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Abstract
The growing cell wall in plants has conflicting requirements to be strong enough
to withstand the high tensile forces generated by cell turgor pressure while
selectively yielding to those forces to induce wall stress relaxation, leading to
water uptake and polymer movements underlying cell wall expansion. In this
article, I review emerging concepts of plant primary cell wall structure, the
nature of wall extensibility and the action of expansins, family-9 and -12
endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH),
and pectin methylesterases, and offer a critical assessment of their
wall-loosening activity
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Introduction
The growing cell wall of plants is both strong and extensible. Its 
mechanical strength lets it resist the tensile stresses in the plane of 
the wall (~10 MPa or more) generated by the internal hydrostatic 
pressure (turgor) typical of plant cells (~0.5–1 MPa). Its extensibil-
ity lets it expand irreversibly in surface area by 10- to more than 
1,000-fold between its initial formation at cell division and the 
subsequent cessation of growth at developmental maturity. Such 
expansion involves selective wall loosening to enable irreversible 
extension, or “creep” (see Table 1 for explanations of biomechani-
cal terms; see 1 for additional details of the biomechanical aspects 
of plant cell growth). This process enables plant cells to grow to 
more than 100 times the size of their meristem initials. Lacking 
such a process, the tallest trees on Earth would be shorter than the 
average reader of this article. Synthesis and incorporation of new 
structural components into the growing walls are also required in 
the long term to prevent loss of mechanical integrity, but wall syn-
thesis in most plant cells is not linked mechanistically to expansion, 
as it is in bacteria. In this article, I briefly summarize current con-
cepts of plant cell wall loosening and the proteins that catalyze it.

The term “wall loosening” has been used in diverse contexts: for 
instance, the indiscriminate breakdown of wall polymers by ammo-
nia explosion pretreatment of biomass for biofuel production2 and 
the oxidative scission of polysaccharides by hydroxyl radicals 
during seed germination, fruit softening, abscission, and defense 
responses3–8. Although one might first think of lytic actions as caus-
ing wall loosening, it turns out that the most potent of the natural 
wall-loosening catalysts—expansins—lack detectable wall lytic 
activity, presenting continuing enigmas about how they function 
at the molecular level and how the plant cell wall is structured to 
enable expansin-mediated wall loosening and surface expansion.

Evolving concepts of cell wall structure
The growing cell wall is made of strong, stable, and inextensible 
cellulose microfibrils embedded in a hydrated matrix of polysac-
charides classified as pectins and hemicelluloses9–12. Diverse pro-
teins and proteoglycans are also present in small amounts. Concepts 
of how these components form a strong yet extensible wall have 
evolved considerably, inevitably influencing our notions of wall 
loosening. Fifty years ago, the growing cell wall was viewed as a 
mat of cellulose microfibrils embedded in an amorphous matrix that 
yielded plastically to the forces of cell turgor13,14. In this concept, 
wall loosening was thought to result from reduction of matrix vis-
cosity by the action of lytic enzymes, but later results showed that 
changes in wall viscoelastic properties are not the basis for cell wall 
loosening and growth, at least in many contexts15,16. Nevertheless, 
these oversimplified notions of wall structure and wall loosening 
continue to exert a strong influence on current thinking.

A major conceptual departure from this view came from the 
Albersheim group, who proposed that cellulose microfibrils were 
separated from each other by a massive macromolecule made 
of pectin, glycoprotein, and xyloglucan, with xyloglucan bind-
ing tightly to cellulose surfaces, thereby forming a load-bearing 
molecular network17. Such a structure would have very different 
mechanical properties than the previous concept of the cell wall 
as a fiberglass-like structure, and suggested potential sites and 
mechanisms for wall loosening. When these were not substantiated, 
the Albersheim model was abandoned in favor of an alternative in 
which xyloglucan directly tethered cellulose microfibrils to form 
an interconnected network that was embedded in a viscous, gel-
like pectin matrix (Figure 1A)9,10,18. This “tethered network” model 
puts xyloglucan in the limelight as the major target of wall loosen-
ing and has dominated discussion of primary cell walls for more 

Table 1. Brief explanations of biomechanical terms often used in cell wall mechanics in the context of plant growth.

Viscoelasticity The mechanical property of materials with both elastic and viscous characteristics. Plant cell walls are 
viscoelastic as a result of their polymeric structure, but they have additional, time-dependent biomechanical 
responses that depend on wall loosening.

