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Inmultiple sclerosis (MS), whitematter damage is thought to contribute to cognitive dysfunction, which is espe-
cially prominent in secondary progressive MS (SPMS). While studies in healthy subjects have revealed patterns
of correlated fractional anisotropy (FA) across white matter tracts, little is known about the underlying patterns
of white matter damage in MS. In the present study, we aimed to map the SPMS-related covariance patterns of
microstructural whitematter changes, and investigatedwhether or not these patterns were associatedwith cog-
nitive dysfunction.
Diffusion MRI was acquired from 30 SPMS patients and 32 healthy controls (HC). A tensor model was fitted and
FAmapswere processed using tract-based spatial statistics (TBSS) in order to obtain a skeletonisedmap for each
subject. The skeletonised FA maps of patients only were decomposed into 18 spatially independent components
(ICs) using independent component analysis. Comprehensive cognitive assessment was conducted to evaluate
five cognitive domains. Correlations between cognitive performance and (1) severity of FA abnormalities of
the extracted ICs (i.e. z-scores relative to FA values of HC) and (2) IC load (i.e. FA covariance of a particular IC)
were examined.
SPMS patients showed lower FA values of all examined patterns of correlated FA (i.e. spatially independent com-
ponents) than HC (p b 0.01). Tracts visually assigned to the supratentorial commissural class were most severely
damaged (z = −3.54; p b 0.001). Reduced FA was significantly correlated with reduced IC load (i.e. FA covari-
ance) (r=0.441; p b 0.05). Lowermean FA and component load of the supratentorial projection tracts and limbic
association tracts classes were associated with worse cognitive function, including executive function, working
memory and verbal memory.
Despite the presence of whitematter damage, it was possible to reveal patterns of FA covariance across SPMS pa-
tients. This could indicate that whitematter tracts belonging to the same cluster, and thuswith similar character-
istics, tend to follow similar trends during neurodegeneration. Furthermore, these underlying FA patterns might
help to explain cognitive dysfunction in SPMS.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Multiple sclerosis (MS) is a progressive, inflammatory demyelinat-
ing and neurodegenerative disease of the central nervous system,
which is commonly diagnosed in young adults (Lublin et al., 2014). Al-
though the clinical course of MS patients is characterised by
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heterogeneous symptoms, the majority of MS patients develop a pro-
gressive phase of the disease (i.e. secondary progressive (SP) MS),
after an initial relapsing-remitting course (i.e. relapsing remitting (RR)
MS) (Lublin et al., 2014). Cognitive impairment is observed in 40 to
65% of the MS patients and occurs in all types of MS (Chiaravalloti and
DeLuca, 2008).

Cognitive dysfunction might, in part, arise from damage to white
matter tracts that connect distant brain regions (Dineen et al., 2009).
In MS, transected axons due to focal white matter lesions and diffuse
white matter injury might eventually lead to less dense and efficient
connections between regions. Using diffusion tensor imaging (DTI),
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2016.06.009&domain=pdf
0opyright_ulicense
http://dx.doi.org/10.1016/j.nicl.2016.06.009
mailto:k.meijer@vumc.nl
Journal logo
http://dx.doi.org/10.1016/j.nicl.2016.06.009
0opyright_ulicense
http://www.sciencedirect.com/science/journal/22131582
www.elsevier.com/locate/ynicl


124 K.A. Meijer et al. / NeuroImage: Clinical 12 (2016) 123–131
white matter abnormalities have been consistently observed in MS pa-
tients with diverse disease courses (Roosendaal et al., 2009; Hulst et al.,
2013; Bodini et al., 2009). DTI parameters, including fractional anisotro-
py (FA), reflect the integrity of white matter tracts (Pierpaoli et al.,
1996) and provide in vivo information about white matter alterations
in neurodegenerative disease (Basser et al., 1994).

