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Introduction

A predominant independent risk factor for peripheral artery 
disease is the excessive engagement in sedentary behav-
iours,1,2 defined as any waking behaviour characterized by 
an energy expenditure ⩽ 1.5 metabolic equivalents while in 
a sitting, reclining, or lying posture.3 Existing research in 
laboratory settings have demonstrated that acute bouts of 
prolonged sitting (i.e., ⩾ 3 h) attenuate lower-limb FMD 
responses.4–6 Furthermore, Thosar et al.5 demonstrated that 
periodically breaking up an uninterrupted bout of sitting 
preserved FMD. Although these studies have provided 
insight into the vascular implications following a single 
bout of sitting in lab-based settings only, our understanding 
regarding the impact of habitual sedentary time or patterns 
on popliteal endothelial health in a free-living environment 
is unknown. The purpose of this study was to determine 

whether sedentary time and patterns measured in a free-
living environment were associated with popliteal endothe-
lial-dependent vasodilatory function. It was hypothesized 
that greater total habitual sedentary time, an increased 
number of prolonged sedentary bouts, and fewer sedentary 
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breaks would be associated with lower popliteal FMD 
responses.

Methods

Participants

Based on a moderate effect size (f2 = 0.2) and eight predic-
tor variables, a sample size calculation estimated that 84 
participants were needed using a multiple regression model 
assuming a two-tailed, α = 0.05 and β = 80% power 
(G*Power, v3.1).7 To minimize the effects of fluctuating 
hormonal levels, naturally menstruating younger females 
were tested 1–5 days following the start of menstruation, 
and those using oral contraceptives were assessed during 
the placebo pill phase. Postmenopausal females were not 
using  hormonal replacement therapy. Participants’ activ-
PAL™ data have been previously presented.8 However, the 
current purpose and statistical analyses were independent 
from this previous report, which did not examine peripheral 
vascular function. Prior to testing, verbal and written 
informed consent were acquired. All protocols and proce-
dures conformed to the Declaration of Helsinki and were 
approved by the Dalhousie University Health Sciences 
Research Ethics Board.

Habitual activity monitoring

The FMD assessments (see below) were completed in a 
thermoneutral environment (21°C), 6 hours postprandially, 
after participants had refrained from vigorous physical 
activity for 24 hours and caffeine and alcohol for 12 hours. 
Participants were equipped with an activPAL inclinometer 
(Pal Technologies Ltd, Glasgow, UK), a valid and reliable 
measure of habitual sedentary patterns and physical activ-
ity.9 Using standardized procedures, the activPAL was 
waterproofed and secured using Tegaderm™ transparent 
medical dressing (3M, London, ON, Canada) to the midline 
of their right anterior thigh.10 Participants wore the activ-
PAL 24 hours per day for a minimum of 5 days (6.4 ± 0.8 
d).10–12

The activPAL data were analyzed using a customized 
LabVIEW program (LabVIEW 2018; National Instruments, 
Austin, TX, USA) that estimated waking hours and summa-
rized daily averages of waking hours spent in sedentary pos-
tures. Since FMD responses are attenuated following 1 hour 
of sitting,5 we defined prolonged sedentary bouts as ⩾ 1 hour 
in duration. Participants self-reported their waking hours to 
accommodate activPAL analysis. Sedentary breaks were cal-
culated per waking hour. Physical activity intensity was 
determined using step rate thresholds for younger13 and older 
adults.14 All habitual sedentary and physical activity data 
were analyzed by a researcher blinded to participant pop-
liteal outcomes. Our analysis program has previously dem-
onstrated excellent inter-observer reliability.8

Systemic hemodynamics

Heart rate (HR) was determined from a lead II electrocardi-
ogram configuration. Beat-by-beat systolic (SBP) and 

diastolic blood pressure (DBP) were measured via finger 
photoplethysmography (Portapres®; Finapres Medical 
Systems, Amsterdam, The Netherlands). The Portapres 
height correction unit accounted for deviations in the verti-
cal distance between the heart and the pressure cuff. 
Intermittent brachial SBP and DBP were determined using 
an automated vital signs monitor (Carescape V100; General 
Electric Healthcare, Mississauga, ON, Canada) to calibrate 
the Portapres waveform (Figure 1). The electrocardiogram 
and Portapres waveforms were sampled at 1000 Hz and 200 
Hz, respectively, using a PowerLab data acquisition system 
(PL3508 PowerLab 8/53; ADInstruments, Sydney, 
Australia). LabChart software (Version 8; ADInstruments) 
was used to view recorded signals in real-time and for 
offline analysis. At least 5 minutes of supine data were aver-
aged to represent resting systemic hemodynamic outcomes. 
Mean arterial pressure (MAP) was calculated using the 
equation: ⅓SBP + ⅔DBP.