Wall loosening versus 
remodeling

Loosening refers to an action that directly results in stress relaxation, creep, and growth of the wall; remodeling 
refers to a chemical modification of the wall, without the implication that it causes wall loosening. For instance, 
the action of xyloglucan endotransglucosylase to cut and ligate non-load-bearing xyloglucans is remodeling, 
whereas the action of expansins that results in cell wall creep is loosening.

Stress relaxation versus 
creep

When a growing cell wall is held at a constant tensile force, it extends by a slow, time-dependent, and irreversible 
process (creep), largely dependent on continued wall loosening. Stress relaxation is the flip side of this process: 
when a stretched wall is locked to a constant length, the tensile stress in the wall decays as polymers rearrange 
themselves to a lower energy state.

Stress Force per area, often given in units of megapascals; tensile stresses are discussed most often, but compressive 
and shear stresses also occur in cell walls.

Strain Fractional change in dimension of the wall (e.g., a strain of 0.1 in wall length is a 10% extension); strains may 
refer to length, width, thickness, area, or volume.

Modulus A measure of wall stiffness, usually defined as the slope of the stress-versus-strain curve. There are different kinds 
of moduli, reflecting the different ways a stress may be applied and whether the resulting strain is reversible or not.

Compliance The reciprocal of modulus, it is the tendency of the wall to deform under the action of an applied force.

Elastic versus plastic 
compliance

When a wall is pulled tight and then released, part of the resulting strain is reversible (termed elastic) and part is 
irreversible (termed plastic); the corresponding compliances are the ratios of strain/stress for the reversible and 
irreversible strains*.

Wall extensibility Defined here as the ability of the cell wall to increase in surface area irreversibly during growth

*This operational definition hides the fact that the irreversible component of strain for plant cell walls is complex and time-dependent, and may include a 
delayed elastic component and a viscous component as well as a plastic component. Plasticity is generally defined as rapid and irreversible deformation when 
stress exceeds a threshold. However, technical definitions of plasticity have varied among authors. See 1 for additional details.
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reduce wall strength or cause cell wall extension, despite the predic-
tion of the tethered network model25,26.

A revised concept of wall structure emerged from a study that made 
use of the method outlined in Figure 2 to test the ability of substrate-
specific endoglucanases to induce cell wall creep26. Enzymes that 
cut only xyloglucan or only cellulose did not induce cell wall creep, 
whereas endoglucanases able to cut both xyloglucan and cellulose 
did induce creep. A family-12 glycosyl hydrolase (GH12) named 
Cel12A, from the fungus Trichoderma reesei, was particularly 
effective at causing cell wall creep. Enigmatically, the combination 
of xyloglucan-specific and cellulose-specific enzymes—both GH12 
enzymes and structurally similar to Cel12A—lacked wall-loosening 
action. This puzzling result was interpreted to mean that walls 
were loosened only when a relatively inaccessible amalgam con-
taining xyloglucan and cellulose was digested by a single enzyme 
with both xyloglucanase and cellulase activities. To account for the 
ineffectiveness of two separate enzymes with distinct substrate spe-
cificities, the amalgam was hypothesized to be buried within tight 
junctions between two or more cellulose microfibrils. These and 
other results led to the revised concept depicted in Figure 1B, in 
which wall extensibility is controlled at limited sites (“biomechani-
cal hotspots”) of close contact between cellulose microfibrils26.

Subsequent results support the concept that cellulose-cellulose con-
tacts may be important for wall mechanics. Making use of advances 
in atomic force microscopy (AFM), studies of never-dried primary 
cell walls showed the nanoscale arrangement of cellulose micro-
fibrils and the presence of cellulose-cellulose junctions27,28. The 
ability to image cell walls under water is a key advantage of AFM 
compared with high-resolution scanning electron microscopy, which 
requires the sample to be dry, potentially causing wall polymers to 
coalesce. Water plays a big role in the structure and mechanics of 
primary cell walls29–31. Other recent work used molecular dynamics 
simulations to show that cellulose-cellulose junctions, glued together 
by a monolayer of xyloglucan, are strong enough to contribute sub-
stantially to cell wall mechanics32. A clue to the potential role of 
the bulk of xyloglucans in the wall emerged from a recent study of 
an Arabidopsis mutant lacking xyloglucan: cellulose microfibrils 
were parallel to each other, whereas in the wild type they were more 
dispersed21. This result suggests that xyloglucans may orchestrate 
cellulose-cellulose interactions in complex ways.

