
computer programs

J. Appl. Cryst. (2019). 52, 669–673 https://doi.org/10.1107/S1600576719005478 669

Received 24 March 2019

Accepted 22 April 2019

Edited by V. T. Forsyth, Institut Laue–Langevin,

France, and Keele University, UK

Keywords: crystal structure refinement;

macromolecules; PDB format; SHELXL.

PDB2INS: bridging the gap between small-molecule
and macromolecular refinement

Anna V. Lübben and George M. Sheldrick*

Abteilung für Strukturchemie, Universität Göttingen, Tammannstrase 4, Göttingen, D-37077, Germany. *Correspondence

e-mail: gsheldr@uni-goettingen.de

The open-source Python program PDB2INS is designed to prepare a .ins file

for refinement with SHELXL [Sheldrick (2015). Acta Cryst. C71, 3–8], taking

atom coordinates and other information from a Protein Data Bank (PDB)-

format file. If PDB2INS is provided with a four-character PDB code, both the

PDB file and the accompanying mmCIF-format reflection data file (if available)

are accessed via the internet from the PDB public archive [Read et al. (2011).

Structure, 19, 1395–1412] or optionally from the PDB_REDO server [Joosten,

Long, Murshudov & Perrakis (2014). IUCrJ, 1, 213–220]. The SHELX-format

.ins (refinement instructions and atomic coordinates) and .hkl (reflection

data) files can then be generated without further user intervention, appropriate

restraints etc. being added automatically. PDB2INS was tested on the 23 974

X-ray structures deposited in the PDB between 2008 and 2018 that included

reflection data to 1.7 Å or better resolution in a recognizable format. After

creating the two input files for SHELXL without user intervention, ten cycles of

conjugate-gradient least-squares refinement were performed. For 96% of these

structures PDB2INS and SHELXL completed successfully without error

messages.

1. Introduction

Historically, computer methods for crystal structure refine-

ment developed relatively independently for inorganic, orga-

nometallic and organic structures on the one hand and

biological macromolecules on the other. This resulted in many

incompatibilities involving file formats and nomenclature.

SHELXL (Sheldrick, 2015; http://shelx.uni-goettingen.de/),

probably the most widely used program for small-molecule

refinement, has some features – e.g. the estimation of least-

squares standard deviations for the refined parameters, the

ease of handling complicated disorders and non-merohedral

twins, and the powerful concept of ‘free variables’ – that might

be useful for macromolecular refinement when high-resolu-

tion data are available. For an example of a macromolecular

refinement in which the estimation of least-squares standard

deviations played a decisive role see Köpfer et al. (2014).

SHELX was written for small-molecule refinement in the

early 1970s. Major extensions in the 1990s (e.g. the introduc-

tion of residues and the removal of restrictions on the number

of atoms) first made it possible to use it for macromolecular

refinement (Sheldrick, 1993; Sheldrick & Schneider, 1997), but

the extensive reformatting required was still an impediment.

The adoption of CIF format might have simplified this

problem, but unfortunately mmCIF and small-molecule CIF

are hardly compatible; for example, even the unit-cell

dimensions have different names.

The original implementation of the least-squares refine-

ment in SHELXL was based closely on a scheme proposed by

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576719005478&domain=pdf&date_stamp=2019-05-14


Cruickshank (1969). SHELXL uses a conventional structure

factor summation rather than a fast Fourier transform and

implements the calculation of Rcomplete (Luebben & Gruene,

2015) as well as Rfree (Brünger, 1992). It offers a choice of full-

or blocked-matrix refinement or conjugate-gradient solution

of the least-squares normal equations (Konnert &

Hendrickson, 1980). It may be used for crystal structure

refinement against single-wavelength or Laue X-ray, neutron

or electron diffraction data (Gruene et al., 2014; Clabbers et al.,

2019) and can also handle merohedral and non-merohedral

twins.

