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Abstract

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic
substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic
basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R.
opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we
identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene
family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores
them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify
bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for
growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and
metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.
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Introduction

Bio-Diesel is an energy-rich portable fuel derived mainly from

triacylglycerols (TAGs). Biodiesel and related fuels are extracted

from oleaginous organisms, both photosynthetic and non-photo-

synthetic, that use available energy sources to fix carbon into high

levels of stored lipids. In chemoheterotrophic organisms TAGs are

synthesized by bioconversion of organic compounds such as the

sugars and organic acids derived from globally-abundant cellulosic

biomass. A genetic understanding of the oleaginous metabolism of

chemoheterotrophic species like Rhodococcus provides critical

insight for biofuels development.

The high GC content Gram-positive Actinomycetales bacteria

Rhodococcus opacus PD630 and Rhodococcus jostii RHA1, a close

relative that has a completely sequenced genome [1], were

previously shown to accumulate large amounts of TAGs and wax

esters (WEs) [2,3,4]. Rhodococcus species present an attractive

target for industrial processes due to high substrate tolerances and

high density culturing on a rapid time scale as compared to many

photosynthetic organisms [5,6]. The oleaginous metabolism of

Rhodococcus goes beyond abundant lipid biosynthesis to include

diverse hydrocarbon catabolism. R. jostii RHA1 was isolated from

soil containing 1,2,3,4,5,6-hexachlorocyclohexane (Lindane) [7],

while R. opacus PD630 was enriched on phenyldecane as a sole

carbon source after isolation from soil sampled at a gas works

plant [2]. Rhodococcus can catabolize and detoxify several aromatic

hydrocarbons that contaminate soil from industrial waste

products. These toxic substrates include polychlorinated biphe-

nyls (PCBs) [8,9,10,11] and other halogenated compounds such

as Lindane that was used in large quantity for agricultural

practices.

Limitation of an essential nutrient stimulates enzymatic

conversion of the non-limiting essential nutrients into stored

polymers such as phosphorous conversion to poly-phosphate [4],

acetyl- and other short acyl-CoAs conversion to polyhydroxyalk-

anoates (PHAs) [12,13,14], or the production of TAGs and WEs

from these same short chain acyl-CoA primers [2,15]. Most

prokaryotes store carbon as polyhydroxyalkanoic acids (PHAs)

when other essential nutrients such as reduced nitrogen are

limiting. By contrast bacteria in the order Actinomycetales have

uniquely developed a storage lipid cycle that leads to accumulation

of TAGs and WEs [16]. Abundant TAGs accumulation in

Rhodococcus provides a pool of fatty acids for b-oxidation as cellular

fuel, components of the plasma membrane, and substrates for the
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enzymatic production of the very-long and highly-modified

extracellular lipids characteristic of Actinomycetales.

Lipid metabolism in the genus Mycobacterium has been a major

focus of scientific research due to the effect pharmacological

inhibitors of lipid biosynthesis such as isoniazid [17,18,19],

thiolactamycin, and pyrazinamide [20] have on killing pathogenic

mycobacteria. Whole-genome views of lipid metabolism in

mycobacteria reveal these bacteria have developed several lipid

biosynthesis systems and a large number of genes to support diverse

and abundant lipid biosynthesis. In Mycobacterium an order to the

enzyme activity of the lipid synthases has been established through

genetic, biochemical, and pharmacological evidence; wherein lipids

are biosynthesized de novo by the multifunctional FAS type 1a

enzyme followed by further elongation via the FAS II system and

the multifunctional MAS-family type 1b synthases. Collectively

these 3 fatty acid synthase systems produce 2 classes of fatty acyl-

CoAs that differ in chain length. One class contains lipids ,20

carbons (C20) that are components of the plasma membrane and the

storage lipids TAGs and WEs. Another class contains lipids .C26

that are built by multiple synthases and can reach lengths as long as

C90 in some Mycobacterium species [19,21] but only C60 in Rhodococcus

opacus [22] and C54 molecules have been observed in R. equi [23].

The longer chain length lipids are used in Actinomycetales to build

a protective extracellular coat that helps these bacteria survive in

harsh environments whether it be the phagosome of a macrophage

or contaminated soil enriched in toxic organic compounds. The

interplay between multiple lipid biosynthesis systems in Actinomy-

cetales [19] requires genetic understanding for engineering the flow

of carbon to desired lipid types.

Results

Metabolic Reconstruction of Rhodococcus opacus PD630
To establish a genetic model of Rhodococcus metabolism, we

generated a high quality draft sequence of the Rhodococcus opacus

PD630 genome. DNA sequencing with 454 shotgun and 3 kb

paired-end reads resulted in 16 large scaffolds containing 9.27 Mb

of assembled DNA sequence. We stitched the gapped genome

scaffolds based on extensive chromosomal-synteny with the

complete genome sequences of related Rhodococcus species R. jostii

RHA1 and R. opacus B4 (Figure S1).

The R. opacus PD630 genome contained 8632 genes that

underwent metabolic reconstruction using pathway tools software

[24] resulting in a model containing 1735 metabolic reactions.

Enzymes were connected to metabolic reactions based on enzyme

commission numbers (EC#) that were assigned by the EFICAz2

algorithm [25] and by gene-name recognition within pathway

tools software. This automated EC# assignment allowed for

multiple genomes to undergo metabolic reconstruction in parallel.

Comparisons between metabolic reconstructions for a set of 8

phylogenetically related and one outlier species Ralstonia eutropha

H16 that were assembled in this way can be browsed at (http://

tinyurl.com/opacuscyc14-5-comparative). The resulting initial

metabolic reconstruction of R. opacus PD630 Opacuscyc14.5_

comparative contains 400 metabolic pathways and 135 transport

reactions.

A more complete metabolic reconstruction of R. opacus PD630

by pathway hole filling using the pathway tools 14.5 software,

additional EC # assignments made with the database at Kyoto

Encyclopedia of Gene and Genomes KEGG (http://www.

genome.jp/kegg/), and limited manual curation (outlined in

Figure S2) resulted in a metabolic reconstruction containing an

additional 282 metabolic reactions, 44 metabolic pathways, and

eight transport reactions. Opacuscyc_14.5 was improved by

refining the metabolic model of TAGs biosynthesis and degrada-

tion by metabolic product characterization of uncommon fatty

acids that accumulate to high levels in Rhodococcus. The results of a

screen for bacterial growth on 190 metabolic compounds were

used as a multi-genic test of the reconstruction, described in more

detail below. Comparison of the results of the catabolic screen with

the metabolic pathway predictions revealed that precision was

65% before refinement and 71% after refinement (Table S1). The

current working model of Opacuscyc14.5 contains 2017 metabolic

reactions, 444 metabolic pathways, and 143 transport reactions

that can be browsed at (http://tinyurl.com/4dv5m32).

Rhodococcus Oleaginy Resulted from Key Genes That
Emerged in Actinomycetales

Several eubacteria of the order of Actinobacteria including

Rhodococcus, Corynebacterium, Mycobacterium, and Bifidobacterium are

distinguished for having both the type 1a fatty acid synthase (FAS)

(Figure 1a) and a FAS II lipid biosynthesis system. FAS is a

polyketide synthase related protein containing all of the necessary

enzymatic activities for de novo lipid biosynthesis (Figure 1b). In

mycobacteria FAS has been shown to elongate C2 and C3 carbon

acyl-CoAs into C16, C18, C24, and C26 fatty acyl-CoAs [26,27]. In

the suborder of bacteria Corynebacterineae, the FAS II system of

lipid biosynthesis elongates FAS product fatty acyl-CoAs through

the enzymatic activity of 6 families of enzymes (Figure 1c) for

biosynthesis of mycolic acids and related cell wall associated lipids.

The FAS II system in these Actinomycetales operates on C16–C26

length fatty acyl-CoAs not the usual short chain lipid biosynthesis

substrates characteristic of the related enzymes in bacteria,

chloroplasts, and mitochondria. The number of unique FAS

genes is shown in Figure 1a in the context of a phylogenetic tree of

genera built by AMPHORA [28]. Unlike the widespread

taxonomic representation of the FAS II genes, the FAS type 1a

gene in Rhodococcus has genus representation in prokaryotes is

limited to only within Actinomycetales. The FAS gene is likely to

Author Summary

Biofuels research is focused on understanding the energy-
related metabolic capabilities of a broad range of
biological species. To this end we sequenced the genome
of Rhodococcus opacus PD630, a bacterium that accumu-
lates close to 80% of its cellular dry weight in oil, a rare trait
in the prokaryotic and eukaryotic kingdoms. R. opacus
PD630 has a large 9.27 Mb genome that contains many
homologous genes dedicated to lipid metabolism. The
number and novelty of these predicted genes presents a
challenge to the complete and accurate metabolic
reconstruction of this species’ metabolism based only on
genome sequence. To refine our sequence-based meta-
bolic reconstruction, we developed a multidisciplinary
approach that included integrating the identification of
abundant yet uncommon straight-chain odd-carbon lipid
biosynthesis and the results of a catabolic screen for
growth substrates. Comparative analysis of the R. opacus
PD630 genome sequence with those of a group of related
species provided a view into how this bacterium became
such a remarkable TAGs producer and led to the
identification of a set of biofuels target genes for this
group of bacteria. Our synthesis of genome sequence and
phenotypic information supports a model for the genetic
basis for prokaryotic oleaginy and provides key insights for
the engineering of next-generation biofuels with genes
that are conserved in both prokaryotic and eukaryotic
kingdoms.

Genomics of Rhodococcus for Biofuels
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have emerged in Actinobacteria (Figure 1a) and was horizontally

transferred to only those eukaryotic branches containing fungi and

stramenopiles (Figure 2a).

