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Abstract

Objectives

Identifying patients at risk of a 30-day readmission can help providers design interventions,
and provide targeted care to improve clinical effectiveness. This study developed a risk
model to predict a 30-day inpatient hospital readmission for patients in Maine, across all
payers, all diseases and all demographic groups.

Methods

Our objective was to develop a model to determine the risk for inpatient hospital readmis-
sion within 30 days post discharge. All patients within the Maine Health Information
Exchange (HIE) system were included. The model was retrospectively developed on inpa-
tient encounters between January 1, 2012 to December 31, 2012 from 24 randomly chosen
hospitals, and then prospectively validated on inpatient encounters from January 1, 2013 to
December 31, 2013 using all HIE patients.

Results

A risk assessment tool partitioned the entire HIE population into subgroups that corre-
sponded to probability of hospital readmission as determined by a corresponding positive
predictive value (PPV). An overall model c-statistic of 0.72 was achieved. The total 30-day
readmission rates in low (score of 0—-30), intermediate (score of 30—70) and high (score of
70-100) risk groupings were 8.67%, 24.10% and 74.10%, respectively. A time to event
analysis revealed the higher risk groups readmitted to a hospital earlier than the lower risk
groups. Six high-risk patient subgroup patterns were revealed through unsupervised

PLOS ONE | DOI:10.1371/journal.pone.0140271

October 8,2015 1/15


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0140271&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.hinfonet.org

@’PLOS ‘ ONE

Inpatient 30-Day Readmission Risk Model

data is owned by the HIN members, not HIN. HIN is
responsible for security and access to its members'
data and has established data service agreements
(DSAs) restricting unnecessary exposure of
information. HIN and its board (comprised from a
cross section of its members) authorized the use of
the de-identified data for this research, as the
published research helps promote the value of the
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clustering. Our model was successfully integrated into the statewide HIE to identify patient
readmission risk upon admission and daily during hospitalization or for 30 days subse-
quently, providing daily risk score updates.

Conclusions

The risk model was validated as an effective tool for predicting 30-day readmissions for
patients across all payer, disease and demographic groups within the Maine HIE. Exposing
the key clinical, demographic and utilization profiles driving each patient’s risk of readmission
score may be useful to providers in developing individualized post discharge care plans.

Introduction

From 2007 to 2010, the national inpatient 30 day post discharge readmission rate remained rel-
atively unchanged and included approximately 18 percent of Medicare patients. Medicare hos-
pital readmissions cost the US taxpayer 15 billion dollars annually [1, 2]. Causes of potentially
preventable hospital readmissions have been consistently identified to include premature dis-
charge from the hospital, lack of resources for post discharge treatment, and insufficient pro-
vider consultation [3]. Accordingly, unplanned hospital readmissions impose a heavy burden
to the US health care system, and serve as an overall indicator of poor quality [4, 5]. As a result,
the Centers for Medicare and Medicaid Services (CMS) established a Hospital Readmission
Reduction Program that defines a readmission as an admission to the hospital within 30 days
post discharge from any hospital [6, 7]. Under reimbursement programs established by CMS
in 2012, hospitals with high readmission rates for selected chronic diseases are penalized a per-
centage of overall reimbursement [8]. In an effort to prevent unwanted and avoidable hospital
readmissions, it is first necessary to develop tools for actionable risk assessment and prediction,
such that accountable healthcare stakeholders can target resources to those populations likely
to yield the most benefit.

Previous studies addressing risk of readmission proposed risk models for specific disease
cohorts including heart failure [9-13], acute myocardial infarction [13, 14], and pneumonia
[13, 15], or for specific patient demographics including the elderly [16], children [17] or veter-
ans [18]. The limitations in these models are apparent when considered across a population
that includes all payers, all diseases and all demographics. Many prior studies lacked prospec-
tive testing and validation, reporting their performance on retrospective cohorts only [19].
Consequently, current models are of limited use for population health and case management
tasked with reducing the readmission rate among the most vulnerable. The variability in
research methods and results regarding the development of 30-day readmission risk models
supports the need for ongoing development of more robust methods [20].

