10 nM to 100 µM) was added. Contractile response with maximum force was mea-
sured as peak contraction (A) and total response for first 2 min, measured as area 
under curve (AUC), was considered as total contraction (B). Carbachol elicited 
dose-dependent increase in both peak and total contraction. Values are means ± 
SEM of 6–7 experiments and each experimental value was derived from several 
strips. **P<0.05 significant contraction.
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110.4 ± 4.5% at 10 µM and 97.7 ± 8.3% at 100 µM CCh (n=7).

Regulation of CCh-induced contraction by kinases
Previous studies have shown that activation of m3 receptors leads to stimulation of various kinases such 

as Rho kinase, ERK1/2, CaMKII and AMPK and these kinases in turn, as shown in isolated cells, regulate 
phosphorylation of MLC20 levels (37, 43, 44, 49). To examine the role of these kinases, muscle strips were pre-
incubated with inhibitors of Rho kinase (Y27632), ERK1/2 (PD98059), CaMKII (KN62) or CaMKK (STO-
609) and the response to CCh was measured. 
1) Regulation by Rho kinase

Treatment of muscle strips with Rho kinase inhibitor Y27632 (10 µM) for 10 min led to a significant 
decrease in basal tone from 0.82 ± 0.07 grams to 0.73 ± 0.06 grams (P<0.01, n=15). Y27632 also significantly 
reduced contraction in response to different concentrations of CCh. Peak contractions (in grams) for control 

Fig. 2. Contractile response to carbachol is mediated via m3 receptors. Longitudinal mus-
cle strips of rat colon were placed in an organ bath and subjected to 1 g of basal 
tension.  After 30 min of equilibration, strips were incubated for 15 min with 1 µM 
of the m2 receptor antagonist methoctramine or 1 µM of the m3 receptor antagonist 
4-DAMP and then with CCh (1 µM). Contractile response with maximum force 
was measured as peak contraction (A) and total response for first 2 min, measured 
as area under curve (AUC), was considered as total contraction (B). Carbachol elic-
ited contraction was selectively blocked by 4-DAMP. Values are means ± SEM of 
4 experiments and each experimental value derived from several strips. **P<0.05 
significant inhibition of CCh-induced contraction. The inset illustrates an original 
tracing showing abolition of carbachol-induced contraction by 1 µM 4-DAMP but 
not by 1 µM tetrodotoxin (TTX) or 1 µM methoctramine. “W” indicates when the 
preparation was washed with fresh Kreb’s buffer after peak contraction. Horizontal 
bar indicates time in minutes and the vertical bar illustrates force in grams.
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versus with Y27632 were 0.80 ± 0.30 versus 0.30 ± 0.08 (P<0.05, n=4) at 10 nM CCh; 1.13 ± 0.28 versus 0.71 ± 
0.19 (P<0.01, n=15) for 1 μM CCh; and 2.17 ± 0.38 versus 1.21 ± 0.23 (P<0.05, n=16) for 100 µM (Fig. 3A). A 
similar inhibition of contraction was also observed when AUC was calculated and the values (in gram-seconds) 
were:  35.54 ± 24.26 versus 9.50 ± 5.22 (P<0.05, n=3) for 10 nM CCh; 120.8 ± 25.15 versus 39.90 ± 9.42 (P<0.01, 
n=10) for 1 µM CCh; and 142.7 ± 26.03 versus 74.87 ± 13.31 (P<0.01, n=15) for 100 µM (Fig. 3B). 
2) Regulation by ERK1/2

Treatment of muscle strips with ERK1/2 inhibitor PD98059 (10 µM) for 10 min had no significant effect 
on basal tone (0.79 ± 0.06 grams versus 0.81 ± 0.05 grams with PD98059). PD98059, however, significantly 
reduced contraction in response to different concentrations of CCh. Peak contractions (in grams) for control 
versus with PD98059 were 0.47 ± 0.13 versus 0.28 ± 0.08 (P<0.05, n=6) at 10 nM CCh; 0.86 ± 0.13 versus 0.49 
± 0.09 (P<0.01, n=9) for 1 μM CCh; and 2.06 ± 0.38 versus 1.40 ± 0.32 (P<0.001, n=9) for 100 µM (Fig. 4A). A 
similar inhibition of contraction was also observed when AUC was calculated and the values (in gram-seconds) 
were 31.22 ± 9.69 versus 18.78 ± 5.57 (P>0.05, n=7) for 10 nM CCh; 87.82 ± 17.61 versus 47.16 ± 6.56 (P<0.01, 
n=7) for 1 µM CCh; and 141.3 ± 23.86 versus 87.66 ± 16.69 (P<0.01, n=9) for 100 µM CCh (Fig. 4B).