The Python program PDB2INS is designed to automate

setting up a SHELXL refinement starting from a macro-

molecular structure in PDB format (http://www.rcsb.org/,

https://pdbj.org/, https://www.ebi.ac.uk/pdbe/ and https://pdb-

redo.eu/). It replaces the Fortran program SHELXPRO

(Sheldrick & Schneider, 1997) that was originally distributed

with SHELX for this purpose.

2. Input files for SHELXL

If PDB2INS is provided with a four-character PDB code, both

the PDB file and the accompanying mmCIF-format reflection

data file (if available) are accessed via the internet from the

PDB public archive (Read et al., 2011) or optionally from the

PDB_REDO server (Joosten et al., 2014). The SHELX-format

.ins (refinement instructions and atomic coordinates) and

.hkl (reflection data) files can then be generated without

further user intervention, appropriate restraints etc. being

added automatically.

A flowchart llustrating the organization of PDB2INS is

shown in Fig. 1.

2.1. Representation of atoms and
residues

An atom in a PDB file (Dutta et al.,

2009) must have a unique combination

of chain identifier (one character),

residue sequence number (up to four

digits), alternative location character

and atom name (up to four char-

acters), and in addition it has a residue

name (up to three characters) and

may have a one-character insertion

code. Residue names and numbers

considerably simplify the application

of restraints in SHELXL refinements,

also for small molecules, because the

same names can be used for atoms in

similar residues. For example, the

instruction

FLAT_TOL C1 > C7

could be used to restrain the carbon

atoms in each toluene residue to lie in

a plane. The original small-molecule approach of using

different names for each atom would involve much more

typing and is less intuitive and more error prone. Residue

names and numbers are set by RESI instructions such as

RESI TOL 21

which would be followed by a residue consisting of one

toluene molecule. Such RESI instructions remain in force

until the next RESI instruction is read. Several residues with

different residue numbers may have the same residue name

but not vice versa. Residue numbers for SHELXL must be

between �999 and 9999 inclusive. Chain identifiers were

needed for compatibility with the PDB but were first intro-

duced into SHELXL in 2016. This required a major reorga-

nization of the code and caused incompatibilities with several

legacy programs. Chain identifiers are required for very large

structures but can be useful, even for small molecules, when

there are several similar molecules in the asymmetric unit. The

residue numbers in the RESI instructions are then extended to

include the chain IDs, e.g.

RESI TOL A:21

for residue 21 in chain A. For SHELX the chain identifiers

may only be upper- or lower-case letters, digits, or the blank

character, so there are only 63 different possible chain iden-

tifiers. This is enough except for the very largest structures in

the PDB. Note that chain identifiers are an exception to the

usual SHELX rule that upper- and lower-case letters are

treated as equivalent.

computer programs

670 Lübben & Sheldrick � PDB2INS J. Appl. Cryst. (2019). 52, 669–673

Figure 1
Flowchart illustrating the organization of PDB2INS.



2.2. Treatment of symmetry and transformations of coordi-
nates and displacement parameters

SHELXL expects the space-group symmetry to be defined

by the coordinates of the general position rather than the

space-group name. This permits the use of non-standard

settings. PDB2INS uses a dictionary approach in which the

symmetry generators (Fischer & Koch, 2005) are stored for

each non-centrosymmetric space-group symbol and used to

generate the SHELX-format SYMM instructions by iterative

multiplication. The open-source Python module SPAGSY-

DATA used by PDB2INS to do this is available from https://

github.com/av-luebben/spagsydata.

For example, the space group R3 is defined by

LATT -3

SYMM -Y, X-Y, Z

SYMM -X+Y, -X, Z

on hexagonal axes or

LATT -1

SYMM Z, X, Y

SYMM Y, Z, X

on primitive rhombohedral axes.

SHELXL refines fractional coordinates rather than the

Cartesian coordinates used in the PDB, so PDB2INS applies

the appropriate transformations to the atomic coordinates and

atomic displacement parameters.