Our genome-based metabolic reconstruction revealed close

metabolic pathway relationships when we compared the lipid

metabolism enzymes of the phylogenetically related genera

Mycobacterium, Nocardia, and Rhodococcus. These Actinomycetales

contain multiple pathways for lipid biosynthesis utilizing a unique

combination of multifunctional fatty acid synthases (FAS), a type

1a synthase and a related MAS-family type 1b synthase that

generate linear- and branched-fatty acids respectively (Figure 1D).

Diacyl glycerol acyl transferase (DGAT) enzymes convert fatty and

other carboxylic acids into TAGs [29]. DGAT genes are also of

limited genus representation in eubacteria and interestingly are

present in six out of seven genera that also contain at least one

gene of the MAS-family type 1b synthases (Figure 1a). Closely

related genera to Rhodococcus share expanded gene-families of

DGATs [29,30]. A phylogenetic tree based on 701 shared genes

present in a single copy and general genomic features of

representative species used for comparisons with Rhodococcus are

presented in Figure S3.

The phylogenetic distance between the bacterial taxa that

contain the FAS type 1a suggest this gene has likely been

horizontally transferred within Actinomycetales. The FAS gene

was duplicated in Corynebacterium and horizontally transferred

between Bifidobacterium and Corynebacterium. The FAS type 1a

protein from Rhodococcus is highly related, ranging between 60–

65% amino acid identity, to the enzyme in mycobacteria. The

FAS protein is comprised of 3128 amino acids with 7 domains

(Figure 1b), six of which catalyze distinct biochemical reactions

(Figure 1c). Multiple sequence alignment of Actinomycetales FAS

type 1a proteins reveals conservation across all domains (Dataset

S1 and Dataset S2). The order of type 1a synthase protein

domains, high sequence similarity, and presence of all three key

lipid biosynthesis systems (FAS type 1a, MAS-family type 1b, and

FAS II) suggest that the substrates and products are similar for the

shared enzymatic network of lipid synthases within the suborder

Nocardiacae and Mycobacterium. A working model for carbon flow

in Rhodococcus lipid biosynthesis is presented in Figure 1b.

Enzymes from Expanded Gene Families Generate Lipid
Biosynthesis Primers

Acetyl-CoA is the product of many catabolic reactions and a key

substrate in lipid biosynthesis (http://tinyurl.com/4fgl6zo). Ace-

tate and longer chain carboxylic acids captured from the

environment can be converted to -CoA derivatives by CoA

synthetases (EC 6.2.1.1) thus feeding these organic acids into lipid

metabolism (Figure 1b). The first committed step in lipid

biosynthesis is catalyzed by acetyl-CoA carboxylases that function

as a/b complexes in Rhodococcus and related bacteria of the

suborder Corynebacterineae to generate malonyl-CoA that is

utilized by FAS type 1a, MAS-family type 1b, and FAS II enzymes

for fatty acid biosynthesis (Figure 1b and 1d). Malonyl-CoA is

generated by ATP-hydrolysis dependent carboxylation of acetyl-

CoA in reaction EC 6.4.1.2 by an expanded family of AccA (a)

and AccD (b) enzymes in Rhodococcus (Figure 3a). Homologous

Rhodococcus AccA and AccD proteins were analyzed phylogenet-

ically with those from related species (Figure S4). Some paralogous

enzymes from these gene families were reported to recognize the –

CoA derivatives of distinct carbon chain length organic acids

[31,32,33,34] suggesting that a diverse pool of organic acids could

be carboxylated and incorporated into cellular lipids by Rhodo-

coccus.

The pool of propionoyl-CoA in Rhodococcus can be converted

into methylmalonyl-CoA via ATP dependent carboxylation by

propionoyl-CoA carboxylase in reaction EC 6.4.1.3 (Figure 1d). In

Mycobacterium and Streptomyces methylmalonyl-CoA is a lipid

biosynthetic substrate that is incorporated into methyl-branched

lipids by the type 1b fatty acid synthases, a member of the

mycocerosic acid synthase MAS-family of proteins [35].

OPAG_06239 is homologous (41% identity over 3527 amino

acids) to a protein within the MAS-family with all of the same

Figure 1. Phylogenetic and metabolic pathway features of lipid biosynthesis in Rhodococcus. a) A phylogenetic representation of
oleaginous genes in Actinomycetales. An AMPHORA-based tree of related genera (left) provides context to the copy number of unique oleaginous
genes within each genera presented in three columns to the right. Remarkable oleaginous genes in Actinobacteria are fatty acid synthase (FAS) type
1a, MAS-family type 1b, and diacylglycerol acyl-transferases (DGATs). Oleaginous gene family members in each genus were counted and color-coded
from 0 to .10. A phylogenetic tree of the FAS type 1a gene is presented to the right of the FAS column. b) Fatty acids biosynthesis in Rhodococcus.
Acetyl-CoA is the product of many biochemical reactions and a limiting substrate in lipid biosynthesis. Acetyl-CoA can also be generated from acetic
acid found in the environment by ligation to –CoA. ATP-hydrolysis enables bicarbonate coupling to acetyl-CoA forming malonyl-CoA, the substrate
used for elongation. The lipid biosynthesis -CoA substrates are incorporated in Rhodococcus by three fatty acid biosynthesis systems that begins with
multifunctional FAS type 1a. This synthase contains the following enzyme activities: malonyl palmityl transferase (MPT), acetyl transferase (AT), keto
synthase (KS), keto reductase (KR), dehydratase (DH), enoyl reductase (ER), acyl carrier protein (ACP) catalyzing decarboxylating condensation of
malonyl-ACP with acetyl-CoA, propionoyl-CoA, or acyl-CoAs to generate straight-chain fatty acyl-CoAs that range in size (C16–C26) and include odd-
carbon fatty acids. Phosphopantotheinyl transferase (PPT) converts the ACP domain of FAS into the active form via attachment of
phosphopantotheinate to a serine residue and is encoded by the down stream gene in the Rhodococcus bicistronic FAS operon. During inititiation
malonyl-ACP is condensed with either acetyl-CoA or propionoyl-CoA to form a C4 or C5 straight-chain intermediate, respectively. Further elongation
cycles consume malonyl-ACP for C2 additions with concomitant release of CO2 for each round of Claisen-type condensation reaction. The fatty acyl-
CoA products of FAS ,C20 are attached to glycerol catalyzing production of phospholipids and triacylglycerols (TAGs) or processed by number of
other routes. Fatty acyl-CoAs can be further elongated by the FAS II system or MAS-family proteins. Wax esters (WEs) are generated by
transesterification of fatty acyl-CoAs with fatty alcohols. TAGs, WEs, phospholipds, FAS II and MAS products come together to form compartments
within Rhodococcus. Lipid bodies (yellow, LB) house the stored lipids surrounded by cytoplasm (blue, CP). The Plasma Membrane (orange, PM) is
surrounded by cell wall (green, CW). The mycolic acid layer (black, MA) on the outside of Rhodococcus cells contains the long chain lipids. 1c)
Comparison of biochemical activities of type II proteins and type I protein domains. Colors of FAS II genes correspond to related function in type 1
protein domains. Notable differences between synthase type 1 domains and type 2 proteins include: the MPT domain is dual functional in FAS type
1a thus releasing –CoA products through palmitoyl-CoA activity. The AT domain in type 1a provides acetyl-CoA and propionoyl-CoA substrates for
condensation. In type 1b synthase the AT domain provides long chain acyl-CoAs for condensation on the KS domains. 1d) Methyl-branched lipid
biosynthesis model for type 1b synthase activity from related mycobacterial protein PKS12. The C3 organic salt propionate can be ligated to CoA
generating propionoyl-CoA, a substrate for Rhodococus lipid biosynthesis that is also produced in several metabolic degradation pathways.
Propionoyl-CoA can be used directly by FAS during initiation or carboxylated to form methylmalonyl-CoA making it a substrate for a second
multifunctional fatty acid synthase with a type 1b protein domain architecture present in Rhodococcus OPAG_06239. The type 1b synthase belongs to
the mycocerosic acid synthase (MAS)-family of proteins that in Mycobacterium were shown to incorporate methylmalonyl-CoA into growing fatty acid
chains creating methyl-branched lipids.
doi:10.1371/journal.pgen.1002219.g001
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twelve functional domains and common domain architecture as

PKS12 (Figure 1d), suggesting a related role in branched-lipid

biosynthesis that was shown in M. tuberculosis to be production of

C30–34 length methyl-branched phospholipids containing a

4,8,12,16, 20-pentamethylpentacosyl lipid subunit [36]. Only

one MAS-family type 1b gene is encoded in R. opacus PD630

and related R. opacus B4, and R. jostii RHA1 genomes; whereas in

the genera Mycobacterium, Frankia, and Streptomyces expansion of this

gene-family has occurred (Figure 2b). In Mycobacterium the MAS-

family synthases generate methyl-branched lipids adding to the

diversity observed in their cell wall lipids that have been shown to

be key in persistence, pathogenicity, and immune recognition

[37,38,39]. By contrast, Streptomyces also contain several MAS-

family proteins but do not encode for the FAS type 1a protein

Figure 2. Phylogenetic analysis of type 1a and type 1b fatty acids synthases. a) A phylogenetic tree that shows FAS type 1a is found in
Actinobacteria, Stramenopiles, and Fungi. b) A phylogenetic tree of MAS-family type 1b proteins. This gene family is expanded in the genera
Mycobacterium, Frankia, and Streptomyces but present in single copy in Rhodococcus belonging to branch containing the PKS12 from M. tuberculosis
NP_216564 that also contains similar protein domain architecture.
doi:10.1371/journal.pgen.1002219.g002

Genomics of Rhodococcus for Biofuels
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(Figure 1a). Streptomyces are rich in methyl-branched lipids [40,41]

that are shorter than the methyl-branched lipids observed in

Mycobacterium indicating a difference in the biosynthetic workload

between MAS-family and FAS II genes that could result from the

absence of the type 1a synthase gene in Streptomyces.