The revised model in Figure 1B does not address the potential role 
of direct pectin-cellulose interactions24. NMR results show that 
pectins include both mobile and rigid chains23, interpreted to mean 
that some pectins form a mobile gel-like milieu but that others are 
tightly associated with cellulose. The latter component may contrib-
ute to the cellulose-cellulose junctions or may provide a separate set 
of linkages between cellulose microfibrils29,33. The extent of pectin- 
cellulose cross-peaks in NMR cross-polarization experiments 
implies an interaction that is more stable than that detected by 
in vitro binding experiments34, but does not demonstrate it to be 
load-bearing. This remains an unresolved aspect of cell wall 
structure. How tensile forces in the wall are transmitted between 
cellulose microfibrils is a key question for understanding the 
molecular mechanism of wall loosening because these are the con-
nections that must be loosened for the wall to expand irreversibly. 

Figure 1. Comparison of two contemporary models of primary 
cell wall structure, differing in how cellulose microfibrils 
are mechanically connected. (A) The tethered network model 
proposes that cellulose microfibrils (red) are well separated by 
matrix polysaccharides, including xyloglucans (blue) which bind 
to cellulose microfibrils and tether them to form a load-bearing 
molecular network. (B) The “biomechanical hotspot” model posits 
limited cellulose-cellulose junctions that are bonded together by 
a xyloglucan-cellulose amalgam (green) with limited enzymatic 
accessibility. The limited frequency of these junctions means 
that mesoscale aspects of wall architecture and motions may 
predominate over nanoscale structure in limiting cell enlargement. 
Additionally, xyloglucan is shown in both a coiled configuration and 
a highly extended form, but which form predominates in cell walls 
is uncertain.

than two decades. It differs from the old model of an amorphous 
matrix reinforced with cellulose microfibrils in that xyloglucans 
were viewed as direct tethers that bind tightly and extensively to 
cellulose surfaces, forming the sole load-bearing links between cel-
lulose microfibrils.

Recent results, however, have weighed against the tethered network 
model: (a) Arabidopsis mutants lacking xyloglucan have a relatively 
minor growth phenotype19–21, showing that xyloglucan is not essen-
tial for a functional, growing cell wall. (b) Nuclear magnetic reso-
nance (NMR) results showed that xyloglucan-cellulose interactions 
are not as prevalent as expected from the model22, but that pectin-
cellulose interactions are much more abundant than expected23,24. 
(c) Digestion of cell walls with xyloglucan-cutting enzymes did not 
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The biomechanical hotspot concept proposes that growing cell walls 
contain specific, built-in junctions designed for slippage and stress re-
laxation by the action of expansins and other wall-loosening proteins.

Wall stress relaxation, wall loosening, and protein catalysts 
thereof
In biophysical terms, cell growth begins by selective loosening of 
the cell wall, resulting in a relaxation of wall stress; this action cre-
ates the impetus for water uptake and physical enlargement of the 
cell by a process in which the wall polymers slide or otherwise
separate to increase wall surface area1,35. Wall loosening has been 
studied in vitro by measuring sustained cell wall extension (creep) 
with an extensometer, sketched in Figure 236. Such cell wall 
creep mimics the sustained enlargement of cell walls during plant 
growth, and enabled the discovery and initial characterization of 
expansins37,38. This approach reduces the complexity inherent in liv-
ing cells, which may manipulate wall pH, redox state, and other 
variables by dynamic signaling pathways39.

A legion of lytic enzymes—from plants as well as from
pathogens—can cleave the backbone or sidechains of wall polysac-
charides, and may even digest the cell wall to the point of mechan-
ical failure. Such enzymatic deconstruction, potentially aided by the 
chemical action of hydroxyl radicals, may contribute to fruit soften-
ing, organ abscission, and pathogen attack, but these lytic activities 
generally do not cause sustained cell wall creep40,41. Evidently, wall 
loosening during cell enlargement is subtler than simple breakdown 
of cell wall polymers. The rest of this review summarizes the action 

of enzymes and other wall-active proteins ascribed a wall-loosening
function. The complex actions of reactive oxygen species, such 
as hydroxyl radicals42–45, are beyond the scope of this review. The 
first group of wall-loosening proteins to be discussed (expansins) 
have no detectable enzymatic activity, yet are the clearest exam-
ples of endogenous catalysts of plant cell wall loosening. The term
“catalyst” is used here in the general sense and does not imply a 
change in the covalent structure of cell wall components.