The increasing adoption of electronic medical record (EMR) systems and the development
of health information exchanges (HIEs) have together facilitated the availability of detailed lon-
gitudinal patient medical histories to support the development of new methods to address
patient population risk assessment. We have previously applied machine learning approaches
to a statewide HIE database to predict emergency department 30 day revisits [21]. Our hypoth-
esis is that population risk assessment can be rendered more accurate and actionable through
the novel application of advanced machine learning with detailed and longitudinal clinical rec-
ords. The specific objective in this study was to develop a model for predicting all-cause inpa-
tient readmission risk in the HIE system within 30 days post discharge.
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data and materials, as detailed online in the guide for
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Methods
Ethics statements

This work was done under a business associate agreement between HealthInfoNet (HIN),
which operates the Maine Health Information Exchange, and HBI Solutions, Inc. Data use was
governed by the Business Associate Agreement (BAA) between HIN and HBI. No Protected
Health Information (PHI) was released for the purpose of this research. HBI implemented
their risk models within the Maine HIE, and the Maine HIE provides its members access to the
risk scores through its secure platform. Since this study analyzed de-identified patient data, the
Stanford University Institutional Review Board considered it exempt (October 16, 2014).

Population

We set to develop a 30-day inpatient readmission risk model utilizing all inpatient encounters
from the HIE member hospitals. The qualification standard was that the patient should be
alive at the time of discharge, and not transferred to another acute care facility within the time
frame of the cohort. The number of inpatient encounters in the total population was 211,232
from January 1, 2012 to December 31, 2013.

Data acquisition

An enterprise data warehouse, consisting of the Maine HIE aggregated patient histories, was
developed as previously described [21, 22] (See S1 File). A sequential staging data warehouse
was utilized to extract, transform and load all EMR data from the HIE system. Data cleaning
and integration was applied for handling errors and data quality issues (See S2 File) [23]. Sub-
sequently, an analysis database of all data attributes was built based on the staging database for
the machine learning process.

Study design

The 30-day inpatient readmission algorithm was built and validated in two phases (Fig 1): 1)
retrospective modeling, in which the model was trained, calibrated and tested in three separate
sub-cohorts to develop a risk scoring readmission metric; 2) prospective analysis, in which the
model was validated to gauge its prospective performance, and to reveal high-risk sub-popula-
tion clustering patterns. R statistical computing software was used for model development and
validation.

Cohort construction

There were a total of 74,484 inpatient encounters from January 1, 2012 to December 31, 2012
from 24 independent hospitals employed in the retrospective cohort (S1 Fig, top). In the pro-
spective analysis phase, a total of 118,951 encounters between January 1, 2013 and December
31, 2013 involving all HIE hospitals were included (S1 Fig, bottom). The prospective cohort
represented independent encounters from the retrospective cohort. Retrospective and prospec-
tive patients shared similar demographics (S1 Table). For patients who had an inpatient
encounter, all of the patients’ past one-year clinical histories before the discharge date were uti-
lized in the subsequent statistical learning.

For exploratory data analysis (S2 Fig), we profiled the retrospective readmissions to estab-
lish the prevalence of past one-year inpatient admissions and the presence of chronic disease
diagnoses. This analysis showed that the inpatient history and the counts of chronic diseases
were strongly associated with the risk of future inpatient readmissions, providing a grouping
method to develop four specific models. The four models were developed, calibrated, and
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Fig 1. Study design for modeling the risk of an inpatient hospital readmission 30 days post discharge. There were three steps in model development:
1) two independent cohorts were constructed for retrospective modeling and prospective validation; 2) the retrospective cohort was split into two subgroups
with each incorporating non-overlapped care facilities. The first subgroup was further split into model training and calibration sub cohorts, and the second
subgroup was used as the blind-test cohort; and 3) the model was validated using the prospective cohort. Unsupervised clustering pattern analysis that
included demographic and clinical data was performed. The prospectively validated model was then deployed in production to support healthcare quality
monitoring and improvement efforts.

doi:10.1371/journal.pone.0140271.g001

validated in parallel in the modeling process based on the four sub-cohorts demonstrated in S1
Fig, which were groups with chronic diseases and inpatient history, with chronic diseases but
no inpatient history, with inpatient history but no chronic disease, and with no chronic disease
nor inpatient history, respectively.

Pre-processing

Initially, a total of 14,680 features were extracted from the enterprise data warehouse. Consid-
ering that some features were redundant or uninformative to the statistical learning, we applied
variance minimization criterion [24] to determine the discriminant features. As a result, 2,000
features were selected for risk modeling.