The inhibitory effect of Y27632 in combination with PD98059 was not significantly greater than the effect 
obtained with PD98059 alone: 1.17 ± 0.19 grams for 1 µM CCh, 0.96 ± 0.14 grams CCh plus PD98059 alone 
(P<0.05), 0.85 ± 0.13 grams for CCh plus PD98059 and Y27632 (P<0.05) (Fig. 5).
3) Regulation by CaMKK

Treatment of muscle strips with CaMKK inhibitor STO-609 (10 µM) for 10 min had no significant effect 
on basal tone (0.76 ± 0.10 grams versus 0.74 ± 0.10 grams with STO-609). STO-609, however, significantly 
reduced contraction in response to different concentrations of CCh. Peak contractions (in grams) for control 
versus with STO-609 were 0.51 ± 0.16 versus 0.32 ± 0.14 (P<0.05, n=6) at 10 nM CCh; 1.31 ± 0.20 versus 0.81 
± 0.15 (P<0.01, n=23) for 1 μM CCh; and 1.96 ± 0.37 versus 1.22 ± 0.20 (P<0.05, n=16) for 100 µM (Fig. 6A). A 
similar inhibition of contraction was also observed when AUC was calculated and the values (in gram-seconds) 

Fig. 3. Effect of Rho kinase inhibitor, Y27632, on carbachol-induced contraction. Longi-
tudinal muscle strips of rat colon were placed in an organ bath and subjected to 1 
g of basal tension. After 30 min of equilibration, strips were incubated for 15 min 
with the selective Rho kinase inhibitor Y27632 (10 µM) and then with different 
concentrations of CCh (10 nM to 100 µM). Contractile response with maximum 
force was measured as peak contraction (A) and total response for first 2 min, mea-
sured as area under curve (AUC), was considered as total contraction (B). Values 
are means ± SEM of 4 experiments and each experimental value was derived from 
several strips. **P<0.05 significant inhibition of CCh-induced contraction.
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were 62.64 ± 5.40 versus 40.46 ± 4.61 (P<0.01, n=7) for 10 nM CCh; 85.42 ± 13.77 versus 54.67 ± 7.92 (P<0.01, 
n=15) for 1 µM CCh; and 114.6 ± 16.23 versus 81.29 ± 13.01 (P<0.01, n=9) for 100 µM CCh (Fig. 6B).

The inhibitory effect of Y27632 in combination with STO-609 was significantly greater than the effect 
obtained with STO-609. Peak contractions were 1.57 ± 0.32 grams for CCh alone, 1.31 ± 0.24 grams for CCh 
plus STO-609 (P<0.05), and 0.89 ± 0.18 grams for CCh plus STO-609 and Y27632 (Fig. 7A). For AUC the 
values (in grams-seconds) were 142.6 ± 13.86 for CCh alone, 122.4 ± 26.22 for CCh plus STO-609  (P<0.05, 

Fig. 4. Effect of ERK1/2 inhibitor PD98059 on carbachol-induced contraction. Longitu-
dinal muscle strips of rat colon were placed in an organ bath and subjected to 1 g of 
basal tension. After 30 min of equilibration, strips were incubated for 15 min with 
the selective ERK1/2 inhibitor PD98059 (10 µM) and then with different concen-
trations of CCh (10 nM to 100 µM). Contractile response with maximum force was 
measured as peak contraction (A) and total response for first 2 min, measured as 
area under curve (AUC), was considered as total contraction (B). Values are means 
± SEM of 4 experiments and each experimental value derived from several strips. 
**P<0.05 significant inhibition of CCh-induced contraction.