Expansins
The activity of three classes of expansins has been characterized 
to date: α-expansins, β-expansins, and bacterial expansins46,47. The 
first expansins—now identified as α-expansins—were discovered 
by a reconstitution approach in which protein extracts from growing 
plant cell walls were added to heat-inactivated cell walls clamped in a 
extensometer to restore their ability to extend irreversibly (Figure 2)48.   
The proteins induced wall creep and wall relaxation, yet they neither 
hydrolyzed the cell wall nor exhibited other enzyme activities49–51. 
Their wall-loosening activity was maximal at low pH (~4), consist-
ent with their role in the so-called acid growth response of plants 
and the rapid induction of cell elongation by auxin-induced acidifi-
cation of the cell wall space52,53.

Experiments with cucumber hypocotyl walls showed that
α-expansins did not weaken the cell wall, as measured by mechanical 
(stress/strain) assays54. The ability of α-expansins to induce creep 
without reducing wall stiffness provided additional evidence that 
they do not cut cell wall linkages, which would result in reduced 

Figure 2. Schematic drawing of the procedure for measuring cell wall creep in a constant force extensometer. (A) A cell wall sample 
is prepared from a growing plant tissue, such as a young hypocotyl from a seedling, and clamped at constant force in an apparatus that 
continuously measures changes in sample length. The buffer surrounding the sample can be exchanged for one containing a candidate wall-
loosening protein. (B) Time course for change in length, using a typical response to α-expansin as an example. The cell wall creep measured 
in this device is dependent on continuous wall loosening by expansins or other proteins, and thus mimics aspects of cell wall enlargement 
in living cells.
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cell wall stiffness as well as release of wall polysaccharide frag-
ments. Other studies showed that α-expansin binding to matrix-
depleted cell walls saturated at a value of approximately 1:1,000 
(dry mass of protein:wall)50. A recent calculation showed that this 
value corresponds to a spacing of approximately 200 nm between 
expansin binding sites within a cell wall lamella55, implying that the 
mesoscale (between molecular and cellular scales56) is the appropri-
ate scale for understanding the mechanics of growing cell walls. 
Molecular-scale models of cell walls (i.e., a 50-nm cube) may be 
focused on too small a piece of the cell wall to capture crucial struc-
tural aspects of cell wall growth.

Application of α-expansins to living tobacco cell cultures enhanced 
cell growth57, consistent with a host of reports in which ectopic 
expression of α-expansin genes likewise stimulated plant growth 
(reviewed in 38,58). Wang et al.59 used a single-cell compression 
assay to estimate the stiffness (elastic modulus) and the burst-
ing force of living tomato suspension culture cells treated with 
α-expansin. Within a physiologically realistic extracellular pH 
range (4.5–6.0), α-expansin treatment did not change wall stiffness, 
consistent with the results cited above for cucumber hypocotyls54. 
Curiously, a higher force was required to cause bursting of cells 
treated with α-expansin at acidic pH values (when α-expansins 
are most active), compared with untreated cells. The increased 
toughness may be a consequence of enhanced force dissipation by 
α-expansin-mediated wall relaxation during the compression, evi-
denced by higher strain at failure for cells treated with α-expansin. 
Apparently, the loosening action of α-expansin can result in what 
appears to be a tougher wall (greater mechanical energy required 
for failure). A lesson from this example is that different mechanical 
assays report on different aspects of cell wall mechanics, and what 
may seem at first glance to be a contradictory result may be consist-
ent with a specific loosening mechanism.

Contrary to the above reports that α-expansin does not mechani-
cally weaken cell walls, constitutive overexpression of an 
α-expansin gene in rice suspension cells resulted in a six-fold reduc-
tion in wall stiffness as measured by micro-indentation assay60. It 
would be premature, however, to conclude that such weakening was 
a direct action of α-expansin, because large differences in cell size 
and wall composition were noted between control and the constitu-
tive overexpressor cell lines, and because it is likely that α-expansin 
overexpression led to changes in wall synthesis and assembly that 
impacted the micro-indentation results.

A second set of plant expansins encompasses the β-expansin group, 
also encoded by a multigene family throughout land plants38. Char-
acterization of protein activity has been limited almost exclusively 
to a unique clade of β-expansins that are expressed at high levels 
in grass pollen61–64, and that were evolutionarily co-opted in grasses 
to aid penetration of the pollen tube through the grass stigma and 
style65,66. These proteins have drawn attention in the immunology 
field because they are major allergens of grass pollen; thus, their 
alias as “group I grass pollen allergens”67. The crystallographic struc-
ture of β-expansin from maize pollen revealed a two-domain protein 
with domain one (D1) resembling the fold of family-45 endogluca-
nases (GH45 in the www.cazy.org classification system) and a sec-
ond domain (D2) forming a β-sandwich with a presumptive binding 
function64. It is notable that some of the GH45 catalytic residues 

are conserved in plant expansins, but a key aspartic acid residue 
that functions as the general base in many GH45 endoglucanases is 
missing, potentially accounting for the lack of hydrolytic activity.