Large Expansions of Gene Families Implicated in the
Rhodococcus TAGs Cycle of Biosynthesis and Catabolism

The TAGs cycle includes twenty distinct enzymatic reactions

starting from acetyl-CoA. The biochemical details of this cycle are

presented with the corresponding EC number (Figure S5)(http://

tinyurl.com/TAGs-cycle). The large expansions in homologous

genes implicated in the TAGs cycle we identified in our initial

metabolic reconstruction led us to further analyze the gene-

families. We grouped the implicated TAGs cycle genes and

families of genes based on protein similarity using the TribeMCL

algorithm [42] on a small set of related bacterial species. We found

that the genus Rhodococcus was deeply enriched in TAGs cycle

genes including gene-families of very different sizes and there were

no metabolic deficiencies in the multi-step metabolic-cycle

Figure 3. Analysis of genes and gene families implicated in the TAGs cycle. a) The number of genes in the TribeMCL gene-clusters
implicated by metabolic reconstruction for each reaction of the TAGs cycle are displayed in a heat map with species clustered according to their TAGs
cycle genetic profile. The number of genes corresponding to TribeMCL gene-clusters implicated for each biochemical reaction (EC number) is color
coded from 0 to .15. b) The sum of unique genes for each bacterial species implicated for the TAGs cycle by metabolic reconstruction and TribeMCL
analysis.
doi:10.1371/journal.pgen.1002219.g003

Genomics of Rhodococcus for Biofuels
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(Figure 3a). 261 candidate R. opacus PD630 TAGs cycle genes were

identified for the TAGs cycle reactions (Figure 3b). The largest

gene family in the Rhodococcus TAGs cycle corresponds to the FAD

dependant acyl-CoA dehydrogenases that operate in the b-

oxidation of fatty acyl-CoAs (EC 1.3.99.3). R. opacus PD630

contains 71 of these acyl-CoA dehydrogenase genes whereas

Corynebacterium glutamicum 13032 only contains two genes predicted

for this reaction (Figure 3a). Large gene families identified in the

Rhodococcus TAGs cycle also include: DGATs (EC 2.3.1.20)

resolved in a phylogenetic tree (Figure S6), TAG lipases (EC

3.1.1.3), acyl-CoA synthetases (EC 6.2.1.3), enoyl-CoA hydratases

(EC 4.2.1.17), and acetyl-CoA C-acyltransferases (EC 2.3.1.16).

Rhodococcus species contained at least 261 genes that could

contribute to this metabolic cycle without consideration of

membrane transport genes as they have yet to be defined for

each catabolic substrate. The TAGs cycle -CoA ligases/synthe-

tases that ligate –CoA with carboxylic acids play a role in initiation

as well a b-oxidation of lipids have been grouped into 1 category

represented as (EC 6.2.1.1/2/3) because we could not resolve the

homologous enzymes that vary in their substrate chain length

specificity (acetyl- EC 6.2.1.1, propionoyl- EC 6.2.1.2, acyl- EC

6.2.1.3). The largest number of genes in R. opacus PD630 dedicated

to the TAGs cycle were mostly attributed to the acetate/acyl-CoA

synthetases (EC 6.2.1.1/2/3)(18 genes), acyl-CoA dehydrogenases

(EC 1.3.99.3)(71 genes), and enoyl-CoA hydratases (EC 4.2.1.17)

(64 genes). These large gene families are central to the b-oxidation

pathway suggesting that Rhodococcus can catabolize and extract

energy through aerobic respiration from a diverse range of

carboxylic acids as well as biosynthesize from these compounds a

diverse array of lipid products.

The related Actinomycetale C. glutamicum 13032 provided stark

contrast to the large number of lipid metabolism genes we

observed in Rhodococcus. C. glutamicum 13032 had four pathway

holes (Figure 3a) with a total of 19 genes implicated in the TAGs

cycle (Figure 3b). A substrate-permissive glycerol-3 phosphate acyl

transferase could bypass the EC 2.3.1.15 pathway hole allowing

for production of essential phospholipids; however the 3-hydro-

xyacyl-CoA dehydrogenase in the b-oxidation of fatty acids (EC

1.1.1.35) is missing in C. glutamicum 13032, a result that is consistent

with the observed deficiency in catabolism of fatty acids described

below. C. glutamicum 13032 is also missing the DGAT enzyme

responsible for the final step in TAGs and WE biosynthesis. A

complete table of genes for the twelve species presented in Figure 3

can be found in Table S4.

Odd-Carbon Straight-Chain Lipid Accumulation in
Rhodococcus

During fermentation of glucose, R. opacus PD630 and R. jostii

RHA1 produced abundant lipids that were likely odd in carbon

number based on their elution profile on gas chromatograph-flame

ionizing detector analysis (GC-FID) (Figure 4a and 4b). The odd-

carbon lipid species were found in Rhodococcus TAGs that were

purified by thin layer chromatography (TLC) prior to conversion

into fatty acid methyl esters (FAMEs) for assay by GC-FID

(Figure 4c and 4d). During growth on glucose these odd-carbon

fatty acids increase in relative abundance accumulating to as much

as 30% in R. opacus PD630 and 40% in R. jostii RHA1 of the total

lipids detected in the GC-FID assay (Figure 4e). Fermentation

analytics of media concentrations of ammonium and glucose as

well as cellular total fatty acids, and residual dry weight (Figure S7)

indicated glucose depletion at 96 hours further stimulated R. jostii

RHA1 to produce higher levels of odd-carbon lipids than R. opacus

PD630.

Chemical Identity and Structure of Straight-Chain Odd-
Carbon Lipids Stored in TAGs

The FAS type 1a enzyme purified from Mycobacterium phlei was

shown to convert malonyl-CoA and the C3 substrate propionoyl-

CoA into undefined fatty acids without propionoyl-CoA carbox-

ylase in vitro [27], suggesting that straight-chain odd-carbon lipids

could be made by the type 1a FAS. We analyzed the chemical

identity and structure of the Rhodococcus stored odd-carbon fatty

acids to evaluate whether these lipids are methyl-branched or

straight-alkyl chains in order to provide insight into the enzyme(s)

responsible for this uncommon lipid biosynthesis. The known

substrate preferences of the FAS type 1a enzymes are straight-

chain substrates (acetyl-CoA, propionyl-CoA, and malonyl-CoA

[26,27]) while the MAS-family type 1b synthases incorporate the

C3 methyl-branched lipid substrate methylmalonyl-CoA

[35,37,39,43,44].

To determine the identity and chemical structure of the putative

Rhodococcus odd-carbon lipids we purified them as FAMEs by

taking advantage of their enrichment when R. opacus PD630 and

R. jostii RHA1 were grown on propionate as the sole carbon source

(Figure 4f). Propionate can be converted intracellularly to

propionoyl-CoA through the activity of propionoyl-CoA ligase

(EC 6.2.1.2)(Figure 1b) allowing for degradation via the methylci-

trate cycle [45] or incorporation into lipids via two routes. In the

straight-chain lipid biosynthesis pathway diagramed in Figure 1b,

propionoyl-CoA is a substrate in the initial condensation reaction

with malonyl-ACP. By contrast, in the branched-lipid biosynthesis

pathway diagrammed in Figure 1d, propionoyl-CoA is first

converted into methylmalonyl-CoA prior to incorporation into

lipids by the MAS-family type 1b synthases.

FAMEs from propionate grown cells were purified via reverse

phase HPLC then analyzed on a coupled gas chromatograph/

electron ionization-mass spectrophotometer GC-EI-MS. We

identifed ions with masses that corresponded to the methyl esters

of pentadecanoic acid m/z 256 Da C15:0 (Figure S8), heptadeca-

noic acid m/z 284 Da C17:0 (Figure S9), and heptadecenoic acid

m/z 282 Da C17:1 (Figure S10). Fragmentation of these full length

FAMEs resulted in ions that also matched previously reported

spectra for electron ionized ions with these odd-carbon chain

length FAMEs [46].

To discriminate between structural isomers with the same

molecular weight (straight-chain and methyl-branched lipids), we

performed 1H-NMR on the HPLC-purified FAMEs from

Rhodococcus (Figure S11). We saw evidence of the methyl esters as

expected from the transesterification of cellular lipids with

methanol at 3.68 ppm; however, the FAMEs purified from

Rhodococcus showed no evidence of methyl-branching at

0.86 ppm along the aliphatic chain of the C15:0, C17:0, and C17:1

fatty acids as compared to the branched control 16-methylhepta-

decanoate. The NMR spectra in addition to the mass spectra

demonstrate that these odd-carbon lipids contained straight-chain

alkanes and a cis-alkene, not the methyl-branched forms expected

from a methylmalonyl-CoA intermediate generated by propionoyl

carboxylase in reaction EC 6.4.1.3. The absence of methyl-

branched lipids in the shorter odd-carbon storage lipids indicated

that de novo biosynthesis of methyl-branched lipids in Rhodococcus if

present is restricted to the longer chain length lipids as previously

described for the cell wall associated lipids in Mycobacterium. The

identification of the stored pentadecanoic acid, heptadecanoic

acid, and heptadecenoic acid odd-carbon straight-chain fatty acids

could result from the FAS type 1a enzyme that is known to

incorporate the three carbon molecule propionoyl-CoA and

malonyl-CoA [27]. The odd-carbon fatty acids isolated from

Rhodococcus grown on glucose contained predominantly seventeen
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carbons, that is in the range where most FAS type 1a products are

released from the type 1a FAS (C16–18) [26].