Recent studies have demonstrated that independent component
analysis (ICA) applied to DTI data reveals specific patterns of covariance
between FA values (i.e. correlated FA) across white matter tracts in the
healthy population (Li et al., 2012). Such covariance is believed to result
from underlying phylogenetic and/or functional relationships between
white matter tracts (Wahl et al., 2010; Dubois et al., 2008). Although
loss of white matter integrity is observed in MS patients, little is
known about the underlying patterns of white matter damage. It
might be that white matter tract damage occurs in a random fashion,
however, it could also be that white matter tracts with similar morpho-
logical characteristics show similar degrees of white matter damage.

We hypothesise that (1) white matter pathology, as reflected by re-
duced FA values, is non-random, (i.e., pathology in MS tends to distrib-
ute according to the patterns of covariance); and (2) that patterns of
microstructural pathology in part explain cognitive dysfunction. There-
fore, the aim of the present studywas to identifywhether or not specific
patterns of microstructural changes occur across white matter tracts in
SPMS, and to investigate whether or not these patterns of FA covariance
were associated with cognitive performance.

2. Methods

2.1. Participants

Thirty SPMS patients (20 women; mean age = 53 years (range 36–
65)) attending the MS clinics at the National Hospital of Neurosurgery
and Neurology and 32 healthy controls (HC) (20 women; mean
age = 41 years (range 21–65)), who did not have any neurological or
neuropsychiatric disorders, were recruited (Table 1). These patients
were diagnosed according to the Lublin and Reingold criteria (Lublin
and Reingold, 1996). None had a clinical relapse within three months
of their clinical examination and magnetic resonance imaging (MRI)
scans.
Table 1
Demographic, clinical, neuropsychological and MRI characteristics.

SPMS Healthy controls P-values

Demographic and clinical characteristics
N 30 32
Age (years) 53 (36–65) 41 (21–65) b0.01
Sex (M/F) 10/20 10/22 0.86
Time walked test (seconds) 81.7 (4.7–180.00) 5.0 (3.2–7.3) b0.001
9HPT (seconds) 59.3 (20.6–300.00) 19.3 (16.1–25.0) b0.001
PASAT-3 (seconds) 32.9 (14–59) 49.3 (21-60) b0.001
Disease duration (years) 20 (8–48)
EDSS 6.5 (4.0–8.5)

Neuropsychological characteristics
Processing speed (z-score) −2.1 (1.1) 0 (0.9) b0.001
Verbal memory (z-score) −1.4 (1.2) 0 (0.8) b0.001
Visual memory (z-score) −1.4 (1.1) 0 (0.7) b0.001
Executive function (z-score) −2.2 (2.5) 0 (0.7) b0.01
Working memory (z-score) −0.7 (0.9) 0 (1.0) 0.02

MRI characteristics
NBV (mL) 1.19 (1.2) 1.32 (0.12) b0.001
NGMV (mL) 0.69 (0.7) 0.77 (0.7) b0.001
Lesion volume (mL) 7.26 (0.80–32.04)

For demographic and clinical characteristics mean scores (range) were provided. Neuro-
psychological characteristics are expressed as mean z-scores (standard deviation (SD)).
Mean z-scores were obtained by using cognitive scores of controls as reference. MRI char-
acteristics are expressed as mean (SD). SPMS: secondary progressive multiple sclerosis;
HC: healthy controls; EDSS: Expanded disability status scale; PASAT-3: Paced auditory se-
rial attention test-3 seconds; TWT: Timed walk test; 9HPT: Nine-hole peg test.
The jointMedical Ethics Committee of theNational Hospital for Neu-
rology and Neurosurgery and the UCL Institute of Neurology approved
the study. Written and informed consent was obtained from all
participants.

