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Abstract: To investigate the effect of hot working parameters on the flow behavior of 300M steel
under tension, hot uniaxial tensile tests were implemented under different temperatures (950 ◦C,
1000 ◦C, 1050 ◦C, 1100 ◦C, 1150 ◦C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with
uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization
softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased
with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample
necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-
sectional area of the neck zone. A constitutive model for tensile deformation was established based
on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described
as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the
constitutive model.

Keywords: flow stress model; tensile deformation; constitutive model; stress correction

1. Introduction

The 300M steel (yield strength ≥ 1800 MPa), a kind of low-alloyed ultra-high strength
steel, is an important structural material used for large parts in aircrafts, ships, and nuclear
power plants. To improve service performance, those large structural parts are often
hot forged. However, in the forming of large parts, folding defects usually occur due to
the failure of precise material control because of inaccurate flow stress prediction. Thus,
establishment of an accurate flow stress model is a key issue in forging.

The understanding of the effects of hot working parameters (e.g., forging temperature,
strain rate, strain) on flow behavior is vital for precise constitutive modelling. The strain
rate and temperature effects were investigated by Ghavam et al. [1] and Huang et al. [2],
and tensile flow stress models for IMI834 titanium alloy and 42CrMo steel were proposed.
Lin et al. [3] constructed a phenomenological model to describe the influence of hot work-
ing parameters on flow stress in hot tension of Al-Cu-Mg alloy. Besides, the microstructure
evolution (e.g., average dislocation density, average grain size, damage) plays an impor-
tant role in flow stress evolution. The material flow behavior of 304HCu stainless steel
under various temperatures and strain rates in tensile deformation was investigated by
Yadav et al. [4], and a tensile flow stress model considering the evolution of mobile and
forest dislocations was established. The grain evolution of C-Mn steel in hot tensile de-
formation was studied by Dolzhenko et al. [5], and result showed the average grain size
and tensile yield stress followed the Hall-Petch relationship. Moreover, an accurate flow
stress model should eliminate the experimental error due to necking in tension. In the
hot tension experiment of Murata et al. [6], the necking image of notched specimen was
recorded, and the flow stress–strain curve of SS400 steel was corrected with the help of
image analysis and inverse analysis of finite element simulation. By a similar technique,
Zhao et al. [7] successfully calibrated the flow stress of Q195 steel, HSLA350 aluminum
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alloy, and AL6061 aluminum alloy. Gain et al. [8] proposed a flow stress model of AlSi9Cu3
alloy taking into account the stress triaxiality and damage evolution, and the model was
applicable in various stress states (uniaxial tension, uniaxial compression, and Astakhov
test). Until now, precise modelling of tensile flow stress is still facing difficulty due to the
lack of knowledge about how stress states affect flow behaviors of metal materials.

Specifically, for 300M steel, a dislocation–based constitutive model considering dy-
namic, meta–dynamic, and static recrystallization in both single and multiple pass com-
pression has been established by our group [9–11]. The softening behavior of 300M steel be-
tween passes was investigated by Liu et al., and models quantifying the meta–dynamic [12]
and static recrystallization softening [13] were built. Recently, the fracture behavior of
300M steel in tensile deformation was studied by Wen et al. [14], but the tensile flow stress
model of 300M steel has not been established so far.

Accordingly, as an essential part of precise prediction of flow stress and microstructure
evolution of 300M steel in high temperature deformation, the present research aims to
establish an accurate model to describe the flow stress evolution in tension. The flow stress
and logarithmic strain will be corrected using the minimum area in the necking zone of
specimen. A tensile flow stress model will be constructed.

2. Materials and Experiments

The 300M steel ingot (Φ300 mm × 1000 mm) was received in the as-forged state
from China Erzhong Group Cooperation (Deyang, China). The chemical composition
(weight percentage) was 93.982Fe-2.562Si-0.896Cr-0.824Ni-0.808Mn-0.435Mo-0.39C-0.086V-
0.017S. All samples used in this research were taken from the half radius of the ingot. The
initial microstructure was martensite (Figure 1a). In order to show the original austenite
grain boundaries, the samples were tempered at 560 ◦C for 2 h, polished according to the
standard metallographic procedure, and etched in the solution (1.7% hydrochloric acid,
22% detergent, 22% carbon tetrachloride, and balanced saturated picric acid) [15]. The
microstruture was tempered martensite after tempering (Figure 1b), and the initial average
grain size was 37.5 µm.
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Figure 1. Microstructure of 300M steel in (a) as-received state, and (b) after tempering at 560 ◦C for 2 h.