2.3. Hydrogen atoms

PDB2INS includes HFIX instructions in the .ins file for

generating hydrogen atoms in the form of comments, each

prefaced with REM, e.g. for a valine residue

REM HFIX_VAL 43 N

REM HFIX_VAL 13 CA CB

REM HFIX_VAL 33 CG1 CG2

Later in the refinement the user can delete ‘REM ’ to activate

the hydrogen-atom generation. Such riding hydrogen atoms

do not change the number of parameters refined. So that

missing atoms in a side chain do not cause an error when

SHELXL later tries to generate hydrogen atoms, PDB2INS

adds ‘HFIX 0’ instructions that can be edited when the

structure becomes more complete.

2.4. Geometrical restraints

PDB2INS automatically adds the restraints on 1,2- and 1,3-

distances corresponding to the restraints on bond distances

and angles in amino acids given by Engh & Huber (1991). In

addition PDB2INS uses a library of restraints for other

common residues that were generated using the Grade server

(http://grade.globalphasing.org/). Alternatively, suitable

geometrical restraints can be generated by PROSMART

(Nicholls et al., 2012). PDB2INS uses interatomic distances to

detect disulfide bridges and C- and N-terminal residues and

adds appropriate geometrical restraints and HFIX instruc-

tions. SHELXL uses planarity restraints rather than torsion

angle restraints to ensure peptide planarity. A side effect of

this is that it is possible for a trans-peptide to refine with

SHELXL to cis or vice versa if the data strongly indicate that

this is required (Stenkamp, 2005)

2.5. Restraints on atomic displacement parameters

Anisotropic refinement requires six parameters per atom

instead of one for an isotropic refinement. This is too many for

most macromolecules, although the rigid-bond restraint DELU

may be used to make the motions of bonded atoms along the

bond joining them more equal, and the SIMU restraint to

make the Uij anisotropic displacement parameters of two

atoms more equal is particularly useful for disordered models

in which atoms overlap. However, the more recent RIGU

extended rigid-bond model (Thorn et al., 2012) leads to a

substantial reduction in the number of effective parameters.

The RIGU model simply assumes that the relative motion of

two bonded atoms is at right angles to the bond joining them,

reducing the effective number of parameters per atom to

three. Applying RIGU to 1,3-distances leads to a further

reduction. An additional constraint (XNPD) imposes a

minimum value for the motion of an atom in any direction,

preventing displacement ellipsoids from becoming non-posi-

tive definite. Taken together, these two options that can be

applied globally with the instructions RIGU and XNPD 0.01

enable structures to be refined anisotropically at appreciably

lower resolution than previously possible. PDB2INS always

writes these instructions to the .ins file, but RIGU only takes

effect when the atoms are made anisotropic with the instruc-

tion ANIS.

2.6. Wavelength-specific considerations

SHELXL stores the scattering factors of the first 98

elements in the periodic table, recognizes the wavelengths of

the more common in-house sources (Ga, Cu, Mo, Ag and In),

and sets the absorption and dispersion coefficients for them

automatically. PDB2INS sets up DISP instructions giving the

values of f 0, f 00 and � generated automatically from Kissel

tables (Roy et al., 1993) using the given wavelength. For

neutron diffraction, the user must insert a NEUT instruction.

For naturally occurring elements, the average isotopic distri-

bution is assumed for the scattering lengths; for synthetic

isotopes, the most common isotope is assumed. For other

isotopes, the user must insert the appropriate SFAC instruc-

tion. Starting with SHELXL2019/1, if the wavelength is

shorter than 0.1 Å the reflection data are assumed to be

electron diffraction data and electron scattering factors

generated using the Mott–Bethe formula are used. In all cases

the scattering factors and dispersion corrections may be set by

hand by editing the .ins file to include appropriate SFAC

instructions.

computer programs

J. Appl. Cryst. (2019). 52, 669–673 Lübben & Sheldrick � PDB2INS 671



2.7. Reflection data

The SHELX reflection data file (.hkl) was originally

designed for 80-column punched cards. There is one reflection

per line in this fixed-format text file, with the structure

HHHHKKKKLLLLRRRRRRRRSSSSSSSSBBBB

The reflection indices h, k, l are right-justified integers. For

the intensities R and their standard deviations S, the position

of the decimal point determines how these floating-point

numbers are read. If the decimal point is missing these

numbers are read as right-justified integers and then

converted to floating point. If the .ins file ends with HKLF 4,

R and S are intensities and their standard deviations; if it ends

in HKLF 3, they are F and �(F). The four characters B were

historically the batch number (e.g. for Weissenberg films).