2.2. Neuropsychological and physical evaluation

On the day of scanning, all patients and a subset of the HC (N= 23)
underwent neuropsychological evaluation of cognitive domains often
impaired in MS. Processing speedwas assessed using the Paced Audito-
ry Serial Addition Test-3 seconds (PASAT-3) (Gronwall, 1974) and Sym-
bol Digit Modalities Test (SDMT) (Smith, 1982). Verbal memory was
assessed using the immediate and 30-minute delayed Story Recall Test
(SRT) from the adult memory and information processing battery
(AMIPB, Coughlan and Hollows, 1985) and the Recognition Memory
Test (RMT) for words (Warrington, 1984). Visuospatial memory was
measured using the immediate and 30-minute delayed complex Figure
Recall Test (FRT) from theAMIPB and RMT for faces (Warrington, 1984).
Executive function was assessed using the Stroop colour-word interfer-
ence test (Stroop, 1935) and Hayling Sentence Completion Test
(Burgess and Shallice, 1997). Working memory was assessed with the
Digit-Span, a subtest of the Wechsler Adult Intelligence Scale-III
(Wechsler, 1997). For each cognitive domain, single test scores were
transformed into z-scores and averaged. The z-scores were computed
based on the cognitive performance of the HC. In addition, MS partici-
pants underwent neurological assessment, including the Expanded Dis-
ability Status Scale (EDSS) to assess disease severity (Kurtzke, 1983)
and Multiple Sclerosis Functional Composite (MSFC) subtests (Cutter
et al., 1999).

2.3. MRI and DTI acquisition

Magnetic resonance imaging (MRI) scanning was performed on a
Philips Achieva 3T system (Philips Healthcare, Best, The Netherlands)
using a 32-channel receive-only head-coil. All subjects underwent a
whole-brain, cardiac gated, spin-echo diffusion-weighted sequence
(TR = 24.000 ms; TE = 68 ms; 72 axial slices with an isotropic 2 mm
resolution) with 61 volumes with non-collinear diffusion gradients (b-
value of 1200 s mm−2) and 7 volumes without directional weighting.
For white matter lesion detection, turbo spin-echo dual-echo proton
density- and T2-weighted images were obtained (TR = 3500 ms;
TE = 19/85 and 50 axial slices, 1 × 1 × 3 mm3; FOV 240 × 180 mm2).
Lesion marking was carried out by an experienced rater (VS) using
JIM version 5 (Xinapse Systems, Northants). Additionally, a three-di-
mensional inversion-prepared fast spoiled gradient recall (3D FSPGR)
T1-weighted sequence of the brain was conducted (TR = 13.3 ms;
TE = 4.2 ms; inversion time = 450 ms; 124 contiguous axial slices;
slice thickness of 1.5 mm; FOV 300 × 225 mm; matrix size 256 × 160
(reconstructed to 256 × 256 for a final in plane resolution of
1.17 mm)). Normalised grey matter volume (NGMV) was computed
from segmented lesion filled T1-weighted images (Chard et al., 2010)
using SIENAX software.

2.4. DTI pre-processing and tract-based spatial statistics (TBSS)

After correction of motion and eddy-current distortions using
FMRIB's Linear Image Registration Tool, a diffusion tensor model was
fitted on a voxel-by-voxel basis to the DTI of all subjects using DTIFIT
from the FMRIB's Diffusion Toolbox (FSL, FMRIB Image Analysis Group,
Oxford, UK). FA images were derived from this tensor. The default
tract-based spatial statistics (TBSS) pipeline (FSL version 5.0.2) was
used to align all FA images to a common target and to create a mean
‘skeletonised’ FA image. For each subject the maximum FA value per-
pendicular to each voxel of the skeletonwas projected onto the skeleton
(Smith et al., 2006).
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2.5. DTI independent component analysis