The β-expansins in the pollen-allergen group have two properties 
that may not be common to the larger group of β-expansins: they 
selectively loosen cell walls of plants in the grass family (Poaceae), 
which have a wall composition distinctive from that of most land 
plants63, and they solubilize matrix polysaccharides—arabinoxylan 
and homogalacturonan (HG)—found both in the cell wall and in the 
intercellular adhesive, or middle lamella, between cells of grasses68. 
Solubilization of the matrix suggested a lytic action, but several 
tests for lytic activities gave negative results. It is relevant here to 
note that these polymers can be solubilized from walls by chemical 
extractants that do not break covalent bonds. Unlike α-expansins, 
pollen β-expansins greatly reduced the tensile strength of grass cell 
walls, at least in part by weakening the middle lamella between 
cells, whereas they had negligible effect on cell walls from eudicot 
species69. These results suggest that eudicot walls lack the specific 
target of pollen β-expansins, or that the target has a minor mechani-
cal role in eudicot walls. Binding studies suggested arabinoxylan (a 
hemicellulose) as a potential binding target64; however, not all cell 
walls rich in arabinoxylan were loosened by pollen β-expansin63, 
leading to the suggestion that grass cell walls have a unique cross-
linking structure that is the specific target of pollen β-expansins. Fur-
ther work is needed to identify this wall component and its structural 
role in grass cell walls. Moreover, the loosening actions of other 
β-expansins, outside the pollen group, have not yet been explored, 
in part because they have been difficult to extract from cell walls 
in active form70 and because attempts to produce plant expansin 
proteins by heterologous expression have met little success.

A third group—bacterial expansins—was recognized through 
structural and phylogenetic approaches. The crystal structure of a 
Bacillus subtilis protein, renamed BsEXLX1 according to expansin 
nomenclature, was found to be homologous to the structure of 
pollen β-expansin71. Wall extension assays showed that BsEXLX1 
could induce cell wall creep, but only weakly. Like α-expansins, it 
did not weaken cell walls in stress/strain assays nor did it exhibit 
lytic activity with isolated cell wall polysaccharides or with whole 
cell walls as substrates, yet it weakened paper, a mat of pure cellu-
lose fibers. In these respects, it behaved like a weak α-expansin.

Phylogenetic analysis identified expansins in a number of other 
bacteria that are plant pathogens72,73, evidently the result of horizon-
tal gene transfer from plants. When expansins from Xanthomonas 
campestris, Clavibacter michiganensis, Ralstonia solanacearum, 
and Aspergillus niger (all plant pathogens) were recombinantly 
expressed in Escherichia coli and tested for their ability to induce 
creep of cell walls, they consistently exhibited positive but weak 
activity74. Gene knockout experiments, recently reviewed46, indi-
cate that bacterial expansins facilitate bacterial colonization of 
plant surfaces. Exactly how this works is unclear because their 
wall-loosening activity is so weak; their specific activity is perhaps 
100 times lower compared with α-expansins. We do not understand 
the structural basis for the high activity of α-expansins versus low 
activity of bacterial expansins, but the consistently low activity of 
the latter may have evolved to avoid plant defenses that sense cell 
wall integrity75,76.
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Because plant expansins have proven so difficult to express in 
active recombinant form, the B. subtilis expansin BsEXLX1 was 
used in place of plant expansins for extensive structure-function 
analysis by site-directed mutagenesis77, crystallography78, and 
NMR79, combined with binding and activity assays (Figure 3). 
We have learned a lot from these studies. Domain D2 proved to 
be the major determinant of expansin binding to plant cell walls, 
but two distinctive modes of binding to cellulose and to pectin 
were identified. Site-directed mutagenesis showed that binding to 
cellulose required three aromatic residues on the surface of D277. 
This was confirmed and extended by crystallographic studies of 
protein-ligand complexes78, which showed that these three resi-
dues bound alternating glucose residues in cellulose oligosaccha-
rides, predominantly through hydrophobic interactions (Figure 3). 
Cellulose binding was required for wall loosening. On the other 
hand, binding of BsEXLX1 to whole cell walls was dominated by 
electrostatic binding to acidic polysaccharides via non-conserved 
basic residues on the “back side” of the D2 domain. Mutagenesis of 
these basic residues greatly reduced total wall binding, but actually 
increased wall creep activity77 and enhanced binding to cellulose 
within the wall, as detected by 13C solid-state NMR79. Domain D1 
did not bind to cellulose or whole cell walls yet was essential for 
activity. Site-directed mutagenesis also showed that an aspartic acid 
residue (Asp82) in D1 was essential for creep activity; this residue 
is part of the catalytic site conserved in GH45 endoglucanases and 
MltA-type lytic transglycosylases71. This result suggests a cryptic 
enzymatic activity that has yet to be discovered. Pastor et al.80 
hypothesized, as an alternative idea, that electrostatic polarization 
on the expansin surface may mediate its wall-loosening action by 
weakening hydrogen bonding within cellulose. In an NMR study 