Popliteal artery endothelial-dependent 
assessments

Popliteal assessments were conducted following published 
guidelines.15 With participants in the prone position, a pres-
sure cuff was secured around the widest circumference of 
the calf and attached to a rapid inflation system (E20 and 
AG101; Hokanson, Bellevue, WA, USA). The cuff was 
inflated to the supra-systolic pressure of 250 mmHg for 5 
minutes to ensure distal ischemia was maintained. 
Endothelial-dependent vasodilatory function was assessed 
via duplex ultrasonography using a 12-MHz multifre-
quency linear array probe (Vivid i; General Electric 
Healthcare). The left popliteal artery was imaged proximal 
to the bifurcation at, or slightly above, the popliteal fossa 
by experienced operators (MWO, JAJ, JLP). Our lab has 
demonstrated intra-tester coefficients of variation of 2.2% 
and 4.2% for baseline diameter and relative popliteal FMD, 
respectively.16 Specifically, we blindly analyzed the same 
ultrasound recording for 20 participants on two different 
occasions, and the variation was calculated for each record-
ing as: [(difference between 2 measurements/average 
value) × 100%]. Red blood cell velocity (RBCv) was con-
tinuously recorded using a pulsed frequency of 5 MHz and 
an insonation angle of 60° that was maintained across all 
participants.15 Superior and inferior edges of the pulsed-
wave sample volume were adjusted to encompass the entire 
arterial lumen, as recommended in published guidelines.15

Artery lumen diameter, RBCv, and shear rate (SR) were 
analyzed using an automated, commercial edge-detection 
and wall-tracking software (FMD Studio, Cardiovascular 
Suite; Quipu srl, Pisa, Italy) that has been previously dem-
onstrated to have high reproducibility with the analyses of 
popliteal FMD using this software.4,16,17 Measures of pop-
liteal blood flow, SR, shear rate area under curve (SRAUC), 
and absolute and relative FMD were determined  
using standardized calculations.18–20 The statistical 
assumptions required to conduct allometric scaling or 
SRAUC-normalization of FMD were not met. Specifically, 
the regression between relative FMD (β = 8.33E–5, 95% 
CI = 1.81E–5, 14.85–5; y-intercept = 3.566, 95% CI = 
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2.821, 4.311) and absolute FMD (β = 4.19E–6, 95% CI = 
–0.01E–6, 8.38E–6; y-intercept = 0.175, 95% CI = 0.175, 
0.271), with SRAUC did not have an intercept of zero.

Statistical analysis

All participant descriptive characteristics (sex via inde-
pendent samples t-test), habitual physical activity and sed-
entary patterns, systemic hemodynamic, and popliteal data 
were entered into a bivariate correlation to determine if 
they were univariately related to relative or absolute FMD. 
All univariately related (p < 0.05) predictor variables were 
entered into a multiple regression model. Measures exhibit-
ing high multicollinearity (variance inflation factor ⩾ 2.5 
and condition index > 15) were removed from the model. 
Primary models included moderate physical activity 
(MPA), mean RBCv, and total time in sedentary bouts > 1 
hour in lieu of daily step counts, resting blood flow, and 

number of sedentary bouts > 1 hour due to multicollinear-
ity, respectively. The primary model was selected based on 
the strongest R2 value. Alternate models are presented in 
online Supplemental Table 1. The predicted residuals of all 
models were confirmed normal via a Shapiro–Wilk test. 
Partial correlations were conducted for all significantly 
related predictor variables identified from the multiple 
regressions. All statistical analyses were completed in IBM 
SPSS, Version 26.0 (IBM Corp., Armonk, NY, USA). 
Statistical significance was accepted as p < 0.05. All data 
are presented as means ± SD.