Hot tensile tests were carried out on a thermal deformation simulator (Gleeble 3500,
Dynamic Systems Inc., New York, NY, USA) at five temperatures (950 ◦C, 1000 ◦C, 1050 ◦C,
1100 ◦C, 1150 ◦C) and four speeds (0.174 mm/s, 1.74 mm/s, 17.4 mm/s, 174 mm/s). The
temperature range corresponded to the usual hot working temperature of this material.
The deformation speed corresponded to 0.01 s−1, 0.1 s−1, 1 s−1, and 10 s−1, respectively. In
order to control the position of the necking zone, a notch (Φ8 mm × 12 mm) was turned
in the middle of the specimen. A dilatometer was clipped in the middle of the specimen
to measure the neck diameter. The force and elongation of specimens were automatically
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measured by the machine. During the experiment, specimen was electrically heated, and a
thermal couple welded in the notching area was able to measure the specimen temperature
and transfer the data to a computer. The heating power could be automatically adjusted by
a computer program to obtain specific temperatures.

The thermal-mechanical process is shown in Figure 2a. The test sample was heated at
a heating rate of 200 ◦C/min to 1200 ◦C, held at 1200 ◦C for 4 min to complete austenization,
and cooled to deformation temperature for another holding of 4 min. In total, twenty tests
were carried out, and the experimental parameters are shown in Table 1. Once the specimen
cracked, test was ceased and specimen was water quenched. The specimen photos are
shown in Figure 2b. It should be noted that the length of the sample deformation area was
12 mm, and the chamfer length was 1 mm.
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Table 1. Experimental parameters.

Test No. Temperature(◦C) Strain Rate (s−1)

1 950 0.01
2 950 0.1
3 950 1
4 950 10
5 1000 0.01
6 1000 0.1
7 1000 1
8 1000 10
9 1050 0.01
10 1050 0.1
11 1050 1
12 1050 10
13 1100 0.01
14 1100 0.1
15 1100 1
16 1100 10
17 1150 0.01
18 1150 0.1
19 1150 1
20 1150 10

3. Results and Discussion
3.1. Force-Stroke Curve

The force-stroke curves obtained in the tensile tests are shown in Figure 3. The deforma-
tion process was divided into four stages: the elastic stage, the stable deformation stage, the
necking stage, and the fracture stage. Force increased linearly as the stroke increased in the
elastic stage. When the strain exceeded the elastic limit, the stable deformation stage began.
Since the strain was too low to trigger dynamic recrystallization, only work-hardening
and dynamic recovery occurred. Under a high temperature and a low strain rate, the peak
force was low, because dislocation annihilation was more complete. As the stroke increased
further, necking gradually appeared. The loading force decreased due to the combing effect
of the reduction of cross-sectional area and the dynamic recrystallization softening. In order
to eliminate the influence of necking on the flow behavior in tensile deformation, the true
stress and the logarithmic strain could be corrected by measuring the cross-sectional area of
the necking zone of the specimen. In the fracture stage, micro-void formed and grew near
the necking zone, leading to breakage [16]. It can be seen that the ultimate elongation was
greater under a higher strain rate and at a lower temperature, and the cross-sectional area
of the specimen slowly reduced to zero, indicating that the ductile fracture occurred.

3.2. Stress and Strain Correction

The true stress (σ) was defined by:

σ =
F
A

(1)

Here, F was the loading force (N), and A was the cross-section area (m2). In the present
investigation, F was the tensile force, and A was the minimum cross-sectional area of the
necking zone of the specimen. The cross-section of the specimen in this test was round, so
A = πd2/4, where d was the minimum cross-sectional diameter (m). The value of F was an
exported data of the experiment equipment. The value of d was measured by a dilatometer.