Fig. 5. Effect of PD98059 and Y27632 in combination on carbachol-induced contraction. 
Longitudinal muscle strips of rat colon were placed in an organ bath and subjected 
to 1 g of basal tension. After 30 min of equilibration, strips were incubated for 15 
min with the selective ERK1/2 inhibitor PD98059 (10 µM) alone or in combination 
with Rho kinase inhibitor Y27632 (10 µM) and then with CCh (1 µM). Contractile 
response was measured as peak contraction. Values are means ± SEM of 4–7 ex-
periments and each experimental value was derived from several strips. **P<0.05 
significant inhibition of CCh-induced contraction.
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n=7), and 68.36 ± 9.72 for CCh plus STO-609 and Y27632 (P<0.05, n=7) (Fig. 7B). Thus, there is a significant 
(P<0.05 for both peak and AUC contraction) additive effect of CaMKK inhibition and Rho Kinase inhibition 
on both peak contraction and AUC.
4) Regulation by CaMKII

Treatment of muscle strips with CaMKII inhibitor KN-62 (10 µM) for 10 min caused a significant de-
crease in basal tone from 0.61 ± 0.07 grams to 0.53 ± 0.07 grams (P<0.05). KN-62 also significantly reduced 

Fig. 6. Effect of CaMKK inhibitor, STO-609 on carbachol-induced contraction. Longi-
tudinal muscle strips of rat colon were placed in an organ bath and subjected to 1 
g of basal tension. After 30 min of equilibration, strips were incubated for 15 min 
with the selective CaMKK inhibitor STO-609 (10 µM) and then with different 
concentrations of CCh (10 nM to 100 µM). Contractile response with maximum 
force was measured as peak contraction (A) and total response for first 2 min, mea-
sured as area under curve (AUC), was considered as total contraction (B).  Values 
are means ± SEM of 4–6 experiments and each experimental value derived from 
several strips. **P<0.05 significant inhibition of CCh-induced contraction.

Fig. 7. Effect of STO-609 and Y27632 in combination on carbachol-induced contraction. 
Longitudinal muscle strips of rat colon were placed in an organ bath and subjected 
to 1 g of basal tension. After 30 min of equilibration, strips were incubated for 15 
min with the selective CaMKK inhibitor STO-609 (10 µM) alone or in combination 
with Rho kinase inhibitor Y27632 (10 µM) and then with CCh (1 µM). Contractile 
response was measured as peak contraction (A) and total response for first 2 min, 
measured as area under curve (AUC), was considered as total contraction (B). Val-
ues are means ± SEM of 8 experiments and each experimental value derived from 
several strips. **P<0.05 significant inhibition of CCh-induced contraction.
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contraction in response to different concentrations of CCh. Peak contractions (in grams) for control versus 
with KN62 were 0.52 ± 0.14 versus 0.34 ± 0.12 (P<0.05, n=7) at 10 nM CCh; 0.74 ± 0.10 versus 0.46 ± 0.05 
(P<0.01, n=13) at 1 μM CCh; and 1.35 ± 0.32 versus 0.64 ± 0.15 (P<0.05, n=7) at 100 µM (Fig. 8A). A similar 
inhibition of contraction was also observed when AUC was calculated and the values (in gram-seconds) were 
22.13 ± 10.10 versus 16.14 ± 7.43 for 10 nM; 69.38 ± 11.85 versus 42.11 ± 5.99 (P<0.05, n=12) for 1 µM; and 
100.7 ± 18.58 versus 63.46 ± 10.27 (P<0.05, n=5) for 100 µM (Fig. 8B).

Fig. 8. Effect of CaMKII inhibitor, KN62 on carbachol-induced contraction. Longitudi-
nal muscle strips of rat colon were placed in an organ bath and subjected to 1 g of 
basal tension. After 30 min of equilibration, strips were incubated for 15 min with 
the selective CaMKII inhibitor KN62 (10 µM) and then with different concentra-
tions of CCh (10 nM to 100 µM). Contractile response  was measured as peak 
contraction (A) and total response for first 2 min, measured as area under curve 
(AUC), was considered as total contraction (B).  Values are means ± SEM of 4 
experiments and each experimental value derived from several strips. **P<0.05 
significant inhibition of CCh-induced contraction.