Now this is normally �1 for a free-R reflection and +1 or

absent for the reflections used for refinement. The program

mtz2hkl (Grune, 2008) may be used to convert a CCP4 .mtz

reflection data file to SHELX .hkl format.

2.8. Python implementation and program availability

PDB2INS is written in object-oriented Python 2.7. PyIn-

staller (http://www.pyinstaller.org/) was used to compile it into

stand-alone executables. PDB2INS is open source and may be

downloaded as part of CCP4 (Winn et al., 2014; http://

www.ccp4.ac.uk/), from the SHELX server (http://shelx.uni-

goettingen.de/) or from Git-Hub (https://github.com/av-

luebben/pdb2ins), where the code was published. In addition

to the command-line version, a free graphical user interface

(GUI) version that is designed to help inexperienced users

may be downloaded from https://github.com/av-luebben/

PDB2INSGUI or from the SHELX server. PDB2INS is

available for 64-bit Linux, MacOSX and Windows systems.

The GUI was written using TkInter (Tcl/Tk), the de facto

standard graphical interface for Python (https://wiki.python.

org/moin/TkInter).

Further information on using PDB2INS may be obtained

by typing PDB2INS --help. After preparing the input files

with the help of PDB2INS, SHELXL is usually run from the

command line, e.g.

shelxl name

which reads the .ins and .hkl input files. This produces a

listing file .lst and an updated instruction and structure file

.res, and optionally a PDB-format file .pdb and a .fcf file

containing observed and calculated structure factors. Coot

(Emsley et al., 2010) may be used to inspect the results of the

refinement. The .res file is copied to a .ins file for the next

refinement job; often it will be necessary to edit it to include

additional disorder components specified by PART numbers etc.

3. Test results

PDB2INS was tested on 23 974 data sets deposited between

2008 and 2018 in the PDB with a resolution of 1.7 Å or better.

Only 4.0% (964 data sets) displayed any problems. Details are

given in Table 1. For the remaining 96% the SHELXL

refinement was successful without needing to make any

changes to the .ins and .hkl files written by PDB2INS.

Potential problems caused by insertion codes in the PDB file

were avoided by renumbering the residues. In general the R

factors obtained using SHELXL tend to be slightly higher

than those obtained using Refmac (Murshudov et al., 2011) or

Phenix (Adams et al., 2010), mainly as a result of the less

sophisticated Babinet bulk solvent model (Moews & Kret-

singer, 1975) still employed by SHELXL.

Acknowledgements

We are grateful to Tim Gruene, Paul Emsley and many other

SHELX users for help in testing PDB2INS and suggesting

improvements.

References

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W.,
Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-
Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read,
R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. &
Zwart, P. H. (2010). Acta Cryst. D66, 213–221.

Brünger, A. T. (1992). Nature, 355, 472–475.
Clabbers, M. T. B., Gruene, T., van Genderen, E. & Abrahams, J. P.

(2019). Acta Cryst. A75, 82–93.
Cruickshank, D. W. J. (1969). Crystallographic Computing, edited by

F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 187–197. Copenhagen:
Munksgaard.

computer programs

672 Lübben & Sheldrick � PDB2INS J. Appl. Cryst. (2019). 52, 669–673

Table 1
Overview of the most common issues detected during an automated test
of PDB2INS against a sample of 23 974 data sets from the PDB with a
resolution of 1.7 Å or better.