The logarithmic strain, ε, was calculated by:

ε = ln
(

l
l0

)
(2)
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Here, l0 was the initial gauge length, and l was the gauge length after deformation.
In this investigation, considering that the sample volume remained constant, l/l0 equaled
A0/A, so:

ε = ln
(

A0

A

)
(3)

Here, A0 and A were calculated by the cross-sectional diameter of the specimen.
Strains and stresses were calculated according to Equations (1) and (3). The compari-

son of engineering stress and true stress is shown in Figure 4. In the elastic stage and the
stable deformation stage, the engineering stress curve and the true stress curve were almost
the same. But in the necking stage, an obvious difference of the two curves was shown.Materials 2020, 11, x FOR PEER REVIEW  6 of 14 
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3.3. Tensile Flow Behavior

The true stress-logarithmic strain curves of 300M steel calculated by the above method
are shown in Figure 5. Under a high temperature and a low strain rate, the true stress
was low due to a low dislocation motion barrier. This phenomenon was also found in the
compression of 300M steel [11], GH4169 alloy [17], GH4698 alloy [18], etc. The previous
result in Figure 3, that the ultimate elongation was greater under a higher strain rate and
a lower temperature, could be interpreted by the flow stress curves in Figure 5. Under a
higher strain rate, work-hardening-shaped stress-strain curve was obtained, and the work-
hardening led to the strengthening of the necking zone, causing deformation of the adjacent
zones of specimen, and making the ultimate elongation greater. The flow stress curve
shapes gradually transited from single peaked to exponential hardened when the strain
rate increased. This was because the dynamic recrystallization was more easily to complete
at a lower strain rate, while work-hardening played a more important role at a higher
strain rate. Compared with Figure 6c, much more small recrystallized grains were found in
Figure 6a. But only a few small recrystallized grains could be seen in Figure 6e, because
under a low strain rate (0.01 s−1) and high temperature (1150 ◦C), small recrystallized
grains gradually coarsened. The grains in Figure 6g were relatively small because the
deformation time was short, and the grains did not have enough time to grow [19].Materials 2020, 11, x FOR PEER REVIEW  7 of 14 
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Comparing the tensile flow stresses with the compressive flow stresses, it was found
that the tensile flow stresses were 29.1% (27.8 MPa) greater, as shown in Figure 7. The
flow stress difference could be explained by: (a) the flow stress was influenced by the
stress state [8]. (b) the dynamic recrystallization in the tension was less sufficient, and the
dynamic recrystallization softening was weakened by the work-hardening, resulting in a
higher flow stress. This could be demonstrated by the comparison of the microstructures of
300M steel after tension and after compression. It could be seen in Figure 6 that more small
recrystallized grains could be found after compression. Thus, the compressive flow stress
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model could not be applied in the tensile deformation of 300M steel, and it was necessary
to establish the constitutive model for the high temperature tension of 300M steel.Materials 2020, 11, x FOR PEER REVIEW  8 of 14 
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3.4. Constitutive Model

Some constitutive models are frequently used in modeling of steels, for example, the
Johnson-Cook model [20], the Zerilli-Armstrong model [21], the artificial neural network
model [22], the dislocation based model [4], the damage based model [8], etc. In the
present investigation, the modified Arrhenius model was chosen to establish the stress (σ)
and strain (ε) relation under various strain rates (

.
ε) and temperatures (T) because of the

advantage in convenience and accuracy. The modified Arrhenius model was expressed as
follows [23,24]:

.
ε· exp

(
Q
RT

)
= A(sinh(ασ))n (4)

Here, R was the gas constant (8.314 J/(mol·K)). Q was the thermal activation energy
(J/mol). n was the stress index. A and α were material constants. In the modified Arrhenius
model, Q, A, n, and α could all be expressed as a polynomial function of strain (ε). In the
present investigation, sixth-order polynomial function was used:

Θ = c0 + c1ε + c2ε2 + c3ε3 + c4ε4 + c5ε5 + c6ε6 (5)

Here, Θ denoted model parameters (Q, A, n, α); c0~c5 denoted sixth-order polyno-
mial function coefficients. The key step for model construction was to obtain the model
parameters (Q, A, n, and α) under different strains. Under a specific strain, the following
calculation procedure was employed: (a) n was obtained by the slope of ln σ versus ln