Following the procedure described by Li et al. (2012), independent
component analysis (ICA) was applied to the “skeletonised” FA maps
of the SPMS patients only to estimate patterns of covariance between
voxel-based FA values of white matter tracts after spatial normalisation
using TBSS (Li et al., 2012). The aligned individual FA skeletons of the
Fig. 1. Data analysis flow chart: Subjects' FA values were projected onto a common white matt
group of FA skeletonmaps into 18 spatially independent components (ICs) (middle row). ICA re
context to the across subject variation in FAvalues for that particular IC. High variance in FA of a p
(i.e. IC1 in red and IC2 in blue) show voxels for which the FA values within eachmap co-vary ac
legend, the reader is referred to the web version of this article.)
SPMS patients were concatenated across subjects to create a single 4D
data set. Using ICA implemented in the Group ICA fMRI Toolbox
(GIFT) and the FastICA algorithm, it was possible to decompose this
concatenated dataset into 18 independent components (ICs) in total
(Fig. 1). The resulting 18 spatial maps of the ICs show voxels for which
the FA values within eachmap co-vary across individuals and represent
clusters of white matter tracts that were spatially independent. For the
er skeleton using TBSS (top row). Independent component analysis (ICA) decomposes the
turns for each component a spatialmap and component loading,which corresponds in this
articular component, results in a low component load. The resulting spatialmaps of the ICs
ross individuals (bottom row). (For interpretation of the references to colour in this figure



Table 2
Extracted independent components were assigned to six different white matter classes.

Class
Independent
component Prominent WM structures

I. Supratentorial commissural
tracts

IC1 Anterior commissure
IC2 Splenium of corpus

callosum
Genu of corpus callosum

IC5 Body of corpus callosum
II. Supratentorial projection
tracts

IC6 Optic radiations
IC10 Anterior thalamic radiation
IC14 Posterior limb of internal

capsule
IC18 Corticospinal tract

III. Neocortical association
tracts

IC4 Inferior fronto-occipital
fasciculus

IC11 Superior longitudinal
fasciculus

IV. Limbic association tracts IC3; IC12; IC17 Cingulum
IC 7; IC15 Uncinate fasciculus
IC15 Fornix

V. Brainstem and Cerebellum IC8 Superior cerebellar
peduncle

IC9 Middle cerebellar peduncle
VI. Undefined WM tracts IC13; IC16

WM: white matter; IC: independent component.
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anatomical localization of white matter tracts associated with the ICs
the John Hopkins University white matter tractography atlas was used
(Mori et al., 2005). Additionally, following the classification suggested
by Li et al. (2012), ICs were assigned to six distinct classes by visual in-
spection, based on their dominant anatomic features. These anatomical-
ly familiar classes of white matter tracts included the supratentorial
commissural tracts (class I), supratentorial projection tracts (class II),
neocortical association tracts (class III), limbic association tracts (class
IV), thalamus, brainstem and cerebellum (class V) and an undefined
class (class VI). ICs assigned to the same classes were depicted in one
spatial map. ICA returns for each IC the corresponding component load-
ing per subject, which corresponds in this context to the FA covariance
of a particular IC. Higher values reflect a higher degree of FA covariance,
whereas lower values reflect a lower degree of FA covariance within an
IC. For analysis and illustration purpose an index number was assigned
to each IC (Fig. 1). A composite score was computed from the mean
component loads of all ICs assigned to the same class. Additionally, bina-
ry masks were created by thresholding the obtained ICs at the signifi-
cance level in order to extract FA values. After that, severity of white
matter damage of each IC was quantified by converting FA values to z-
scores, based on the mean and standard deviations of FA values of
healthy controls (Schoonheim et al., 2014). A composite scorewas com-
puted from the mean FA z-scores of all ICs assigned to the same class.

2.6. Statistical analysis

Statistical analyses were performed using SPSS software, version 21
(Chicago, Illinois, USA). All variables were checked for normality using
Kolmogorov-Smirnov testing and histogram inspection. FA z-scores for
each class and cognitive test scores were compared between SPMS pa-
tients and HC using a one-way between group analysis of covariance
(ANCOVA) including age and sex as covariates.

Two different approaches were applied in order to investigate the
association between cognitive performance and white matter patterns
by using Pearson's product moment correlations: 1) correlations be-
tween FA z-scores of each white matter class, which corresponds to
the degree of white matter damage within patterns belonging to the
same class, and test scores for the different cognitive domains were
assessed; and 2) correlations between IC load (i.e. degree of FA covari-
ance), which corresponds in this context to the FA covariance of a par-
ticular IC per subject, and cognitive test scores were assessed.
Additionally, correlations between IC load and conventional MRI mea-
sures (i.e. log-transformed whole brain lesion load, whole brain FA
and normalised grey matter volume) were examined.