of BsEXLX1 targeting within complex plant cell walls, expansin 
was seen to bind cellulose with a different chemical shift than bulk 
cellulose, indicating a slightly modified configuration of the glu-
can chains in the cellulose target79. Whether this modification was a 
result of expansin action is uncertain; more likely, expansin selec-
tively binds to an altered form of cellulose. Moreover, xyloglucan 
was in close proximity to the binding site, which thus resembled 
the biomechanical hotspots described above. The lessons learned 
from structure-function analysis of bacterial expansin extend in 
part to plant expansins, but functional differences still lack struc-
tural explanations (e.g., why bacterial expansins are less active than 
α-expansin, and why they lack the matrix-solubilizing activity of 
the pollen β-expansins).

BsEXLX1 and other bacterial expansins have also drawn consid-
erable attention as possible synergists of cellulose deconstruction 
by cellulases, with contradictory reports. This topic was recently 
reviewed46, and the conclusion was that the reported synergistic 
actions of BsEXLX1 addition were attributable, at least in part, to 
non-specific protein effects that predominate at very low cellulase 
loadings and low cellulose conversion (~1%). To be relevant for 
commercial use, synergistic activity at high cellulose conversion 
should be demonstrated.

In summary, the three classes of expansins outlined here are similar 
in their two-domain structure and their ability to induce creep of 
plant cell walls, but their biological roles differ:

a.   α-expansins mediate acid-induced extension of plant cell 
walls without mechanically weakening the cell walls;

b.   pollen β-expansins not only cause cell wall creep but also 
solubilize polysaccharides in the middle lamella between 
the cell walls of grasses (but not other plants), thereby 
facilitating penetration of the pollen tube to the ovary; the 
physical actions of other β-expansins are almost certainly 
different but have yet to be documented;

c.   bacterial expansins facilitate colonization of plant tissues 
by a mechanism yet to be established but presumably 
linked to their weak wall-loosening action.

Endoglucanases and endotransglucosylases
These two classes of plant enzymes are often called wall-loosening 
enzymes, a point to be examined below, but first it is instructive to 
compare the loosening action of α-expansin with that of the fungal 
endoglucanase Cel12A, described above. Wall creep induced by 
Cel12A begins after a substantial lag, 6 to more than 60 minutes, 
depending on enzyme concentration54, whereas with α-expansin it 
begins within seconds37. Cel12A treatment increased the elastic and 
plastic compliances of cucumber hypocotyl walls, but α-expansin 
treatment did not. Cel12A hydrolyzed xyloglucan and cellulose, 
releasing fragments to the buffer, but this was not the case for  
α-expansin. It is possible that both of these proteins exert their wall-
loosening effects at the same sites (biomechanical hotspots) but by 
different mechanisms: α-expansin induces slippage at these junc-
tions, whereas Cel12A digests the junctions. But is there evidence 
that plant enzymes possess wall-loosening activity similar to that 
of Cel12A?