Fig. 9. Effect of KN62 and Y27632 in combination on carbachol-induced contraction. 
Longitudinal muscle strips of rat colon were placed in an organ bath and subjected 
to 1 g of basal tension. After 30 min of equilibration, strips were incubated for 15 
min with the selective CaMKII inhibitor KN62 (10 µM) alone or in combination 
with Rho kinase inhibitor Y27632 (10 µM) and then with CCh (1 µM). Contractile 
response was measured as peak contraction (A) and total response for first 2 min, 
measured as area under curve (AUC), was considered as total contraction (B). Val-
ues are means ± SEM of 8 experiments and each experimental value derived from 
several strips. **P<0.05 significant inhibition of CCh-induced contraction.
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The inhibitory effect of Y27632 in combination with KN-62 was significantly greater than the effect ob-
tained with KN-62 alone. Peak contractions were 0.92 ± 0.09 grams for CCh alone, 0.60 ± 0.05 grams for CCh 
plus KN-62 (P<0.05), and 0.36 ± 0.06 grams for CCh plus KN-62 and Y27632 (P<0.01) (Fig. 9A). For AUC the 
values (in grams-seconds) were 80.97 ± 11.84 for CCh alone, 51.43 ± 4.00 for CCh plus KN-62 (P<0.05, n=8), 
and 34.70 ± 3.18 for CCh plus KN-62 and Y27632 (P<0.05, n=8) (Fig. 9B). Thus, there is a significant (P<0.05 
for both peak and AUC contraction) additive effect of CaMKII inhibition and Rho Kinase inhibition on both 
peak contraction and AUC.
5) Effect of kinase inhibitors on MLCK activity

The effect of each kinase inhibitor was examined to determine if it had a direct effect on MLCK activity 
induced by 1 µM CCh. CCh caused a significant increase in MLCK activity (65 ± 18% above basal). There was 
no significant effect of any of the kinase inhibitors on the MLCK kinase activity induced by 1 µM CCh (P>0.05 
vs 1 µM CCh alone for each kinase) (Fig. 10).

Discussion

Gastrointestinal motility is mediated by the coordinated contractile activity of smooth muscle cells of both 
circular and longitudinal muscle layer. The main excitatory neurotransmitters in the gastrointestinal tract are 
acetylcholine and substance P (1–3). This study demonstrated that contraction in longitudinal muscle strips, 

Fig. 10. Effect of kinase inhibitors on carbachol-induced MLCK activity. Longitudinal 
muscle strips of rat colon were placed in an organ bath and subjected to 1 g of basal 
tension. After 30 min of equilibration, strips were incubated for 15 min in the ab-
sence of any agonist or inhibitor (Basal), in the presence of 1 µM carbachol (CCh) 
alone, or in the presence of a selective inhibitor plus 1 µM CCh. Separate strips 
were used to test the effect of the selective Rho kinase inhibitor Y27632 (10 µM), 
the selective ERK1/2 inhibitor PD98059 (10 µM), the selective CaMKK inhibitor 
STO-609 (10 µM) and the selective CaMKII inhibitor KN-62 (10 µM). Strips were 
flash frozen in liquid nitrogen and MLCK activity was measured as described in 
the methods using MLC20 as substrate and [32P]ATP. MLCK activity was measured 
as cpm and values are expressed as percent of basal activity. Values are means ± 
SEM of 7–13 experiments and each experimental value derived from several strips. 
CCh significantly increased (P<0.05 vs basal) MLCK activity in the presence and 
absence of each inhibitor. The effect of CCh on MLCK activity was not signifi-
cantly inhibited (P>0.05 vs CCh) in the presence of any of the inhibitors. 