For correlations between mean FA z-scores for the different classes
and cognitive performance p values b0.05 were considered as signifi-
cant, whereas a more stringent alpha level of p b 0.01 was considered
as significant for correlations between single IC scores and cognitive
test scores to compensate for the number of tests.

3. Results

3.1. SPMS-related white matter patterns

In SPMS, 16 out of 18 extracted ICswere associatedwith anatomical-
ly recognisable white matter tracts. The components were visually
grouped into separate classes depending on the tract anatomy (as
done by Li et al., 2012) (Table 2).

Out of the five classes previously proposed (Li et al., 2012), we iden-
tified four classes, including the supratentorial commissural tracts,
supratentorial projection tracts, neocortical association tracts and limbic
association tracts. Although ICs belonging to the thalamus were not
identified, ICs belonging to the brainstem and cerebellum were ob-
served, which partly represented the fifth class as described by Li et al.
(2012). Two components were not obviously associated to specific
white matter tracts (i.e. IC13 and IC16) andwere assigned to a separate
‘undefined’ sixth class.

3.1.1. Class I: The supratentorial commissural tracts
ICs maps predominantly corresponding to supratentorial commis-

sural tracts were assigned to the first class. The first class included 3
components (IC1, IC2 and IC5) andwasmainly represented by the ante-
rior commissure and the body, splenium and genu of the corpus
callosum (Fig. 2A).

3.1.2. Class II: The supratentorial projection tracts
The second class contained four IC maps (IC6, IC10, IC14 and IC18)

predominantly corresponding to the supratentorial projection tracts.
This second class showed bilateral symmetry, encompassing the
corticospinal tract, optic radiations and anterior thalamic radiations
(Fig. 2B).

3.1.3. Class III: The neocortical association tracts
The third class, the neocortical association tracts, included 2 compo-

nents (IC4 and IC11), corresponding to the superior longitudinal fascic-
ulus, inferior fronto-occipital fasciculus and inferior longitudinal
fasciculus (Fig. 2C). For these IC maps bilateral symmetry was observed
as well.

3.1.4. Class IV: The limbic association tracts
Five IC maps (IC3, IC7, IC12, IC15 and IC17) in which the dominant

anatomical features corresponded to the limbic association tracts were
assigned to the fourth class. These IC maps predominantly represent
represented the fornix, uncinate fasciculus, dorsal and ventral part of
the cingulum (Fig. 2D).

3.1.5. Class V: Cerebellum and brainstem
The fifth class consisted of two IC maps (IC8 and IC9) that were

largely overlapped with the middle and superior cerebellar peduncles
(Fig. 2E).

3.1.6. Class VI: Undefined white matter
The sixth class consisted of two components (IC13 and IC16) that

showed non-localised patterns and were therefore not clearly associat-
ed with specific tracts.



Fig. 2. Spatial maps of the different white matter classes: (A) supratentorial commissural tracts consisting of IC1 (red), IC2 (blue) and IC5 (green); (B) supratentorial projection tracts
consisting of IC6 (light blue), IC10 (green), IC14 (red) and IC18 (blue); (C) neocortical association tracts consisting of IC4 (blue) and IC11 (green); (D) limbic association tracts
consisting of IC3 (pink), IC7 (green), IC15 (blue) and IC17 (red); (E) brainstem and cerebellum consisting of IC8 (red) and IC9 (blue). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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3.2. Severity of white matter class specific damage

When looking at the FA z-scores of the differentwhitematter classes
(i.e. FA z-scores of ICs belonging to the samewhitematter classwere av-
eraged), significantly lower FA values were observed for all examined
classes in SPMS patients relative to HC. The ‘supratentorial commissural
tracts’ class was the most abnormal (z-score = −3.54; F = 45.06;
p b 0.001), followed by the ‘cerebellum and brainstem’ class (class V)
(z-score=−3.24; F=33.46; p b 0.001), whereas the ‘neocortical asso-
ciation tracts’ class (class III) was the least severely affected (z-
score = −1.68; F = 8.74; p b 0.01).