Retrospective cohort subgroups

In the retrospective analysis, HIE patient inpatient encounters were partitioned into two sub-
groups according to the associated hospital encounters, balancing the monthly inpatient
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readmission volume and rate between the two subgroups. The first subgroup of patients was
further split into training and calibration sub cohorts. The second subgroup was used as a
blind-test sub cohort. Together, the three sub cohorts were utilized for retrospective model
development.

Retrospective modeling steps

1) Using the 2,000 qualified features, the number of days post discharge as the time variable,
and readmission as the outcome event, we conducted a survival analysis by random forest [25]
that represented a forest ensemble learning method trained in a bootstrapping manner.

First, a general technique of bootstrap aggregating (bagging) was applied for building 300
decision trees by repeatedly and randomly resampling the training cohort with replacement,
and voting the trees for a consensus prediction. Second, the survival trees were grown based on
the randomly selected predictors via Log-rank survival splitting rule on each survival tree node
that maximizes survival differences across daughter nodes.

Zil (di‘l - Yi‘l i_l.)

F(x, ¢) =
JERR (-9 ()

Here, c is the split value for predictor x; d;; and Y;; for the node h equal the number of
patients that had a readmission event in t; day after discharge and who never come back in t;
day after discharge for the daughter nodes j = 1,2. Hence, Y;; = #{T; > t; & x; < c} and Y; , = #
{T) > t; & x; > c}, where T is the days for an individual patient ] return to a hospital after dis-
charge. The value |F(x, c)| is the measure of node separation, the greater difference between
case and control groups and the better the split for the predictor was realized. Therefore, the
optimized predictor x and split value ¢ at the node h is determined by maximizing the |F(x*, c*)|
such that |F(x , ¢ )| > |F(x, ¢)| for all x and c. For each tree the maximum terminal node size
is 1.

Third, an ensemble cumulative hazard estimate by combining information from the survival
trees so that each individual will be assigned one estimate.

(1)

H(tlx;) = ~logS(tlx) (2)

Where H (t|x,) is the cumulative hazard estimate computed for terminal node for each pre-
dictor x; for individual sample i drop down into in the tree; S(t|x;) is the survival function
expressed as: S(t|x;) = P(T > t|x;), with T representing a readmission event happened in T days
post discharge.

To derive an individual estimate for all trees, an ensemble average for all tree cumulative
hazard estimate score was computed.

AL(tx) = ——> " Ay (tx,) (3)

ntree

Here, b denotes the individual tree and ntree is the number of trees in the survival forest.

2) A calibrating cohort was used to calibrate the predictive scoring threshold H. (t|x,) to cre-
ate a risk measure of 0-100 for each individual encounter. Applying the model developed with
each of the four training sub-cohorts to each encounter in the corresponding calibrating sub-
cohort, the derived cumulative hazard score H_(t|x,) was ranked. Each of the four sub-cohorts
had different scales of H_(t|x,) derived using a separate model, making them not comparable to
each other. In order to make the model outcomes from different sub-cohorts comparable to
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each other, a 0-100 risk measure was derived from the positive predictive values (PPVs) associ-
ating with each H_(t|x,), which provided a universal, standardized measure of readmission risk
for all the samples from all sub-cohorts. PPV for each estimate was calculated as the proportion
of samples having readmission in a subset of sample having FI,(t|x,) higher than that estimate.
The mapping function between the risk measure and the cumulative hazard estimate H_(t|x,)
for each of four sub-cohorts was shown on S3 Fig. The risk measure thus described the proba-
bility that a patient will have an inpatient readmission within 30 days post discharge.

Based on the mapping, we defined three risk groups: High (score > 70), Low (score < 30),
and Intermediate (30 < score < 70). Our analysis therefore produced two risk measures: a con-
tinuous risk score ranging from 0 to 100, and a categorical risk defined by three levels. The for-
mer was applied for numerical performance tests while the latter was used for stratified
analysis. The thresholds (30 and 70) were chosen arbitrarily.

3) During the first round of the survival analysis, the number of features utilized was 2,000
as selected by variance minimization criterion. In the second round, we initiated modeling by
utilizing the top 10 features of computed importance, and then iteratively built models by add-
ing additional features of significance. During iterative modeling, optimum performance was
determined for each step according to the sensitivity, specificity and PPV. As a result, 243 fea-
tures were identified as the best performing features for risk assessment for each patient
(Table 1) through a feature combination process utilizing the four sub-cohort models (S1 Fig,
top). Top 10 important features in each sub-cohort models were displayed on S4 Fig.