C.D. Anderson, Jr. and others

— 114 —

both peak contraction and total contraction (measured as AUC), in response to the acetylcholine mimetic, car-
bachol, was solely dependent on activation of m3 receptors. Similar m3 receptor-dependent contraction was 
also reported in smooth muscle from circular muscle layer (37). The results are consistent with the concept that 
m3 receptors are known to play a dominant role in eliciting smooth muscle contraction and m2 receptors are 
considered to play a minor role despite their abundant expression (45–48, 50). Physiologically in vivo activation 
of the m2 receptor augments smooth muscle contractions mediated by m3 receptors. This is consistent with the 
concept of the conditional role of the m2 receptors in the smooth muscle (45, 46). Studies by Unno et al. (48), 
using m2 and m3 receptor knockout mice and pertussis toxin (PTx) to block m2-mediated contractions, have 
demonstrated that both m2 and m3 receptor activation induces ileal muscle contraction and the contribution 
of m2 receptors to contraction depends on the concentration of carbachol; at less than 1 µM carbachol, nearly 
80% of the contractions are PTx sensitive and at concentrations more than 10 µM carbachol, PTx had no sig-
nificant effect suggesting that the contribution of m2 receptors to CCh-induced contraction is significant only 
at low CCh concentrations and decreases with increasing concentrations of CCh. The notion that the effect of 
CCh in innervated longitudinal muscle strips could be due to activation of neuronal receptors was excluded as 
blockade of neuronal activation with tetrodotoxin had no effect on CCh-induced peak and total contraction.

Previous studies in isolated muscle cells from circular and longitudinal muscle layer have shown in circu-
lar muscle that treatment with CCh induced activation of Rho kinase downstream of RhoA, although the up-
stream mechanism of RhoA are distinct in circular versus longitudinal muscle cells. M3 receptors are coupled 
to G12 to activate RhoA via RhoGEF, LARG in longitudinal muscle cells, whereas m3 receptors are coupled to 
G13 to activate RhoA via RhoGEF, p116RhoGEF in circular muscle cells (37, 43, 44). One of the downstream 
targets of RhoA is serine/threonine kinase Rho kinase, which plays an important role in the regulation of 
sustained contraction. In vivo studies demonstrated the phosphorylation at Thr696/853 of MYPT1, the regula-
tory subunit of MLCP, and in vitro studies demonstrated phosphorylation at Thr38 of CPI-17, an endogenous 
inhibitor of MLCP; phosphorylation of both substrates leads to inhibition of MLCP activity and an increase 
in MLC20 phosphorylation and muscle contraction (18–20, 51). Inhibition of both basal tone and CCh-induced 
peak and total contraction by blockade of Rho kinase with Y27632 supports the role of Rho kinase in not only 
maintenance of tone but also agonist-induced contraction and may reflect stimulation of basal and disinhibi-
tion of agonist-induced inhibition of MLCP activity. Studies by Hagerty et al., offers an alternative explana-
tion whereby Rho kinase increases the activity of ZIP kinase, a putative MLC kinase (52). This is supported 
by Ihara and MacDonald, who demonstrated a direct phosphorylation of MLC20 by ZIP kinase as well as 
phosphorylation of MYPT1 by ZIP kinase, both lead to increased contraction (53). A direct phosphorylation 
of MLC20 by Rho kinase on MLC20 has also been demonstrated in in vitro studies (24). Regulation of multiple 
proteins involved in the regulation of MLCP by Rho kinase is also indicative of a stronger inhibitory effect 
of Y27632 on total contraction than peak contraction. It is noteworthy that as compared to inhibition of other 
kinases, inhibition of Rho kinase resulted in greater inhibition of peak and total contraction. The effect of 
Y27632 on high K+-induced smooth muscle contraction was demonstrated in several studies. In rat thoracic 
aorta and mesenteric artery, inhibition of K+-induced contraction by Y27632 was attributed to disruption of 
actin filament network, but not to changes in MLCK and MLCP activities (54). In rat caudal artery, Y27632 
had no effect on K+-induced increase in Ca2+, but abolished sustained contraction (55). In chicken gizzard, a 
typical phasic muscle, inhibition of K+-induced contraction was not significant even in the presence of 10 µM 
of Y27632 (56). These results suggest that the effect of Y27632 is variable depending on the species and muscle 
type. The variable responses of Y-27632 on high K+-induced contraction may be also caused by expression of 
Ca2+-dependent PI3 kinase that mediates RhoA activation (57).
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Extracellular signal-regulated kinases (ERK1/2) play an important role in the regulation of smooth muscle 
contraction via phosphorylation of caldesmon or regulation of kinases such as MLCK or CaMKII (21, 58–60). 
The involvement of ERK1/2 was shown to be dependent on the type of smooth muscle and agonist. In rat aorta, 
PD98059 had no effect on K+-induced contraction, but inhibited lysophosphtidylcholine-induced augmentation 
of K+-induced contraction (61). In lower esophageal sphincter of rat or cat, PD98059 reduced agonist-induced 
contraction (62, 63). In swine carotid arteries, PD98059 had no effect on histamine-induced contraction (64), 
whereas in ferret aorta PD98059 had no effect on K+-induced contraction, but significantly inhibited phen-
ylephrine-induced contraction in the absence, but not in the presence of extracellular Ca2+ (59).  Activation 
of ERK1/2 in response to CCh has been demonstrated previously in muscle cells isolated from circular and 
longitudinal muscle layers; in both cell types activation of ERK1/2 induces stimulation of cytosolic phospho-
lipase A2 (cPLA2) activity, which plays an important role in Ca2+ mobilization mechanisms in longitudinal 
muscle cells (8, 13, 49, 65). Ca2+ mobilization in these muscle cells is mediated by activation of cPLA2 and 
generation of arachidonic acid (AA), leading to Ca2+ influx and stimulation of cyclic ADP ribose (cADPR); 
both Ca2+ and cADPR act in concert to induce Ca2+ release via ryanodine receptors (RYR2)/Ca2+ channels (9, 
13). Inhibition of ERK1/2 activity caused reduction in both peak and total contraction and the degree of in-
hibition second only to Rho kinase inhibition. Like Rho kinase, ERK1/2 targets multiple proteins to regulate 
MLC20 phosphorylation and contraction. Previous studies have shown that activation of integrin-linked kinase, 
another putative MLC kinase, and MYPT1 kinase is dependent on ERK1/2 (28, 60), suggesting that ERK1/2 
can regulate contraction either as MLC kinase or an inhibition of MLCP activity. A direct stimulatory effect 
of ERK1/2 on MLCK was also demonstrated (22). Inhibition of both Rho kinase and ERK1/2 had no additive 
effect suggesting that the pathways activated by Rho kinase and ERK1/2 to regulate MLC20 phosphorylation 
and contraction may not line in parallel.