3.3. Association between classes' specific white matter integrity and cogni-
tive performance

Lower FA averaged across the ‘supratentorial projection tracts’ class
was associated with worse averaged cognition (r = 0.413; p = 0.03).
Additionally, lower mean FA of this class was also associated with
worse executive function (r = 0.399; p = 0.03), whereas lower mean
FA of the ‘limbic association tracts’ class was significantly correlated
with worse visuospatial memory (r = 0.364; p = 0.04).

3.4. Associations between component load and cognitive performance

When looking at the association between IC load (i.e. FA covariance
of a particular IC) for the different white matter classes (i.e. component
load scores of ICs belonging to the same white matter class were aver-
aged) and cognitive performance of several domains, a significant corre-
lation was observed between IC load for the ‘supratentorial projection
tracts’ class and executive function (r = 0.368; p = 0.02) and IC load
for the ‘limbic association tracts’ and visuospatial memory (r = 0.409;
p = 0.03).

When looking at the association between IC load of single ICs and
cognitive performance, the load for IC1 was significantly correlated
with verbal memory (r = 0.523; p b 0.01), working memory (r =
0.663; p b 0.001), executive function (r=0.469; p ≤ 0.01) and averaged
Fig. 3. The independent component load (i.e. FA covariance of a particular independent compon
for thefirst independent component, predominantly represented by the anterior commissure an
(C) verbal memory.
cognition (r=0.590; p b 0.001) (Fig. 3). The load for IC6was correlated
with processing speed (r = 0.479; p b 0.001). All these correlations in-
dicated that a lower degree of FA covariance was associated with worse
performance on several cognitive domains.

3.5. Associations between component load,whitematter damage and lesion
load

FA values of the different white matter classes were strongly corre-
lated with the IC load of their corresponding class. Mean FA values of
class I (r = 0.740; p b 0.001), class II (r = 0.485; p b 0.01), class III
(r = 0.665; p b 0.001), class IV (r = 0.441; p = 0.02) and class V
(r=0.583; p b 0.01) were correlated with IC load of the corresponding
classes; in particular, lower mean FA values were correlated with lower
component loadings (i.e. lower FA covariance). Additionally, lesion load
was significantly correlated with the component load corresponding to
IC1 (r=−0.591; p b 0.001) meaning a higher lesion load was associat-
ed with lower FA covariance.

4. Discussion

By using ICA applied to skeletonised FA maps of SPMS patients, we
have found that pathology in white matter tracts does not occur in a
random fashion, and instead occurs in more regional patterns. In addi-
tion, both white matter integrity and microstructural covariance of IC
regions were of relevance for cognitive function.

4.1. Patterns of covariance between white matter tracts

A recent study by Li and colleagues has demonstrated that FA values
of white matter tracts, tracts segments and group of tracts co-vary in
healthy subjects (Li et al., 2012). Furthermore, these patterns of corre-
lated FA were grouped by location (Li et al., 2012). In our study, despite
the presence of white matter pathology, patterns of FA covariance were
observed in SPMS patients and appeared to visually overlap, at least par-
tially, with the findings in healthy controls (Li et al., 2012). The ICs were
ent) was associatedwith cognitive performance. Correlations between across-subject load
d cognitive z-scores,were significant for (A)workingmemory, (B) executive function and
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visually assigned to six different classes and localised substantial seg-
ments of white matter tracts rather than single voxels. This suggests
that white matter tracts belonging to the same IC tend to follow similar
trends during neurodegeneration.