Catabolic Phenotyping of Four Industrially Utilized
Bacterial Species

Rhodococcus fermentation of low-cost organic substrates into oil

requires a more complete understanding of the catabolic

capabilities of these species. We tested 190 organic compounds

as the sole carbon source in time course growth assays with four

soil-derived bacterial species including the Actinomycetales R.

opacus PD630, R. jostii RHA1, Corynebacterium glutamicum 13032, and

the Gram-negative b-proteobacterium Ralstonia eutropha H16. Four

chemical categories of compounds including carboxylic acids,

nitrogen containing, carbohydrates and alcohols, and oligosac-

charides were tested in these bacterial time course growth assays.

Compounds capable of supporting growth yielded growth values

that were clustered hierarchically to show catabolic-relationships

between growth substrates and the species being compared.

Carbohydrates and alcohols are an important class of

compounds to evaluate for converting natural organic streams

such as cellulose and cellulose derived sugars, sugarcane, and beet

sugars into biofuels. Seventeen oligosaccharides were screened for

growth resulting in the identification of 13, 8, 3, and 0 growth

substrates for R. opacus PD630, R. jostii RHA1, C. glutamicum

13032, and R. eutropha H16 respectively (Figure 5a). R. eutropha

H16 showed no ability to degrade the oligosaccharides tested and

relatively few monosaccharides were catabolized indicating that

this species has many pathways to catabolize organic streams

such as the rich pool of carboxylic acids defined below or fix CO2

by using the energy derived from splitting H2 [47,48,49].

Corynebacterium and Rhodococcus catabolized the disaccharides

sucrose and maltose as well as the trisaccharide maltotriose.

Rhodococcus species grew poorly on disaccaharide maltose but well

on the trisaccharide maltotriose suggesting a possible membrane-

transport preference. R. opacus PD630 gene OPAG_05551 is a

glycogen hydrolase that contains the predicted activity to account

Figure 4. Identification and purification of odd-carbon straight-chain fatty acids generated by Rhodococcus. a and b) GC-FID analysis of
FAMEs synthesized during fermentation. Freeze-dried whole cells fermented on glucose of R. opacus PD630 (a) and R. jostii RHA1 (b). c and d) GC-FID
analysis of FAMEs derived from TLC-purified TAGs of R. opacus PD630 (c) and R. jostii RHA1 (d) grown on glucose e) odd lipids C15:0, C17:0, and C17:1

increase during fermentation of both R. opacus PD630 and R. jostii RHA1. f) Rhodococcus grown on propionate generates mostly C15:0, C17:0, and C17:1

fatty acids that were used for purification and confirmation by mass spectrometry and structural 1H-NMR. These analyses demonstrated that the
purified Rhodococcus odd-carbon fatty acids were straight-chain.
doi:10.1371/journal.pgen.1002219.g004
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for maltotriose growth that are part of an operon containing

OPAG_05551 that breaks down glycogen (glucose a1–4) with Pi

to yield glucose-1-P. Glucose 1-P isomerase is also utilized in

galactose catabolism to generate the glucose 6-P that is common

to glycolysis, pentose phosphate, and Entner Duoderoff catabolic

pathways that are all complete pathways in our sequence based

metabolic reconstructions of Rhodococcus (http://tinyurl.com/

GLC-6-P).

Figure 5. Screens of four bacterial species for growth on carbohydrates and alcohols. a) Compounds were clustered according to how
R. opacus PD630, R. jostii RHA1, C. glutamicum 13032, and R. eutropha H16 were able to grow on oligosaccharides from 2–4 days. Yellow indicates
evidence of growth. b) alcohol and monosaccharide compounds were clustered according to bacterial growth as in a. c) Comparison of three
Rhodococcus chromosomes revealed that R. opacus B4 and R. opacus PD630 shared two divergent operons dedicated to galactose and
oligogalactoside metabolism but R. jostii RHA1 only had a small piece of this chromosomal region containing the GalK and GalT genes omitting a-
and b-galactosidases, Solute Binding Protein (SBP), two Solute Binding Protein Transporter (SBPT) proteins, and a DeoR family transcriptional
regulatory protein.
doi:10.1371/journal.pgen.1002219.g005
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Galactose Metabolism Distinguishes Rhodococcus opacus
PD630

The compound-specific growth assays indicated that galactose

and oligogalactoside metabolisms differ between R. jostii RHA1

and R. opacus PD630 (Figure 5b). The ability of R. opacus PD630

to metabolize galactose enables efficient growth on the oligoga-

lactosides lactose, lactitol, melibionic acid, melibiose, lactulose,

raffinose, and stachyose (Figure 5a). A search of our metabolic

reconstruction for the genetic basis of the galactose phenotypic

differences between R. opacus PD630 and R. jostii RHA1 led to

identification of a galactose-catabolic region of Rhodococcus

genomes that is shared between the two R. opacus species B4

and PD630, but not in the closely related R. jostii RHA1 species.

Two divergent polycistrons in the galactose catabolic region are

fully syntenic between the R. opacus PD630 and R. opacus B4

species that contain the hydrolytic a- and b-galactosidases as well

as solute binding protein (SBP), solute binding protein transport-

ers (SBPT), and transcription regulatory protein of the DeoR

family (Figure 5c) that could collectively hydrolyze and transport

mono- and oligo-galactosides supporting growth on these

compounds.

Rhodococcus Degrades a Diverse Pool of Carboxylic Acids
Carboxylic acids appear to be an important carbon source for

Rhodococcus and R. eutropha H16. To determine the utilization of

carboxylic acids as carbons source, we tested 64 carboxylic acids

for growth using the previously described assay (Figure 6). These

analyses led to the identification of 39 growth substrates for R.

opacus PD630 and R. jostii RHA1 (61% of carboxylates tested), 15

growth substrates for C. glutamicum 13032 (21% of carboxylates

tested), and 34 growth substrates for R. eutropha H16 (53% of

carboxylates tested)(Figure 6). Acetic and propionic acids support

growth in all species tested as did other common intermediates in

central metabolism such as pyruvic, succinic, and citric acids. All

of the species tested grew on gluconic acid that is degraded by the

pentose phosphate pathway.

Similar to the observed galacto-saccharide phenotypes, R. opacus

PD630 uniquely degrades D-galactonic acid-g-lactone (Figure 6).

By contrast, growth on the short chain hydroxy acid glycolic acid

is specific to R. jostii RHA1 and R. eutropha H16 (Figure 6). Growth

was observed for the longer chain a and b hydroxybutyric acids by

both Rhodococcus species and R. eutropha H16, whereas weak growth

on c hydroxybutyric acid was again only seen for R. jostii RHA1

Figure 6. Screens of four bacterial species for growth on carboxylate compounds (organic acids). Compounds were clustered as in
Figure 5a.
doi:10.1371/journal.pgen.1002219.g006
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(Figure 6) suggesting that this species has a more diverse hydroxy-

acid metabolism.

R. opacus PD630, R. jostii RHA1, and R. eutropha H16 grew well

on the C10 dicarboxylate sebacic acid suggesting that b-oxidation

of these longer chain dicarboxylates provides rapid growth. b-

oxidation could also explain the growth on Tween 40 and Tween

80 compounds by Rhodococcus and Ralstonia (Figure 6). The Tween

compounds are converted to fatty acids upon ester-hydrolysis by

cutinase proteins encoded for in the genomes of Actinomycetales

[50]. Tween 20 supported growth of only R. eutropha H16 likely

due to toxicity for the other species resulting from the hydrolytic

release of a C12 fatty acid. C. glutamicum 13032 is limited in

carboxylates catabolism as seen by the inability to catabolize

sebacic acid and the longer chain Tween 40 and Tween 80

(Figure 6). A limited carboxylate catabolic-profile observed for C.

glutamicum 13032 in our growth assay is consistent with genes

missing for 3-hydroxyacyl-CoA dehydrogenase within the fatty

acids b-oxidation pathway (Figure 3a).

C. glutamicum Degrades Sialic Acid
The identification of the sialic acid or N-acetylneuraminic acid,

an abundant component of extracellular glycoproteins, as a

growth substrate for the soil bacterium C. glutamicum 13032

(Figure 6) was unexpected because this pathway has only been

described for bacteria that colonise animals [51,52]. Examination

of the C. glutamicum 13032 genome reveals a likely sialic acid

catabolic operon containing genes for a secreted sialidase (cg2935),

a sialic acid ABC transporter (cg2937–2940) of the satABCD type

seen in Haemophilus ducreyi [53] and a full set of catabolic genes

(cg2928–9 and cg2931–3) genes that would allow C. glutamicum to

degrade sialic acid to fructose-6-phosphate, pyruvate, and

ammonia [51]. A related but incomplete catabolic operon is seen

in C. diptheriae NCTC 13129. The sialic acid catabolic genes are

not conserved in the other species tested nor were related

transporters shown to facilitate uptake of sialic acid [54], consistent

with these phenotypic results.

Diverse Nitrogen Metabolism in Rhodococcus
Rhodococcus displayed the most diverse catabolism of nitrogenous

compounds in our species-comparative time course growth assays.

Clustered heats maps relating the time course growth of 38

nitrogenous compounds tested. 26 nitrogenous compounds

supported growth in at least one of the species tested (Figure

S12). A notable feature of the Rhodococcus species nitrogenous

metabolism is the ability to catabolize the branched amino acids

that result in the formation of propionoyl-CoA thereby establish-

ing a cycle of propionoyl-CoA in carbon storage and amino acid

catabolism (http://tinyurl.com/propionyl-CoA). A ranked order

list of growth values on 190 compounds for each species in the

screen is presented in Table S2.

Expanded Families of Membrane Transport Proteins in
R. opacus PD630

Comparison of the protein domains (Pfam database, Sanger

Institute UK) within a set of related Actinomycetales and the

Gram-negative outlier R. eutropha H16 revealed that the R. opacus

PD630 genome contained 3 membrane transport protein families

in the top 9 expanded families of total encoded protein domains

(Figure S13). The membrane transport major facilitator super

family (MFS) is the most prevalent Pfam domain in R. opacus

PD630. There are 229 MFS genes in R. opacus PD630 as

compared to 176 in R. jostii RHA1, 104 in R. eutropha H16, and 47

in C. glutamicum 13032 (Figure S14). The high relative number of

membrane transporters likely enables the broad catabolism we

observed in R. opacus PD630 and R. jostii RHA1.