Prospective analysis

The model developed in the retrospective phase was prospectively validated during the 2013
calendar year from the HIE data warehouse. The risk-stratified 30-day readmission statistics as
well as the time-to-event curve were used to gauge model performance that was then compared
with prior similar model studies [19, 26-28]. In order to derive a better understanding of the

Table 1. The final list of features in the model after 2 rounds of feature selections.
Feature group Number Feature description (past 12 month clinical histories)

Encounter history 118 Visit counts of different encounter types (E/O/I/P/R) &, the
accumulated length of hospitalized stay, counts of historical chronic
disease diagnoses, counts of total and non redundant total
radiographic, counts of total and non redundant laboratory tests, and
counts of total and non redundant outpatient prescriptions

Demographics 4 Gender, income, education, payer, and age group that is defined by
age at IP admission (0, 1-5yr, 6—12yr, 13—18yr, 19-34yr, 35—-49yr,
50-65yr, 65+yr) ©

Radiology 2 Different radiology tests

Payer 1 Different payer information

Chronic disease 19 Counts for chronic diseases

condition

Diagnosis 4 Counts for primary diagnosis and secondary diagnosis
Laboratory test 24 Counts for different laboratory test results

Outpatient 71 Counts for different outpatient prescriptions

prescriptions

@Encounter type descriptions: E-Emergency, O-Outpatient, I-Inpatient, P-Pre admission, R-Recurring
admission
byr-year

doi:10.1371/journal.pone.0140271.1001
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high-risk population’s characteristics, we determined patterns of clinical and demographic fea-
tures by applying an unsupervised learning approach. First, we applied a principal component
analysis (PCA) [29] to the selected features of all high-risk encounters identified by our risk
prediction model to derive their factor scores, of which the first 2 dimensions were selected to
represent each sample. Second, the K-means analysis discovered six clusters in which the
patients shared similar 2-dimensional PCA scores.

The number of clusters (K = 6) was determined by observing change of the sum of squares
of clusters as the number increased. In K-means analysis, the total within-cluster sum of
squares (TWSS) was defined as the sum of the sum of squares in every cluster. When K = 1, all
samples belonged to the same cluster, thus the TWSS equaled to the variance of the samples.
The TWSS monotonically decreased to 0 as K increased to reach its maximum value, i.e. the
number of samples, which was over-fitting. We measured the contribution of adding a new
cluster as the reduction rate of TWSS:

_ TWSS,_, — TWSS,
ke TWSS, ,

(4)

We determined K to achieve the balance between the over-fitting and variance modeling:

K = max, {k, R, > 0.2} (5)

The TWSS and Ry with respect to K is shown in S5 Fig. Ry reached its peak at K = 6, so
K = 6 was selected for our subsequent clustering analysis. The within-cluster sum of squares in
clusters #1 to #6 (See S6 Fig) were: 47.2, 68.7,102.7, 85.2, 53.8, and 54.8.

Visualization of the clustering results demonstrated that the 6 clusters represented unique
patterns of the corresponding sub-populations within the high-risk patient population.

Results

The model was evaluated on an independent cohort by using the rate of readmissions stratified
by the risk level and PPV. The continuous scores measuring the 30-day readmission risk were
converted into 10 risk bins ranging from 0-100, with the 30-day readmission rate (i.e. PPV)
summarized for each bin (Fig 2). From the low risk to high-risk groups, both the retrospective
and prospective 30-day readmission rates increased almost monotonically, revealing that the
risk stratification model provided a reasonable measure of 30-day readmission probability. The
average 30-day readmission rates in low (score of 0-30), intermediate (score of 30-70) and
high (score of 70-100) risk partitions were 8.67%, 24.10% and 74.10%, respectively. A 20% less
readmission rate was found in the high-risk cohort comparing prospective to retrospective
modeling periods, however the model maintained an impressive call rate identifying 74.10% of
hospital readmissions in the high-risk group during prospective testing. The rate of readmis-
sion increased significantly with rising computed level of risk indicating the effectiveness of the
model and case finding methodology.

The time-to-event curves measuring the patient readmission free rate within 30 days after
discharge (Fig 3) demonstrated that the readmission rate for high-risk patients was signifi-
cantly higher at the same time point, compared with the rates for intermediate or low risk
patients. The figure also showed that more than 50% of readmitted patients experienced read-
mission within 15 days post discharge in each risk level.