Significant loss of white matter integrity was observed in all exam-
ined IC classes, with the supratentorial commissural class being most
abnormal. Segments of the corpus callosum and anterior commissure
were assigned to this particular class. Diffuse and focal whitematter pa-
thology is commonly observed in MS. However, most of the in vivo im-
aging studies examined samples primarily or solely compromising
patients with relapsing remitting (RR) MS (Dineen et al., 2009;
Roosendaal et al., 2009; Schoonheim et al., 2014; Yu et al., 2012; Hulst
et al., 2013). In the progressive phase of the disease the extent and se-
verity of diffuse white matter injury of the so-called normal-appearing
white matter is increasing (Kutzelnigg et al., 2005). The degree of
white matter damage in SPMS patients became especially apparent in
post mortem studies, in which SPMS patients were predominantly in-
cluded (Schmierer et al., 2007; Kolasinski et al., 2012). Although these
studies thoroughly examined the degree of white matter abnormalities
in MS, they did not take into account that specific patterns of correla-
tions exist in DTI parameters. However, a few studies have attempted
to investigate spatial characteristics of grey matter pathology in MS
(Audoin et al., 2006; Battaglini et al., 2009; Pagani et al., 2005). A recent
study demonstrated that cortical atrophy occurs largely in a non-ran-
dom fashion as well (Steenwijk et al., 2016).

For other neurodegenerative disorders than MS, only a few studies
have examined patterns ofwhitematter damage. A recent study applied
ICA on skeletonised FA images of Alzheimer's patients and healthy con-
trols and found reduced FA of several ICs as well (Ouyang et al., 2015).
Additionally, in our study loss of white matter integrity (i.e. reduced
FA) was associated with less covariance in FA (i.e. lower IC loads) of
the corresponding IC.
4.2. Underlying mechanisms of microstructural correlations

The biological basis ofmicrostructural correlations in thewhitemat-
ter is not fully understood, there are several possible explanations for
this. In health, the variation in the rate of development of myelin
might underlie the interdependence of several white matter tracts
(Lebel et al., 2008; Dean et al., 2015; Cohen et al., 2016). For example,
frontotemporal connections seemed tomature relatively slow, whereas
left-right hemispheric connections show the most rapid development
(Lebel et al., 2008). It might be that the spatial variation in the develop-
ment of white matter tracts results in tracts with different microstruc-
tural characteristics (Lebel et al., 2012; Yeatman et al., 2014). Thereby
it is thought that anatomical connectivity patterns might be the under-
lyingmechanism of these correlations (Li et al., 2012). Therefore, loss of
structural network integrity might explain the less coherent ICs ob-
served in SPMS patients than previously observed in healthy controls.
Since the strongest correlations for FA values have been observed be-
tween homologous tracts in healthy subjects (Wahl et al., 2010), it is
likely to observe a certain degree of symmetry in ICs. However, in
SPMS the symmetry of the ICS appears to be only marginal. This could
because of the involvement of commissural tracts in the pathogenesis
of MS (Cader et al., 2007; Kern et al., 2011), which makes it less likely
that FA values of bilateral white matter tracts were strongly related in
SPMS.

However, despite the presence of less symmetrical and coherent
correlated segments of white matter tracts, the identified patterns of
correlated FA indicated that white matter damage still occurs predomi-
nantly in a more non-random fashion. This might correspond to the
finding that the effect of focal white matter damage could disseminate
throughout white matter tracts by means of both anterograde (e.g. to-
wards the end point of a tract) and retrograde (e.g. towards the source
of a tract) axonal degeneration (Trapp and Stys, 2009).
4.3. Cognition and changes in FA patterns