Cholesterol Degradation by a Large Genomic Region
The ability to degrade sterols is shared between Rhodococcus and

Mycobacterium. Following intravenous injection, M. tuberculosis has

been observed to colonize lung tissue that is rich in lipid bodies

and cholesterol crystals [55]. Genetic analysis of M. tuberculosis

cholesterol catabolic pathways showed this sterol to be an essential

carbon source during M. tuberculosis infections in mouse lung

models [56,57,58]. Complete sterols degradation requires catab-

olism of both of the aliphatic branched side chain as well as the

terpene polycyclic rings; however catabolism studies of M.

tuberculosis showed that 14C labeling at the fourth position of the

steroid A ring was released as CO2; whereas the label at position

26 within the sterol branched side chain was converted into

phthiocerol dimycocerosate (PDIM) [57]. This study indicated

that part of the sterol was being degraded for energy and the other

was being used for assembly of cell wall associated branched-lipids.

Sterol A and B ring degradation results in propionoyl-CoA and

pyruvate while side chain degradation results in a 2:1 formation of

propionoyl-CoA: acetyl-CoA. In M. tuberculosis the the propionoyl-

CoA from cholesterol degradation is converted into methylmalo-

nyl-CoA then incorporated into branched-fatty acids such as

PDIM by the PKS12 MAS-family type 1b synthase

[35,37,43,44,59].

A large region (,0.28 Mb) of Rhodococcus chromosomal DNA

has been identified through transcriptomic and genetic analysis of

R. jostii RHA1 grown on cholesterol as a sole source of carbon

[60]. Within this large chromosomal region, there are six clusters

of genes that encode for the multiple enzymes dedicated to sterol

degradation including: membrane transport, side chain degrada-

tion, sterol A and B ring degradation, and sterol C and D ring

degradation, for recent review [61]. We performed whole genome

alignments between R. opacus PD630, R. jostii RHA1, and R. opacus

B4, M. sp JLS, M. vanbaalenii PYR-1, M. smegmatis MC2 155, M.

tuberculosis H37Rv, C. glutamicum 13032, and S. avermitilis MA 4680

to evaluate gene conservation within the six gene clusters

implicated in cholesterol degradation (Figure S14). We found

extensive conservation in the cholesterol degradation genes

between Mycobacterium and Rhodococcus as has been reported

previously [60]. Our analysis indicates Streptomyces contains many

of the key genes for cholesterol degradation but is lacking

homologues to the Mce sterol-transport genes [57]. C. glutamicum

13022 did not contain the genes implicated for cholesterol

degradation. The only major difference found between the

previously described sterol degradation chromosomal region in

R. jostii RHA1 and R. opacus PD630 is the presence of a transposase

gene in gene cluster 2 (OPAG_09155).

Discussion

The Rhodococcus genomes encode multiple biosynthetic pathways

for making lipids and expanded gene families within those

pathways that contribute to the diversity and abundance of lipid

products seen with some Actinomycetales. We demonstrated that

Rhodococcus TAGs contain the uncommon straight-chain odd-

carbon lipids pentadecanoate, heptadecanoate, and heptadeceno-

ate by mass and structural determination. The high abundance of

the straight-chain odd-carbon lipids are yield-controllable through

feeding of the three carbon organic salt propionate. Propionate is

converted to propionoyl-CoA, a metabolite that is generated

during the catabolism of the branched amino acids isoleucine,

valine, and threonine as well as sterols. Propionoyl-CoA levels
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likely increase intracellularly during nitrogen and glucose

starvation resulting from elevated protein and amino acid

degradation as the physiology of these cells adapt to these nutrient

limitations. Elevated propionoyl-CoA has been proposed to

explain increased production of the branched-lipid PDIM when

mycobacteria is grown on cholesterol as a sole source of carbon

[59]. The FAS type 1a protein in the genus Rhodococcus is highly

related to the mycobacterial protein that has been demonstrated to

incorporate propionoyl-CoA during de novo lipid biosynthesis and

produce lipids with the same lengths observed in the stored lipids

TAGs and WEs. Our genomic analysis indicates conservation of

all three interconnected lipid biosynthesis systems in Nocardiacae

and Mycobacterium namely FAS type 1a, MAS-family type 1b, and

FAS II. This group of bacteria also shares the ability to store lipids

in high abundance. This conserved lipid biosynthetic network

provides means for extrapolating functional information derived

from decades of lipid metabolism research in Mycobacterium to the

elaborate lipid metabolism in Rhodococcus.

Pharmacological studies in combination with enzyme activities

performed with purified systems demonstrated that Mycobacterium

uses FAS type 1a to convert two and three carbon organic acids

into straight-chain fatty acids containing 16, 18, 24, and 26

carbons [20,26,27]. FAS type 1a products are released as the –

CoA derivative of a fatty acid due to the dual activity of the FAS

type 1a malonyl palmitoyl transferase (MPT) domain [21]. The

FAS acyl-CoA products can then proceed through multiple lipid

biosynthetic pathways. Studies of mycobacterial lipid metabolism

have established a genetic model for this related oleaginous

bacterium that connects multiple biosynthetic systems for the

building of storage, plasma membrane, as well as very long chain

cell wall-associated lipids. The close phylogenetic relationship

between the genus Mycobacterium and Rhodococcus resulted from

common ancestry wherein these genera share many features of

their elaborate lipid metabolisms.

Much of what is known about Actinomycetales odd-carbon lipid

metabolism comes from work that described longer chain

extracellular lipids that are methyl-branched. Prior to this study,

it was unclear whether the ,C20 odd-carbon lipids in Rhodococcus

are methyl-branched as a result of incorporating methylmalonyl-

CoA [16]. Using 1H-NMR to analyze purified lipids we could

distinguish between the structural isomers of branched and

straight-chain fatty acids demonstrating that the stored odd-

carbon lipids in Rhodococcus are straight-chain. The odd-carbon

storage lipids in Rhodococcus could result from propionoyl-CoA and

malonyl-ACP condensing in the initiation phase of FAS type 1a

biosynthesis (Figure 1b). The substrate requirements for produc-

tion of straight-chain odd-carbon lipids matches the reported

substrate specificity of the multifunctional FAS type 1a enzyme

and its product chain lengths. The combination of metabolic

product identification and metabolic pathway mapping through

genomic sequence supports a serial order to the elaborate network

of lipid biosynthesis in Rhodococcus, similar to Mycobacterium,

wherein FAS type 1a initiates and elongates fatty acids releasing

–CoA products that are in the range of C16–C18 and C24–C26.

FAS produced fatty acyl-CoAs can be further elongated in the type

II system or by the MAS-family type 1b synthase.

The Rhodococcus type 1b synthase OPAG_06239, like the

homologous PKS12 gene from Mycobacterium, contains two

modules consisting of 6 protein domains in a direct repeat

(Figure 1d). The PKS12 enzyme displays dual specificity for

malonyl-CoA and methylmalonyl-CoA within the same polypep-

tide and oligomerizes in a tail-to-head fashion to perform multiple

elongation cycles on C16- and C18-CoA molecules resulting in C30–

34 multiply methyl-branched fatty acids. Enzyme assays with single

modules (6 domains) of PKS12 and site-specific mutations within

the PKS12 acetyl transferase (AT) domains demonstrated that the

N-terminal module incorporates methylmalonyl-CoA whereas the

C-terminal module incorporates malonyl-CoA [43]. This mode of

biosynthesis results in branched fatty acids that contain a methyl-

branch at every fourth carbon from the point of initial

condensation by the type 1b enzyme. This alternating of

elgonation substrates mechanism explains the curious methylation

at every fourth carbon in the mannosyl-b-1-phosphomycoketide

(MPM) molecules isolated from Mycobacterium [36]. In Mycobacte-

rium, the enzymes of the type 1b MAS-family and FAS II system

share a common preference for longer chain length fatty acyl-

CoAs resulting in the observed order in biosynthesis enzyme

activity. The order of conserved domains and sequence homology

of the Rhodococcus type 1b synthase OPAG_06239 suggests that this

enzyme will function similarly in some aspects of branched lipid

biosynthesis that is characteristic of the MAS-family enzymes in

the related Mycobacterium species; however no methyl-branched

lipids have been identified in Rhodococcus to date.

In species such as Mycobacterium that have both FAS type 1a and

1b synthases, there is a distribution in labor amongst the synthases

that is dictated by chain length; wherein FAS type 1a functions as

the initiating synthase and the type 1b synthase incorporates

methyl branch substrate methylmalonyl-CoA during lipid biosyn-

thesis of longer chain length lipids. In more distantly related

Actinomycetales, the genera Saccharopolyspora, Salinspora, Frankia,

and Streptomyces we observed a type 1b but no type 1a synthase

(Figure 1a); thus preventing the distribution of labor observed in

Nocardiacae and Mycobacterium. Streptomyces have been reported to

store abundant methyl-branched lipids [41] that are shorter in

chain length than those isolated from Mycobacterium. The

observation of odd-carbon lipids in the TAGs from Rhodococcus

intrigued us as a possibility that type 1b synthase activity was

contributing to the accumulated TAGs. The chemical analysis we

performed indicated the stored TAGs were straight-chain lipids of

the appropriate length to have been built by type 1a FAS through

iterative biosynthesis with two of this enzymes known substrates

(propionyl-CoA and malonyl-CoA). How is the strict distribution

of labor observed between type 1a and the other type II and 1b

synthases maintained in Nocadiacae and Mycobacterium? The

crystal structure of the related FAS from S. cerevisae [62] revealed

this synthase is a hexamer complex of apoenzymes. A hexamer

complex also explains the behavior in ultracentrifugation studies of

the FAS type 1a complex from mycobacteria [26]. The structural

studies of fungal FAS provided a structure-based model wherein

fatty acids are biosynthesized within the cavity of a 2.6 MDa b
barrel structure. The enzyme FAS-ACP domain with growing acyl

chain accesses individual catalytic domains shuttling biochemical

intermediates from one active site to the next within the FAS type

1a hexamer complex [62]. Fatty acid products of the appropriate

length are released as acyl-CoAs by the MPT domain of FAS type

1a. The FAS hexamer in Mycobacterium display a bimodal

distribution of product chain lengths that are (C16–18 and C24–26)

[26]. We propose the FAS 1a acyl-CoA products become

accessible to the other synthases once released from within the b
barrel structure of the FAS hexamer by the palmitoyl transferase

activity of the MPT domain.