Figure 3. Crystallographic structure of expansin-cellulose 
complex (expansin from Bacillus subtilis). Two proteins (red and 
blue) in the crystallographic unit form a sandwich-like structure with 
cellohexaose (green), an oligosaccharide form of cellulose78. The 
interactions with cellohexaose are mediated exclusively through the 
open planar surface of the second domain (D2) and depend mostly 
on hydrophobic interactions with three aromatic residues arranged in 
a spaced, linear configuration so they bind the hydrophobic face of 
alternating glucose residues. The sandwich-like structure probably 
does not form in cell walls, but it provides structural information about 
the interaction of expansin with cellulose surfaces. Abbreviations: 
D1, domain 1; D2, domain 2.
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According to genome analyses as well as enzymatic assays, 
plants possess diverse wall lytic enzymes classified into numerous 
families41,81, two of which (GH9 and GH16) may cut β1,4-D-glucans 
(e.g., xyloglucan or cellulose). In the plant cell wall literature, 
GH16 enzymes are usually called xyloglucan endotransgluco-
sylase/hydrolases (XTH) and are encoded by a large multigene 
family82,83. They cut xyloglucan and join the new reducing end to the 
non-reducing end of another xyloglucan (a transglucosylation) or 
to water (a hydrolysis). When XTH enzymes were first discovered, 
they were hypothesized to be wall-loosening enzymes, but subse-
quent experiments show them to have little or no ability to induce 
cell wall creep and to exert only minor effects on wall mechanics 
(assessed with stress/strain measurements). For instance, an XTH 
with strong transglucosylase activity from tomato was tested for 
its ability to induce wall creep or to weaken the wall as measured 
in stress/strain assays, with negative results25. These results are 
consistent with results obtained with xyloglucan-specific GH12 
endoglucanases26, described above, showing that cutting of xyloglu-
can is not sufficient for cell wall loosening. Endogenous XTH activ-
ity in Arabidopsis hypocotyls is highest after elongation ceases84, 
indicating a turnover or remodeling function other than wall loosen-
ing. Genetic knockout of XTH genes expressed in the Arabidopsis 
root and hypocotyl completely eliminated xyloglucan hydrolase 
activity, but did not result in a growth phenotype85, indicating a 
dispensable role for growth. Consistent with this conclusion, trans-
genic overexpression of XTH in tomato hypocotyls did not affect 
hypocotyl growth86 but did result in subtle changes in wall compo-
sition, accompanied by small (<5%) and inconsistent changes in 
mechanical extensibility. When four different XTH genes were con-
stitutively overexpressed in Arabidopsis, small (~10%) increases in 
hypocotyl length were observed for two genes, but no effect was 
observed for the other two genes. In contrast, Van Sandt et al.87 
concluded that a recombinant Selaginella XTH caused wall loosen-
ing when applied to onion walls, but the effects were small. They 
observed a mechanical effect of XTH application when force was 
applied in the direction transverse to net cellulose orientation, but 
not in the direction parallel to net cellulose orientation. Their assay 
involved measuring wall extension immediately upon application 
of force; walls treated with exogenous XTH extended more rapidly 
than control walls during a time window of 10–30 minutes after 
application of the force. This result suggests that dynamical remod-
eling of xyloglucans in a rapidly extending wall may synergistically 
enhance wall extension, but it does not show that XTH itself can 
induce wall relaxation or creep. With this mode of action, XTH 
might be termed an indirect or secondary loosening agent88 to dif-
ferentiate its indirect action from that of a primary loosening agent 
that directly catalyzes cell wall creep.

Simmons et al.89 recently reported that an enzyme in the GH16/XTH 
family, uniquely found in horsetail (Equisetum spp.), was able to 
carry out an unusual transglucosylation, using cellulose as the lytic 
(donor) substrate and xyloglucan as the acceptor substrate. This 
action would be expected to form a covalent link between cellulose 
and xyloglucans and might result in cell wall stiffening. However, 
the mechanical consequences of this unusual GH16 activity have 
not been reported. An XTH enzyme from barley also showed activ-
ity with cellulose-like substrates, but the activity was very low90.

To summarize this section, the totality of GH16 results leads me to 
conclude that XTH does not cause appreciable cell wall loosening, 
but is likely involved in xyloglucan remodeling and turnover during 
primary wall formation and after cell elongation has ceased. Some 
GH16 enzymes may stitch newly synthesized xyloglucan chains 
into xyloglucans already anchored in the wall, thus forming larger 
molecules55,91. Why such action has so little effect on wall mechan-
ics seems puzzling—an indication that we lack a deep understand-
ing of the structural determinants of plant cell wall mechanics.

Let us now consider plant GH9 enzymes, often called endogluca-
nases or cellulases. The database at www.cazy.org identifies a vari-
ety of activities for (mostly microbial) GH9 enzymes, including 
hydrolysis of xyloglucans, mannans, and xylans, as well as cellulose 
and (1,3;1,4)-β-D-glucans, so it is possible that the plant enzymes 
do more than cut cellulose or xyloglucan. This is consistent with 
their sequence diversity: phylogenetic analysis revealed more than 
11 diverse GH9 clades in plants, and expression patterns indicate 
that they are involved in cell wall modification during fruit soften-
ing, abscission, growth, wood formation, and defense92–96. One well-
studied GH9 clade includes a membrane-associated endoglucanase 
(called KORRIGAN) that is part of the cellulose synthesis complex 
and that influences the organization of cellulose in the wall97–99.