Cognition depends not on the function of single brain regions, but
can be assigned to several brain regions that interact and exchange in-
formation (Bressler and Menon, 2010). Although previous studies
havemainly investigated how the integrity of singlewhitematter tracts,
or a cluster of voxels, contributes to cognitive decline in MS (Dineen et
al., 2009; Roosendaal et al., 2009; Yu et al., 2012), in this studywe inves-
tigated whether patterns of white matter integrity underlie cognitive
functions in MS patients. Two different approaches were applied to ex-
amine the relationship between FA patterns and cognitive function.
First, we extracted FA values from the obtained ICs and correlated
mean FA z-scores of the different classes with scores for the cognitive
domains. Loss of white matter integrity (i.e. reduced FA) of ICs assigned
to the ‘supratentorial projection tracts’ class and ‘limbic association
tracts’ class were correlated with worse performance on several cogni-
tive domains. Although earlier studies did not examined patterns of
white matter damage, similar trends were observed previously. More
extensive WM abnormalities were associated with worse performance
on several cognitive domains in those with secondary progressive MS
(Francis et al., 2014; Meijer et al., 2016). Second, the mean IC load for
each class and single component loads were correlated with scores for
the different cognitive domains. These results indicated that both a
greater severity of white matter damage (i.e. reduced FA) and a lower
degree of FA covariance (i.e. IC load) were associated with worse cogni-
tive performance. Our results suggest that the loss of underlying FA pat-
terns is associated with cognitive dysfunction. A lower degree of FA
covariance could indirectly reflect that structural network integrity is
compromised. The strongest correlation between cognitive perfor-
mance and co-varying FA patternswas observed for the first IC assigned
to the “supratentorial commissural tracts” class, consisting of tracts
connecting the two hemispheres. It is, however, important to note
that the composite score for the component loadings of all ICs assigned
to this class were not significantly correlated with cognitive perfor-
mance. Nevertheless, the importance of commissural tracts for cogni-
tive function in MS has been previously reported. Several studies
pointed out the relevance of reduced white matter integrity of tracts
connecting the right and left hemispheres for cognitive dysfunction in
MS (Dineen et al., 2009; Roosendaal et al., 2009; Schoonheim et al.,
2014). Since FA values were correlated with ICs loads, the different ap-
proaches resulted in overlapping findings. However, the correlations
between cognitive scores and ICs loads were slightly higher than
those with FA values.

4.4. Limitations, future directions and conclusion

ICA applied to DTI parameters is an automated extraction method
and requires no a priori hypothesis since it is fully data-driven. In this
study, the ICs derived from the diffusion data of SPMS patients were vi-
sually compared to previously published data from healthy participants
(Li et al., 2012). Recently, ICAwas applied to concatenateddiffusion data
from both healthy controls and Alzheimer's patients (Ouyang et al.,
2015). However, this approach was based on the assumption that sub-
jects from different groups have common ICs and thus the same under-
lying pattern of white matter integrity. For future studies it would be
interesting to statistically compare differences in white matter patterns
without assuming that ICs are similar between groups. Additionally,
studies with a larger sample size are needed to investigate factors that
potentially influence the microstructural correlations, such as age, sex
and level of education. Given the innovative character and the limited
number of subjects included, this should be considered an exploratory
study. Nevertheless, considering the number of statistical tests, there
may be an increased risk of type I errors, which should be taken into ac-
count in the interpretation of our results. However, for an alpha level of
0.05 one would expect on average 1 out of 20 false positive results
which makes it unlikely that type I errors account for all our significant
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results. For the correlation analyses between specific components and
cognitive performance a more stringent alpha level of 0.01 was used.
In this study we only explored the covariance of FA in SPMS patients,
but more microstructural information might be obtained by using
other diffusion measures as well. In addition, between patient differ-
ences regarding pathology, such as differences in lesion location and
the presence of more destructive lesions may influence the observed
white matter patterns of FA covariance and should be explicitly taken
into account. Last, future studies including a broader range of people
with MS can help us to examine exactly how white matter patterns
change along the disease course. Here, we studied only SPMS patients
with advanced disease progression. Since more severe loss of white
matter integrity was associated with loss of FA covariance, we expect
that the patterns of FA covariance will be more pronounced and similar
to healthy controls in earlier phases of the disease.

In conclusion, this study has shown non-random patterns of white
matter FA in MS patients, and the integrity and coherence of these pat-
terns - asmeasured using FA -were positively associatedwith executive
function, working memory and verbal memory. The structural sub-
strates of these patterns, and the pathological processes that disrupt
them, are not known yet. However, our results suggest that they are
clinically relevant in people with MS, and therefore may usefully be
the subject of further investigation.
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