Acetyl/acyl transferase (AT) domains in type 1 fatty acid

synthases display remarkable substrate diversity. In the type 1a

synthase, the AT domain loads acetyl–CoA on the FAS-ACP

domain then is subsequently transferred to a cysteine in the keto

synthase (KS) domain. The second substrate for condensation is

the elongation substrate malonyl-CoA that is transfered by the

FAS-MPT domain to the FAS-ACP domain then delivered to the
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KS domain for decarboxylating condensation with acetyl-CoA

resulting in acetoacetyl-ACP. The type 1b synthases that inititiate

fatty acid biosynthesis, like the mammalian FAS, lack the MPT

domain thus use their AT domain to load both acetyl-CoA and

malonyl-CoA. MAS-family type 1b enzymes display significant

substrate diversity by varying both the acyl substrates (acetyl-CoA,

acyl-CoAs) as well as elongation substrates (malonyl-CoA,

methylmalonyl-CoA). We found seven Actinomycetales genera

that contained the MAS-family type 1b synthases compared to 4

genera that encode the type 1a synthase. Six out of seven

Actinomycetales genera that encode type 1b synthases also encode

at least one storage enzyme of the DGAT/WE family. We

conclude the relatively widespread taxonomic representation of

the type 1b synthases and the diversity of substrates these enzymes

react on suggests that there are lipid variants yet to be identified.

The large number of genes dedicated to lipid metabolism in

Actinomycetales is the result of gene duplications, multifunctional

FAS type 1a and MAS-family type 1b gene emergence, horizontal

gene transfer, and emergence of the DGAT/WE enzymes that

catalyze the transesterification of fatty acyl-CoAs with diacylgly-

cerol. We performed phylogenetic analysis on genes identified by

metabolic reconstruction in an attempt to predict the most likely

activities for each enzyme encoded in the R. opacus PD630

genome. We used the TribeMCL algorithm to describe the size of

the gene family and all of the family members for a set of related

Actinomycetales. Phylogenetic tree formation with these related

species was used to resolve the orthologous from paralogous

enzymes, thus facilitating the extrapolation of functional data for

related proteins to our in silico model of Rhodococcus Opacuscyc14.5.

The broad catabolism and elaborate lipid biosynthesis described in

Rhodococcus indicates that there is substantial enzymatic activity on

chemically-related compounds that could be explained by

expansion in gene-family sizes and genetic drift to encode enzymes

with slightly variant substrate recognitions from ancestrally-related

enzymes but still catalyze similar chemical reactions. The 8632

genes in R. opacus PD630 provide a large arsenal of metabolic

enzymes for an oleaginous lifestyle within soil. We found protein

domains contained in transport proteins to be the most abundant

class of domains encoded in Rhodococcus as well as a distinctive

profile of transporter types that are distinguishing for Rhodococcus

(Figure S13). Identification of structural genes and operons that

play a role in the lipid body assembly process have already begun

to benefit from genomic sequence [63].

Chemoheterotrophic organisms capable of fermenting sugars

and a broad spectrum of organic compounds derived from

cellulosic and other natural resource biomasses through biocon-

version provides an industrial process to convert agricultural side-,

natural resource-, and industrial waste-streams into fungible fuels.

R. opacus PD630 differs from R. jostii RHA1 in its ability to

catabolize the cellulosic sugar galactose and oligogalactosides.

Both Rhodococcus species degraded the cellulosic sugars glucose and

rhamnose; however, none of the species tested were able to

degrade the disaccharide cellobiose containing b1–4 linked

glucose. Cellulose catabolism requires hydrolysis of b1–4 linked

glucose, indicating that these species do not encode for these

hydrolases. The most abundant component of hemicellulose is

xylan that is broken down to xylose. Consistent with the cellobiose

deficiency these species were unable to catabolize xylose. Genetic

complementation of cellulosic degradation pathways in Rhodococcus

provides a streamlined approach for cellulosic biomass conversion

into oil-based fuels. Rhodococcus species catabolized a diverse array

of carboxylic acids that corresponded to an expansion in the acyl-

CoA ligase gene family that link organic acids with biosynthesis

and catabolism. Organic acids are produced in the mixed-acid

fermentations of cellulose degrading organisms thus indicating a

potential next-generation strategy for 2-phase fermentations of

cellulosic biomass to TAGs that could be done without genetic

modification.

Our working model of the R. opacus PD630 metabolism began

with genome sequence that allowed phylogenetic comparisons to

be made with related species that have been studied in far greater

molecular detail. Phenotypic information about catabolism in

Rhodococcus provided a powerful multigenic test that guides the

metabolic reconstruction towards completion through phenotype-

directed pathway curation. Literature-based pathway curation

united the reported biochemical reactions of M. phylei FAS type 1a

protein with metabolic products that we purified and character-

ized during metabolic model refinement of R. opacus PD630. The

improvements to our genetic model of R. opacus PD630

metabolism provides a template for further refinement with the

integration of data from genetics, biochemistry, metabolomics,

lipidomics, and transcriptomics that will be the focus of future

work.

Materials and Methods

Bacterial Species Used in This Study
R. opacus PD630 was obtained from the DSMZ strain 44193. R.

eutropha H16 ATCC17699 and C. glutamicum ATCC13032 were

from ATCC. R. jostii RHA1 was a gift from Lindsay Eltis at the

University of British Columbia.

Rhodococcus opacus PD630 DNA Sequencing and
Genome Annotation

Genomic DNA was extracted from R. opacus PD630 as in [64]

without the addition of mutanolysin. Genomic DNA was

sequenced at 454 Life Sciences (A Roche Company) according

to manufacturer protocol for shotgun (Rapid Library) and 3 kb

paired-end reads using GS FLX Titanium sequencing chemistry.

The resulting DNA sequence was assembled using the GS De Novo

Assembler software version 2.0. Open Reading Frames (ORFs)

were predicted from assembled genome sequence using a

combination of in silico ORF predictions and gene mapping from

the annotated R. jostii RHA1 genome. In silico ORFs were

predicted using GeneMark [65] and Glimmer3 [66]. For synteny

based gene-mapping Nucmer [67] was used to find local

alignments between every contiguous sequence read (contig) in

the R. jostii RHA1 and every contig in the R. opacus PD630. A

whole-genome synteny map was then built from these local

alignments by chaining together collinear hits, allowing up to

10,000 bases of undetectable similarity between anchors, then

filtering out chains that overlap a larger chain on either sequence

by more than 90% of their length. The remaining chains,

corresponding to syntenic regions of DNA, were globally aligned

using LAGAN [68]. Each transcript in the R. jostii RHA1 genome

was mapped onto the R. opacus PD630 by attempting two mapping

techniques and then selecting the transcript with the higher-

scoring global alignment to the reference transcript’s coding

sequence. The first method projects the boundaries of each gene

onto the target genome using the coordinates in the raw whole-

genome alignment. The second method uses the whole-genome

alignment to define a target region containing the reference

transcript, and then uses GeneWise to build a gene model by

aligning the reference protein to the target region. Final ORFs

were defined by comparison of in silico ORFs and mapped ORFs

with hits to Pfam [69] and the top blast hits against the non-

redundant protein database. ORFs with overlap to non-coding

RNA features (see below) were reviewed and removed when
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appropriate. Discrepancies in the final ORFs were resolved via

manual review. Ribosomal RNAs (rRNAs) were identified with

RNAmmer [70]. The tRNA features were identified using

tRNAScan [71]. Other non-coding features were identified with

RFAM [72]. Every annotated gene in the Rhodococcus opacus PD630

genome is assigned a locus number of the form OPAG_#####
both at the Broad Institute web site and in GenBank with

accession ABRH01000000.

Stitching the Genome Assembly Based on Synteny
The R. opacus PD630 V3 genome assembly contained 293

(contigs), containing 16 scaffolds longer than 2,000 residues. The 16

large scaffolds of the R. opacus PD630 genome, 10 of which were

largely syntenic with R. jostii RHA1 and R. opacus B4 linear

chromosomes, were ordered and oriented to reflect the observed

synteny followed by the smaller contigs. Nucmer and mummerplot,

components of the mummer 3.0 software package [67], were used to

align the genomes and create graphical representations of those

alignments. The mummerplot graph files were annotated to show

boundaries between each of the scaffolds in the mummerplot graphs.

Through manual inspection of these graphs, the syntenic order and

orientation of these contigs were assembled into a stitched FASTA

file with the addition of 500 N nucleotides at scaffold termini.