Whether plant GH9 enzymes directly cause wall relaxation and 
expansion is uncertain, but limited experimental results support this 
possibility. Two studies reported that plant GH9 enzymes can hydro-
lyze cellulose and xyloglucan in vitro100,101, so they may be able to 
induce cell wall creep, but this test has not been reported. In con-
trast to these two reports, another GH9 enzyme from tomato could  
cut (1,3;1,4)-β-D-glucan but was unable to cut either xyloglucan 
or crystalline cellulose102. Overexpression of a poplar GH9 gene in 
Arabidopsis resulted in high levels of cello-oligosaccharides in the 
leaf, taken as evidence of cellulase action by the enzyme103. Leaf 
growth was increased in the overexpressing lines, as was plastic 
compliance, measured in stress/strain assays.

In summary, the limited experimental results suggest that some 
plant GH9 enzymes may directly loosen the cell wall to induce 
stress relaxation and wall creep, but more work is needed to dem-
onstrate direct wall-loosening activity and to test whether plants 
actually use these enzymes for this function in vivo.

Pectin methylesterase and other pectin-modifying 
enzymes
Interest in the potential wall-loosening activity of pectin-modifying 
enzymes has increased recently104–106, in part because of puzzling 
results suggesting that sites of leaf initiation on shoot apical meris-
tems are softer (lower elastic modulus) as a result of de-esterification 
of pectin (HG)107,108. HG is synthesized in the Golgi apparatus and 
delivered to the cell wall with most of the carboxyl groups blocked 
with methyl esters12, making it resistant to the lytic action of pec-
tate lyase and many endogalacturonases. Disruption of the normal 
delivery of pectin to the cell wall109, or its de-esterification106, leads 
to substantial growth defects. From studies of nuclear magnetic spin 
transfer within Arabidopsis cell walls22,110 and mechanical assays of 
Arabidopsis pectin mutants111, it appears that pectins are physically 

Page 8 of 13

F1000Research 2016, 5(F1000 Faculty Rev):119 Last updated: 16 FEB 2016

http://www.cazy.org/


entangled with xyloglucan within the wall matrix. After delivery of 
HG to the cell wall, methyl esters are removed by the action of pectin 
methylesterase (PME), encoded in plants by a large multigene fam-
ily. The puzzle mentioned above stems from the contradiction with 
well-established results showing that de-esterified pectins in vitro 
form stiffer gels than do methyl-esterified pectins, and that pectin 
de-esterification in vivo is associated with cell wall stiffening as 
cells cease elongation112,113. Stiffening arises from cooperative cal-
cium binding of contiguous carboxyl groups on two adjacent pectin 
chains114. Thus, one would expect that regions of de-esterified HG 
in the meristem would be stiffer, not softer. Contrary to this expec-
tation, reduction of PME activity by ectopic expression of PME 
inhibitor proteins resulted in stiffer walls, measured by micro- 
indentation of the plant surface106–108. At this point, the reason for the 
softer walls in regions rich in de-esterified pectin is unexplained. One 
possibility is that de-esterified pectins get cleaved into shorter chains 
by endogenous endogalacturonase and lyase, but there is scant evi-
dence for this. Another possibility is that walls in the meristem lack 
sufficient calcium for pectic gel formation; without calcium cross-
linking, the negative charges on the HG chains might cause cell wall 
swelling and softening. A third possibility is that manipulation of the 
state of pectin activates cell wall integrity sensors, activating brassi-
nosteroid signaling115 and potentially inducing many changes in cell 
wall composition and structure that result in altered wall mechanics. 
Further work will be necessary to understand these contrary associa-
tions between pectin esterification and wall stiffness. In any case, 
there is no evidence that PME directly causes wall stress relaxation 
or creep, so its action is of a different kind altogether.

Prospectus
Recent studies are converging on the concept that the primary cell 
wall contains limited cellulose-cellulose junctions that are sites of 
initial wall loosening and stress relaxation, and that are the selective 
targets of expansins and potentially other wall-loosening agents. 

How these sites are formed is unknown; are they the result of a 
well-controlled cellular process or of a purely physical, stochastic 
interaction? Their detailed structure and spatial distribution need to 
be investigated, perhaps starting with novel tagging procedures. We 
also need to know whether plant GH9 enzymes can loosen the wall 
in the manner of Cel12A. The contradictory reports of PME action 
on cell wall properties present an unresolved puzzle, and the func-
tional significance of extensive pectin-cellulose interactions, seen 
in NMR studies, needs deeper study to understand their possible 
significance for cell wall mechanics and growth.
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