Only 4.02% (964 data sets) displayed any problems. %E percentage related to
all errors/issues, %T percentage based on the complete test set.

%E %T Issue description

31.74 1.28 SHELXL terminated without refinement because the residue
has a name consisting only of digits. This is allowed in the
PDB but not in SHELXL because it could be mistaken for
a residue number. PDB2INS will prompt the user to change
such residue names when run in interactive mode. However
in automated mode, PDB2INS only writes a warning and
continues without renaming.

22.41 0.90 One or more reflections do not adhere to the required .hkl

format.
11.20 0.45 An element name in the PDB file does not correspond to any

of the first 98 elements of the periodic table as required by
SHEXL. Most commonly it has been specified as ‘X’.

10.68 0.43 Warning: one or more atoms are not subject to appropriate
restraints. Of course for heavy atoms or high-resolution
data this may be intended.

10.37 0.42 A reflection data mmCIF file is incomplete, e.g. because
standard uncertainties are missing or because I+ but not I�
was specified.

4.67 0.19 It is legal to deposit more than one model in the same .pdb
file. PDB2INS cannot handle such files.

8.93 0.35 A variety of other issues can occur, but each in less than 0.1%
of all tested files. The error messages output by PDB2INS
and SHELXL should normally enable the problems to be
identified.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB4


Dutta, S., Burkhardt, K., Young, J., Swaminathan, G. J., Matsuura, T.,
Henrick, K., Nakamura, H. & Berman, H. M. (2009). Mol.
Biotechnol. 42, 1–13.

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta
Cryst. D66, 486–501.

Engh, R. A. & Huber, R. (1991). Acta Cryst. A47, 392–400.
Fischer, W. & Koch, E. (2005). International Tables for Crystal-

lography, Vol. A, Space-Group Symmetry, 5th ed., edited by Th.
Hahn, pp. 810–811. Dordrecht: Springer Netherlands.

Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick,
G. M. (2014). J. Appl. Cryst. 47, 462–466.

Grune, T. (2008). J. Appl. Cryst. 41, 217–218.
Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. (2014).

IUCrJ, 1, 213–220.
Konnert, J. H. & Hendrickson, W. A. (1980). Acta Cryst. A36, 344–350.
Köpfer, D. A., Song, C., Gruene, T., Sheldrick, G. M., Zachariae, U. &

de Groot, B. L. (2014). Science, 346, 352–355.
Luebben, J. & Gruene, T. (2015). Proc. Natl Acad. Sci. USA, 112,

8999–9003.
Moews, P. & Kretsinger, R. (1975). J. Mol. Biol. 91, 201–225.
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner,

R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011).
Acta Cryst. D67, 355–367.

Nicholls, R. A., Long, F. & Murshudov, G. N. (2012). Acta Cryst. D68,
404–417.

Read, R. J., Adams, P. D., Arendall, W. B. III, Brunger, A. T., Emsley,
P., Joosten, R. P., Kleywegt, G. J., Krissinel, E. B., Lütteke, T.,
Otwinowski, Z., Perrakis, A., Richardson, J. S., Sheffler, W. H.,
Smith, J. L., Tickle, I. J., Vriend, G. & Zwart, P. H. (2011). Structure,
19, 1395–1412

Roy, S. C., Pratt, R. H. & Kissel, L. (1993). Radiat. Phys. Chem. 41,
725–738.

Sheldrick, G. M. (1993). Crystallographic Computing 6, edited by
H. D. Flack, L. Párkányi & K. Simon, pp. 111–122. IUCr/Oxford
University Press.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Sheldrick, G. M. & Schneider, T. R. (1997). Methods Enzymol. 277,

319–343.
Stenkamp, R. E. (2005). Acta Cryst. D61, 1599–1602.
Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68,

448–451.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,

Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

computer programs

J. Appl. Cryst. (2019). 52, 669–673 Lübben & Sheldrick � PDB2INS 673

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fs5176&bbid=BB28