Previous studies in muscle cells isolated from circular and longitudinal muscle layers show that MLCK 
activity in response to muscarinic receptor activation is negatively regulated via phosphorylation of MLCK 
at Ser815 by AMPK, which is activated downstream of CaMKKβ upon phosphorylation at Thr172 (32, 43). 
STO609, an inhibitor of CaMKKβ (66), blocked muscarinic receptor-induced phosphorylation of AMPK and 
MLCK resulting in attenuation of AMPK activity and augmentation of MLCK activity, MLC20 phosphoryla-
tion and muscle contraction in circular muscle. In contrast, in longitudinal strips as shown in the present study, 
inhibition of CaMKK activity was found to reduce peak and total contraction but had no effect on MLCK 
activity. The distinct role of CaMKKβ in the regulation of MLCK activity and muscle contraction in the in-
nervated muscle strips compared to isolated muscle awaits further work. 

Inhibition of another Ca2+/CaM-dependent enzyme CaMKII also reduced CCh-induced peak and total 
contraction. These results are also in conflict with the previous studies in tracheal smooth muscle demonstrat-
ing that CaMKII phosphorylates MLCK and inhibits its activity by decreasing affinity for Ca2+/CaM (38). Kim 
et al, however, demonstrated direct phosphorylation of MLC20 with CaMKII activation in ferret aorta. CaM-
KII also has positive modulatory effects on Ca2+ channels that may lead to increase in contraction. Another 
possibility could be inhibition of ERK1/2 activity and ERK1/2-dependent contractile process as CaMKII was 
shown to be an upstream effector of ERK1/2 (58, 67). Thus blockade of CaMKII would affect contraction in a 
manner similar to ERK1/2 inhibition.
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