Metabolic Reconstruction
Enzymes for nine comparative species in Opacuscyc14.5_com-

pare were computationally predicted using the EFICAz2 algo-

rithm, enzyme prediction using gene-name matching, pathway

prediction [24], transcription unit prediction [73], transporter

prediction [74], and pathway hole filling [75] was performed with

the Pathway Tools 14.5 software [24]. These databases can be

accessed at (http://rhodocyc.broadinstitute.org). In addition,

Opacuscyc14.5_working also predicted enzymes using homology

to proteins with an EC# assignment in the database at Kyoto

Encyclopedia of Gene and Genomes KEGG (http://www.

genome.jp/kegg/). Subsequent literature-based manual curation

was used to refine Opacuscyc14.5 TAGs biosynthesis and

degradation cycle.

Phylogenetic Analysis of FAS, MAS, PKS12, and DGAT
Gene Families

A set of directed gene pairs was generated by performing an all-

against-all BLASTP search (min % aligned = 10 and e-va-

lue,1e25) between a comparative set of genomes (all accession

numbers available in Table S3). Genes were clustered using

OrthoMCL [76] with a Markov inflation index of 1.5 and a

maximum e-value of 1e25. Gene clusters were identified to which

the M. tuberculosis FAS, MAS, PKS12, and DGAT genes belonged

to. These clusters had all members plotted on the AMPHORA

phylogenetic tree of the Actinobacteria [28]. In the phylogenetic

analysis of FAS genes, we included three fungal FAS genes and

two stramenopile FAS genes, while in the phylogenetic analysis of

MAS-family genes we added four animal FAS genes. Amino acid

sequences were aligned using MAFFT [77] using the E-INS-i

method. A maximum likelihood phylogeny was estimated using

the PROTGAMMABLOSUM62 model in RAxML [78] with

1000 bootstrap replicates. FAS type 1a protein alignments were

visualized using Jalview [79] and domains were annotated based

on predictions from the Conserved Domain Database [80].

Phylogenetic Resolution of Acc and DGAT Proteins
A custom blast database containing seven Rhodococcus &

Mycobacterium genomes, including R. opacus B4, R. opacus PD630,

R. jostii RHA1, M. tuberculosis H37Rv, M. vanbaalenii PYR-1, M. sp

JLS & M. leprae Br4923 was generated. Protein sequences

annotated as either AccA or AccD within Mycobacterium tuberculosis

H37Rv were identified and accessions extracted into separate lists,

whereas the WS/DGAT protein accessions were identified from

the R. jostii RHA1 genome annotation. Each set of amino acid

sequences were blasted against the database using BLASTP with

an expect threshold of 1E230. Unique matches were identified and

whole sequences extracted for alignment with MUSCLE v3.7

[81], using a maximum of 24 iterations. Alignments were

manually checked with ClustalX v2.0 [82], at which point WS/

DGAT sequences without any residues aligning to the proposed

active site motif (H[L/S/P]xxxDG) [4] were rejected. The

multiple sequence alignments were converted to phylip format

for passing to ProtTest v2.4 [83], which determines the best-fit

substitution model and produces a phylogenetic tree with

maximum likelihood estimation, using PhyML v3.0 [84]. Newick

formatted trees were represented with iTOL [85].

Mass and Structural Analysis of Odd-Carbon Lipids
GC-MS analyses were conducted on a TraceGC Ultra DSQ

mass spectrometer (Thermo Scientific) equipped with an AT-5 ms

column from Alltech (60 m60.25 mm i.d. 60.25 mm df). The

injector and transfer line were maintained at 280uC while the ion

source was set at 180uC in electron ionization (EI) mode. High

purity helium was used as carrier gas at a flow rate of 1 mL/

minute. The sample was injected onto the column in split mode

and heated at 40uC for a minute. The GC oven temperature was

increased to 280uC at 20uC per minute.

The NMR spectra were recorded on a Varian Inova

instrument, operating at 500 MHz for 1H and 125 MHz for
13C, equipped with a three channel, 5 mm, indirect detection

probe, with z-axis gradients. The solvent was chloroform-d, and

the temperature was 25uC. The chemical shifts for 1H were

referenced to the residual solvent signal, 7.27 ppm on the

tetramethylsilane scale. Proton spectra were acquired in 4

transients, with a 30u pulse, an acquisition time of 5 s and no

relaxation delay. The intensity of the signals was referenced to

the signal of the terminal methyl in the alkyl chain, at 0.88 ppm,

3H.

Purifications of Odd-Carbon Lipids
100 ml cultures of R. opacus PD630 and R. jostii RHA1 were

grown in defined media [5] with substitution of 1% propionate/

0.056% NH4SO4 for 1 week at 30uC with agitation followed by

addition of 1 gram of propionate from sterile 20% stock solution.

50 mls of culture was collected after 2 weeks by pelleting and

freeze dried prior to lipid extraction. 50 mg of dried cells were

transesterified in a 2 ml volume of 50% CHCl3/42.5% methanol/

7.5% H2SO4 for 2.5 hours at 100uC in sealed 166125 ml glass

tubes (Kimble Glass Co.). Rhodococcus fatty acid methyl esters

(FAMEs) preps were then concentrated under a stream of N2,

resuspended in dichloromethane (DCM), and analyzed (10-mL

injections) using an Agilent 1050 High Performance Liquid

Chromatography (HPLC; Agilent Technologies, Inc, Wilmington,

DE USA) coupled to a Wakosil II RS-Prep C18 column (5 mm,

20 mm6250 mm; Wako Chemicals USA, Inc., Richmond, VA

USA) and a Sedere Sedex 75 Evaporative Light Scattering

Detector (ELSD; SEDERE, Alfortville Cedex, France) for

determination of relevant fractionation range. The ELSD drift

tube was set at 50uC, and the air nebulization pressure at 3.5 bar.

The dual solvent system used is a linear gradient program based

on the method published by Mansour [86], with an extended run

time, and substitutes (DCM) for chloroform. Starting with 98%
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acetonitrile (MeCN) and 2% DCM, the program ramps to 60%

MeCN linearly by 100 minutes, holds at that ratio until

105 minutes, then ramps to 100% DCM by 110 minutes holding

until 115 min, and returns to the starting conditions by

120 minutes. Methyl 12-methyltetradecanoate (C15:0) and Methyl

16-methylheptadecanoate (C18:0) branched FAMEs standards

(Sigma) were used to determine the HPLC retention times of

analytes of interest. Fractions were collected for each FAME

species: 17:1 eluted at 12.8 minutes, C 15:0 eluted at 13.5, C17:0

eluted at 16.6 minutes for subsequent GC-EI-MS and 1H-NMR

analysis.

TLC purification of TAGs was performed as previously

described for single solvent system [5] followed by scraping of

the TAG species that were detected by water staining. Scraped

TAGs were extracted with 1:1 (vol/vol) chloroform methanol for

1 Hr prior to filtration with 0.2 mM PTFE membrane (VWR

International). Extracts were dried under nitrogen then subjected

to transesterification and analyzed by (GC-FID) [5].

TAGs Cycle Comparative Analysis
R. opacus PD630 TAGs cycle genes were identified through

metabolic reconstruction and literature-based curation. The

genes assigned to biochemical reactions within the TAGs cycle

were analyzed to identify all significant gene pairs (BLASTP,

E, = 1e-5) followed by Markov clustering as implemented by

TribeMCL [42]. Candidate gene families were then aligned using

MAFFT [77] and manually curated in Jalview 2.6.1 [79] using

neighbor joining trees and curation of alignments. Because we

were classifying by EC number which is a broad classification of

function and not necessarily homology, a strict cutoff for percent

overlap or percent similarity was not used to retain as many

members of particular EC category as annotated in KEGG

(http://www.genome.jp/kegg/). A full list of curated EC #
related Gene families implicated at each biochemical step of the

TAGs cycle are represented with 11 other bacterial species in

Table S4. Multiexperiment viewer [87] was used to hierarchically

cluster the species in the TAGs cycle and visualize in a heat map.

Clustering was pearson correlated with average linkage. The

threshold for color-saturation was set to 15 genes per reaction

category.

Phenotype Growth Assays on 190 Compounds
Chemical compounds capable of supporting growth as a sole

source of carbon were identified using a tetrazolium-based growth

assay developed by Biolog Incorporated; wherein growth of cells

and aerobic respiration were measured by Dye D (Biolog, Inc)

reduction resulting in purple color and turbidity read at 590 nm

absorbance in Fluorostar plate reader. Innoculation cultures were

grown for 1 day on LB agar plates at 30uC from which 3.8E23

ODu/well were transferred from 0.5 ml water resuspensions after

measurement in nanodrop (Thermo Scientific) at 600 nm. During

growth, plates were wrapped in aluminum foil and measured at

44, 72, and 96 hours. The measured A590 values were normalized

by first subtracting values from uninoculated plates. The average

of normalized values were background subtracted with average

values of inoculated wells that lacked a carbon source (negative

control). The background subtracted growth values were separated

into chemical categories by filtering compound classifications in

Excel. The normalized growth values for each compound were

clustered using Cluster 3.0 [88] with centered correlation. Heat

maps were generated in Java TreeView 1.1.3 [88]. Growth

substrates were identified at 96 hours incubation for compounds

that had A590 values .0.2.

Supporting Information

Dataset S1 Multiple sequence alignment of Rhodococcus FAS type

1a protein. To visualize multiple sequence alignments of FAS type

1a protein 1) download jalview http://www.jalview.org/ 2) open

Jalview 3) input alignment file: FAS_type1a_MSA.fa (Dataset S1)

4) load features features/annotations FAS_protein_domains_

jalview.txt (Dataset S2).

(TXT)

Dataset S2 Protein domain annotation of FAS type 1a synthase.

Load onto multiple sequence alignment according to instructions

presented in Dataset S1.

(TXT)

Figure S1 Extensive synteny between three Rhodococcus species.

Alignment of the assembled and stitched R. opacus PD630 draft

genome with R. jostii RHA1 (top panel) and R. opacus B4 (bottom

panel). Green lines indicate the end of completed genome

replicons and purple lines show the ends of R. opacus PD630

assembled scaffolds that were aligned and orientated manually.