.
ε

curve. (b) α was calculated by the division of the slope of σ versus ln
.
ε curve and n. (c) Q

was calculated by the slope of 1
T versus ln(sinh(ασ)) curve. (d) ln A was calculated by

the intercept of ln(sinh(ασ)) versus ln
.
ε + Q/RT curve. The calculation was performed

on Matlab software (R2016a). The calculation results of the coefficients in Equation (5) are
shown in Table 2.
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Table 2. Coefficients of the polynomials.

Coefficients n α Q lnA

c0 34.414 0.022 1.167 × 106 2.700
c1 −380.819 −0.165 −1.081 × 107 64.484
c2 2198.841 0.809 5.820 × 107 509.409
c3 −6344.018 −2.072 −1.604 × 108 1816.843
c4 9592.681 2.894 2.353 × 108 3222.050
c5 −7269.985 −2.080 −1.746 × 108 2771.555
c6 2177.324 0.601 5.150 × 107 921.238

The variations of model parameters with strain are shown in Figure 8. Basically, the
variations of the model parameters followed a similar trend with increasing strain. When
the strain was smaller than ~0.2, the stress index (n) decreased rapidly from 18.5 to 6.6 as
the strain increased, which indicated that dislocation cross-slips and dynamic recovery
were the main deformation mechanisms [25]. Meanwhile, the thermal activation energy
decreased from 760.6 kJ/mol to 375.9 kJ/mol because the atom motion barrier was lowered
by dynamic recovery. When the thermal activation energy dropped below the activation
energy required for dynamic recrystallization, dynamic recrystallization occurred. The
stress index varied between 6.6 and 4.3, indicating that recrystallization was dominant
in material softening [26,27]. The thermal activation energy gradually dropped from
375.9 kJ/mol to 270.8 kJ/mol, because the thermal activation energy barrier was reduced
due to the combining effect of dynamic recrystallization and dynamic recovery.
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A comparison was made between the experimental stresses and the calculated stresses,
as shown in Figure 9. The confidence level evaluating the accuracy of the model, R, was
expressed as:

R =

√√√√1 − ∑n
i=1(σ̂i − σi)

2

∑n
i=1(σi − σ)2 (6)
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Here, n was the sample number, σ̂i the calculated flow stress of the ith sample, σ the
average flow stress, and σi the experimental flow stress of the ith sample. The value of
R was calculated to be 0.987. It could also be seen that the flow stress model was able to
describe both the single peaked curve shape and the exponential hardened curve shape.
Figure 10 was drawn by dots whose x ordinates and y ordinates were the experimental
and calculated flow stresses, respectively. Figure 11 showed the mean percentage error
of model prediction under each experiment condition. The maximum percentage error
(12.3%) occurred at 1150 ◦C and 0.01s−1, and the minimum error (1.85%) occurred at
950 ◦C and 1 s−1. The average error under all test conditions was 6.23% (6.81 MPa). The
error was induced by polynomial fitting and experimental error. Increasing the order
of polynomial fitting on the one hand improve the accuracy of the model, on the other
hand, increased the number of model parameters and deter the convenience of usage
of the model. Experimental error could also be decreased by increasing the number of
experimental repetitions. In general, the error was acceptable, and the model was overall
accurate in describing the constitutive relationship of 300M steel in isothermal tension.
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4. Conclusions

The following conclusions could be drawn from this investigation:

(1) Under a higher temperature and a lower strain rate, the tensile force was lower and
the ultimate elongation was shorter. The flow stress curve shape gradually transited
from single peaked to exponential hardened when the strain rate increased.

(2) The tensile flow stresses were 29.1% (27.8 MPa) greater than the compressive flow
stresses. The difference of the flow stress was caused by the difference of the stress
state and the microstructure changes in dynamic recrystallization.

(3) The Arrhenius based flow stress model was able to accurately describe both the
single peaked curve shape and the exponential hardened curve shape. The average
deviation of the model calculation was 6.81 MPa (6.23%), and the value of R was 0.987.
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