In order to explore the high-risk population for common clinical patterns, unsupervised
learning of principal component analysis was applied to the prospective cohort. Six distinct
patient subgroups were identified with the following characteristics (S6 Fig): 1) the largest clus-
ter (#1, n = 1,036 encounters) was mainly occupied by younger patients (age range 0-35 years,
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intervals of 10. The risk metric was divided into three regions: low (0—30), intermediate (30-70), and high (70—100).

doi:10.1371/journal.pone.0140271.9002

78.2%); 2) the smallest cluster (#6, n = 251 encounters) predominantly included senior patients
(age range 65+ years, 96.1%); 3) most of the high-risk patients had one or more chronic disease
diagnoses (89.8% and 62.3% in clusters #2 and #3, and 100% in clusters #4, #5 and #6, except in
cluster #1 (59.9% with no chronic disease). The clinical pattern identification of these high-risk
patients may allow providers and care managers to apply more targeted interventions to reduce
the risk of readmission.

We compared our model to previous studies on 30-day readmission risk prediction
(Table 2). The patient demographics, sample size, and model performance are illustrated in the
table. Unlike many previous studies that focused on specific age, disease or payer groups from
one or several care facilities, our study targeted a statewide population that included all HIE
member hospitals, and all HIE patients with an acute care admission. The c-statistics of our
predictive model were 0.86 for the retrospective cohort and 0.72 with the prospective cohort
(S7 Fig), performing as well or better than similar studies that focused on specific patient
groups. These findings demonstrate that comprehensive clinical data analysis can yield whole
population models for risk assessment that are uniform and do not require a priori patient
cohorting by chronic disease or other qualifiers.

By integrating our algorithm into a HIE-supported online platform, patient risk scores can
be updated on a daily basis for the population in Maine. Fig 4 shows the platform visualization
where 30-day readmission risk screening was displayed for Jan 28, 2015, for all inpatients dis-
charged within the previous 30 days. Additionally, statistics for the demographic and payer
mix of the population were summarized on the dashboard.

Discussion

Leveraging the vast number of EMR clinical features and encounters in the Maine HIE data
warehouse, we developed and tested a clinical algorithm to predict the risk of readmission

within 30 days post discharge for inpatients across the entire state population. Through the
profiling of the comprehensive longitudinal clinical histories, the developed model and the
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risk patients’ time to the next impending inpatient visit.

doi:10.1371/journal.pone.0140271.9003

derived risk scores facilitated active high-risk case finding and risk stratification of the patient
population in Maine. The risk predictive analytics (prospective c-statistic: 0.72) for the entire
population outperformed the results of prior specific patient cohort based studies [19, 26-28,
30-36]. The results of the prospective validation analysis demonstrate the robust reproducibil-
ity of our methods for the derivation of reliable risk assessment. Taken together, these results
support the hypothesis that a 30-day readmission event, regardless of patient demographics
and clinical conditions, can be accurately determined using the clinical data managed in a
statewide HIE database.
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Table 2. Comparison of our model with previous studies.

Study Population demographics

Donzé, 2013 [28] Adult patient, 2009-2010

Allison, 2014 Patients discharged receiving outpatient parenteral antibiotic therapy, 2009—
[19] 2011

Eapen, 2013 [27]
Vigod, 2015 [26]
HIE model

doi:10.1371/journal.pone.0140271.t002

Heart failure (HF) patients >65 years of age, 2005—-2009
Adults discharged from an acute psychiatric unit, 2008—2011
all age, all payer, all disease, 2012—2013
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Fig 4. The deployment of the 30-day readmission risk model. The validated risk model was deployed via a real time provider portal that was integrated
into the Maine HIE. The model and results are subject to continuous adaptation in response to EMR output on a daily basis. A screenshot: the real-time
dashboard allowing for high-risk inpatient encounter identification and in support of targeted interventions is shown.