(EPS)

Figure S2 Outline of metabolic reconstructions steps used to

generate the Opacuscyc14.5_working model.

(EPS)

Figure S3 Genomic and metabolic features of a comparative set

of bacterial species. Left panel is a single-copy phylogenetic tree

built from a common set of 701 genes present in all of the genomes

of these select Actinomycetales. The 701 genes were compared at

the DNA sequence level to establish phylogenetic relationships for

each species. The bootstrap values are represented adjacent to the

nodes. The branch length (scale bar) reflects the average number

of substitutions/nucleotide. In the right panel, the predicted

proteome from each organism was functionally categorized by

protein homology according to KEGG orthology. The heat map

represents hierarchical clustering of the number of genes in each

category with the set of species being compared. Color scale bar

on bottom indicates number of different genes in each category

with a range from 0 to .400 genes. The bottom panel chart

presents general genomic features of a comparative set of species.

(EPS)

Figure S4 Phylogenetic trees of acetyl- and propionoyl-CoA

carboxylases. Closest matches of R. opacus PD630 proteins to

AccA and AccD proteins that have been functionally character-

ized in Mycobacterium are designated with the number of each

isozyme (AccA1,2,3 and AccD1,2,3,4,5,6). AccA proteins detect-

ed in each species represented as (species, number of homologous

proteins): (R. opacus B4, 11), (R. opacus PD630, 12), (R. jostii RHA1,

11), (M. vanbaalenii PYR-1, 5), (M. sp JLS, 6), (M. tuberculosis

H37Rv, 4), (M. leprae Br4923, 1). AccD proteins detected in each

species represented as (species, # of homologous proteins): (R.

opacus B4, 20), (R. opacus PD630, 21), (R. jostii RHA1, 21), (M.

vanbaalenii PYR-1, 12), (M. sp JLS, 13), (M. tuberculosis H37Rv, 9),

(M. leprae Br4923, 4).

(EPS)

Figure S5 The biochemical reactions of the TAGs cycle. The

TAG metabolic cycle consists of 5 phases: 1) initiation to make

acyl primers, 2) elongation by FAS to make C16–C26 fatty acyl-

CoAs, 3) transesterification of fatty acyl-CoAs with glycerol, 4)

hydrolysis of fatty acids from glycerol, and 5) b-oxidation of the

released fatty acyl-CoAs. The EC numbers are used to describe

the biochemical reactions and the color scheme, similar to

Figure 3, indicates the number of genes implicated through
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metabolic reconstruction and TribeMCL gene-family analysis for

each reaction.

(EPS)

Figure S6 A phylogenetic tree of the diacylglycerol acyl

transferases (DGATs). The closest match in R. opacus PD630 to

the genes defined previously in R. jostii RHA1 are labeled with an

atf gene number outside of the circular phylogenetic-tree [30]

(originally named through identification in Acinetobacter baylyi).

DGAT/WS proteins detected in each species represented as

(species, number of homologous proteins): (R. opacus B4, 9), (R.

opacus PD630, 14), (R. jostii RHA1, 16), (M. vanbaalenii PYR-1, 12),

(M. sp JLS, 14), (M. tuberculosis H37Rv, 12), (M. leprae Br4923, 1).

(EPS)

Figure S7 Glucose fermentation analytics for R. opacus PD630

and R. jostii RHA1. Top panel plots shows decreases in

ammonium sulfate in the culture media (blue) and increases in

residual cell dry weight (red) (total cell weight – total lipids) during

fermentation on glucose. Bottom panel plots show depletion of

media glucose concentration and increasing total fatty acids

(green).

(EPS)

Figure S8 GC and EI coupled mass spectra of pentadecanoic

acid. GC-MS of C15:0 purified from Rhodococcus (GC-MS top

panel, GC-EI-MS bottom panel).

(EPS)

Figure S9 GC and EI coupled mass spectra of heptadecanoic

acid. GC-MS of C17:0 purified from Rhodococcus (GC-MS top

panel, GC-EI-MS bottom panel).

(EPS)

Figure S10 GC and EI coupled mass spectra of heptadecenoic

acid. GC-MS of C17:1 purified from Rhodococcus (GC-MS top

panel, GC-EI-MS bottom panel).

(EPS)

Figure S11 1H-NMR of FAMEs of C15:0, C17:0, and cis-C17:1

purified from Rhodococcus. Control lipids were FAMEs of branched

16-methyl-heptadecanoate and linear pentadecanoate.

(EPS)

Figure S12 Screens of four bacterial species for growth on

nitrogenous compounds. Nitrogen-containing compounds were

clustered according to how R. opacus PD630, R. jostii RHA1, C.

glutamicum 13032, and R. eutropha H16 were able to grow on them

from 2–4 days. Yellow indicates evidence of growth. 38

Nitrogenous compounds including many amino acids were tested

for growth. R. opacus PD630 catabolized 25 nitrogenous com-

pounds as the sole carbon source (66%), R. jostii RHA1 catabolized

28 compounds (74%), C. glutamicum 8 (23%), and R. eutropha H16

11 (38%). The cyclical amino acid L-pyroglutamic acid was able to

support growth in all species tested whereas the zwitterion L-

glutamic acid was a weaker growth substrate. A notable feature of

amino acid catabolism was observed for both Rhodococcus species

and R. eutropha H16 contained the catabolic pathways for the

branched amino acids, L-isoleucine, L-threonine, and L-valine

catabolism. The catabolic pathways for branched amino acids

result in the formation of propionoyl-CoA a substrate in the

biosynthesis of stored odd-carbon lipids containing as presented

here.

(EPS)

Figure S13 ORFs from genome annotation were searched for

recognizable Pfam protein domains. The number of protein

domains found within each species genomes are presented in a

heat map with hierarchical-clustering clustering of species and

rank-order of the most abundant domains in R. opacus PD630 (top

to bottom).

(EPS)

Figure S14 The cholesterol degradation region of the R. opacus

PD630 genome. The chromosomal region of R. opacus PD630

genome containing 6 clusters of cholesterol degradation genes

were mapped from the R. jostii RHA1 genome [61]. At the top of

each cluster there is a nucleotide ruler for the stitched R. opacus

PD630 genome. Below that are the genes with name and an

orientation. Below the genes is a contig marker in blue that shows

one contig without gaps contains the cholesterol degradation

region for all six gene clusters. Below the contig marker there are

multiple sequence alignments showing blocks of sequence

homology in green (top strand) and purple (bottom strand). The

names of the species containing the homology sequence are shown

within the block of homology.

(EPS)

Table S1 Correlation table for growth of R. opacus PD630 on

190 chemical compounds between predictions from metabolic

reconstruction and observed phenotypes. Correlation categories

are named with respect to predictions from the metabolic

reconstruction model of R. opacus PD630. A true positive encodes

a complete compound degradation pathway in the metabolic

reconstruction and the chemical compound supports growth of R.

opacus PD630. A true negative lacks a complete compound

degradation pathway and growth is not observed on that

compound. A false negative lacks a complete degradation pathway

but growth on the compound was observed. A false positive

predicted growth but no growth was observed. The calculations

and values for precison, recall, false-positive-rate, false-negative

rate, specificity, and accuracy are detailed within the figure. The

initial comparicyc_model metrics were compared to the more

advanced opacus_working model metabolic reconstruction by

calculating a delta-by-refinement; wherein the opacus_comparicyc

values were subtracted from the opacus_working values.

(PDF)

Table S2 Four species of bacteria were screened for growth on

190 chemical compounds. Worksheet 1 compound normalized

and background subtracted growth values. Column A) compounds

used as a sole source of carbon. Column B) Chemical Abstract

Service (CAS) chemical identification number for compounds

tested as growth substrates. Column C) the chemical category for

the compound tested. Column D) the average values after

subtraction of the chemicals in the wells without cells 44 hours

after inoculation of R. opacus PD630. Column E) the standard

deviation of the compound subtracted values after 44 hours of

growth. Column F) background subtracted growth wherein the

average values of six negative controls that contain inoculated cells

but no carbon growth substrate were used to further subtract

590 nm absorbance that is independent of growth on each carbon

source. Columns (G–I) are processed in the same way for the

72 hour time point as was done for the 44 hour time points

(Columns D–F). The 96 hour time points are represented in

columns (J–L). R. jostii RHA1 growth value measurement for time

points 44, 72, and 96 hours are presented in Columns (O–U). C.

glutamicum 13032 growth value measurement for time points 44,

72, and 96 hour time points are presented in (Columns V-AD). R.

eutropha H16 growth value measurement for time points 44, 72,

and 96 hour time points are presented in Columns (AE–AM).

Worksheet 2 presents the values from worksheet 1 ranked for R.

opacus PD630 background subtracted growth values at the 96 hour

time point. Worksheet 3 presents the values from worksheet 1
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ranked for R. jostii RHA1 background subtracted growth values at

the 96 hour time point. Worksheet 4 presents the values from

worksheet 1 ranked for C. glutamicum 13032 background subtracted

growth values at the 96 hour time point. Worksheet 5 presents the

values from worksheet 1 ranked for R. eutropha H16 background

subtracted growth values at the 96 hour time point.

(XLS)

Table S3 Genebank accession numbers for species used in

comparative analysis. Column1_ Species name Column 2)

Genbank genome accession numbers for comparative set of

species.

(XLS)

Table S4 TribeMCL analysis of TAGs cycle genes implicated

through metabolic reconstruction. Column A) presents the

TribeMCL cluster identification number containing all homolo-

gous genes for 12 species. Column B) describes the bacterial

species. Column C) presents the gene count for the whole

TribeMCL analysis of the TAGs cycle. Column D) the EC

number for the biochemical reactions within the TAGs cycle.

Column E) LocusId is the gene identification (Broad) and locustag

(NCBI). Column F) gene length. Column G) gene name.

(TXT)
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