doi:10.1371/journal.pone.0140271.9004
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A couple of limitations of this study were noticed. There was a drop in model accuracy from
the retrospective to prospective analysis (Figs 2 and 3). It is to be expected, due to over fitting,
that our model will perform less well on the prospective data set than on the retrospective data
set used for fitting. To avoid over fitting, we sub-divided the retrospective training set into
training and calibrating sets, which can indicate when further training is not resulting in better
generalization. It is possible that our prospective cohort, even with the similar demographics
profiles as the retrospective one (S1 Table), had evolving clinical profiles, leading to differenti-
ated feature networks driving the readmission to cause prospective performance degradation
in risk prediction. Therefore, predictive analytics errors, when applied as a decision-assisting
tool in clinical sites, would result in inappropriate post-discharge plans. To overcome over fit-
ting and longitudinal data evolving issues, the data quality and integrity would be closed moni-
tored and the model would be re-trained periodically with new data contents and newly-added
attributes. In addition, care providers’ feedback will be collected to identify the performance
variations as a function of the longitudinal time frame and geographic locations. These multi-
faceted efforts should enhance our knowledge base and help to identify more genuine clinical
drivers of readmission that would not be explicitly revealed in the EMR data mining process.
Another limitation was that while HIE data represents an ideal source of community-wide/
regional patient data, operational HIEs are not present in all States. Although the samples col-
lected from the HIE for our study were with all ages, all payers and all diseases in Maine State,
they may have an unexpected bias and may not exactly match the nationwide population char-
acteristics and hospital visit trends. After overcoming these limitations, our predictive model
will be improved with a broader applicability in health care globally.

The 30-day readmission rate is a useful indicator of increased risks of adverse outcomes
[37]. Evidence suggests that well-organized post-discharge interventions targeting high-risk
patients can result in a decreased rate of readmissions and therefore significant cost savings
[38, 39]. However, most current risk assessment tools are not automated and require manual
collection of data elements for analysis. Moreover, most current approaches to high-risk assess-
ments are not done in real time. Through the integration of our case finding algorithms into a
statewide HIE, scores were produced (Fig 4) on any patient upon admission and updated daily.
Along with the risk scores, providers can develop, in real time, evidence based intervention
plans that may benefit the patient in their post discharge care: these include interventions iden-
tified by the Project Boost effort. Project Boost (Better Outcomes for Older adults through Safe
Transitions) effort is a mentored implementation program to improve the care of patients as
they transition from hospital to home, by identifying patients with a high risk of readmission
and offering targeted specific interventions to reduce the adverse outcomes and 30-day read-
mission rates. Studies showed that readmissions were decreased dramatically in hospitals
where Project Boost tool was implemented [40, 41]. Based on Project Boost guidelines, patients
with multiple complex medications (clusters #2-6) will benefit from interventions that elimi-
nate unnecessary medications and improve medication compliance; older adults (clusters #3, 4,
and 6) will benefit from home services and follow-up calls; and patients that have multiple
chronic diseases (clusters #4-6) will benefit from education to understand their specific care
goals and the signals to understand if these goals are met. These interventions, guided by our
automated risk measures, can help clinicians spend more time applying targeted care to the
appropriate patients and less time performing manual risk assessments. We believe that the
real time, automated availability of risk assessment in tandem with personalized evidence
based interventions will facilitate timely post-discharge planning that will lead to the avoidance
of unwanted readmissions and increased costs. The utilization of this type of dynamic risk
assessment will further facilitate the ongoing calibration of population risk assessment as post-
discharge planning and case management interventions are formulated and tested.
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The unsupervised learning of the high-risk patients’ profiles resulted in several data driven
clusters with similar patterns. Not surprisingly, the incidence and types of chronic diseases
within the high-risk population were two of the primary drivers of high-risk that were similar
among sub-groups. Perhaps surprisingly, the largest overall sub-group was comprised of
mostly younger adults without chronic disease. Observations such as these suggest that a one
size fits all approach to case management targeting the avoidance of readmission is likely insuf-
ficient as each of these sub-groups have unique characteristics that suggest unique post-dis-
charge needs. It is intriguing to speculate that this type of analysis could be used for a more
personalized or precise approach to readmission prevention that would be amenable to ongo-
ing adjustment and adaptation according to ongoing success and failures to prevent readmis-
sion. Since the risk assessment was successfully deployed within the HIE and is made available
on a real time basis, the operational advantage of the presented tool will allow each planned
discharge to be carefully evaluated to determine the necessity of continued hospitalization, bal-
anced against the cost of a possible readmission. Accordingly, real time operational solutions
such as those presented here are a necessary step in improving patient care.

Conclusion

A risk assessment tool for predicting 30-day hospital readmissions was successfully developed,
tested and deployed as a component of a real time HIE analytic platform. The advantages of
the current tool include the prospective validation on a patient population that includes all pay-
ers, all diseases and all age groups. The identification of high-risk patients in real time can act
as an early warning system that can drive timely care interventions, reduce readmissions, pro-
vide for safer transitions of care, and lower costs.
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