Results

Ninety-eight healthy, normotensive adults (53 females) 
were included in the present study (n = 34 older than 55 
years). Table 1 includes the descriptive characteristics, sys-
temic and popliteal hemodynamics, and physical activity 

Figure 1. Hemodynamic data collection was performed in the supine position and featured a lead II electrocardiogram 
configuration, finger photoplethysmography (Portapres; Finapres Medical Systems, Amsterdam, The Netherlands), and automated 
brachial blood pressure assessments (Carescape V100; General Electric Healthcare, Mississauga, ON, Canada) (A). With 
participants in the prone position, a pressure cuff was secured around the widest circumference of the calf. The endothelial-
dependent vasodilatory function was assessed via duplex ultrasonography using a 12-MHz multifrequency linear array probe (Vivid 
i, General Electric Healthcare) (B). Participants were equipped with a waterproofed activPAL inclinometer on the midline of their 
right anterior thigh using Tegaderm medical dressing to quantify sedentary and physical activity patterns (C).
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monitoring outcomes. All predictor variables in Table 2 
were univariately associated with popliteal FMD (all, p < 
0.047). For absolute popliteal FMD, there was no univari-
ate relationship with total sedentary time (Figure 2A). The 
final multiple regression model accounted for ~44% of the 
variance in absolute FMD (R = 0.666, p < 0.001). Age, 
peak diameter, MPA, RBCv, total time in sedentary bouts 
> 1 hour (Figure 2B), and sedentary breaks (Figure 2C) 
remained as independent predictors (Table 2). Partially 
controlling for all independent predictors simultaneously 
did not alter this relationship (all, p < 0.031).

Total sedentary time was not univariately related with 
relative FMD (Figure 2D). The model explained ~40% of 
the variance of relative FMD (R = 0.634, p < 0.001), with 
age and total time in sedentary bouts > 1 hour (Figure 2E) 

Table 1. Participant descriptive characteristics, systemic hemodynamics, and habitual and sedentary activity.

Sample (n = 98; 53 females)

Mean ± SD Range

Descriptive characteristics
 Age (years) 39 ± 21 19–77
 Height (m) 1.71 ± 0.10 146–193
 Body mass (kg) 74 ± 13 41–105
 Body mass index (kg·m–2) 25.3 ± 3.7 17.7–40.6
Systemic hemodynamics
 Resting heart rate (beats·min–1) 67 ± 10 44–92
 Systolic blood pressure (mmHg) 118 ± 11 90–140
 Diastolic blood pressure (mmHg) 66 ± 10 32–89
 Mean arterial pressure (mmHg) 84 ± 8 65–102
Popliteal hemodynamics
 Baseline diameter (mm) 6.14 ± 1.11 4.01–10.77
 Red blood cell velocity (cm·s–1) 4.7 ± 1.8 1.6–9.8
 Blood flow (mL·min–1) 88 ± 43 22–215
 Shear rate (s–1) 54 ± 30 7–152
Flow-mediated dilation
 Peak diameter (mm) 6.41 ± 1.13 4.01–10.81
 Absolute FMD (Δmm) 0.26 ± 0.12 0.03–0.55
 Shear rate area under curve (a.u.) 9739 ± 5981 2100–37,270
 Time to peak diameter (s) 96 ± 27 40–166
Habitual activity
 Standing time (min·day–1) 360 ± 99 152–733
 Waking time (h·day–1) 17.3 ± 1.18 14.8–20.2
 Sleeping time (h·day–1) 6.9 ± 1.8 3.8–9.2
Habitual physical activity
 Step count (steps·day–1) 9700 ± 3131 4409–18,259
 LPA (min·day–1) 67 ± 22 11–145
 MPA (min·day–1) 32 ± 17 5–89
 VPA (min·day–1) 4 ± 5 0–34
 MVPA (min·day–1) 37 ± 20 6–108
Habitual sedentary activity
 Total time (min·day–1) 505 ± 124 256–782
 Number bouts < 1 h (bouts·day–1) 46 ± 12 21–85
 Total time < 1 h bouts (min·day–1) 337 ± 78 209–592
 Number bouts > 1 h (bouts·day–1) 1.9 ± 0.9 0.3–5.2
 Total time > 1 h bouts (min·day–1) 170 ± 92 28–519
 Breaks (breaks·waking h–1) 2.8 ± 0.7 1.4–4.8

FMD, flow-mediated dilation; LPA, light-intensity physical activity; MPA, moderate-intensity physical activity; MVPA, moderate–vigorous intensity 
physical activity; VPA, vigorous-intensity physical activity.

remaining as the only independent predictors. Partially 
controlling for all independent predictors simultaneously 
did not alter this relationship (p < 0.01). Sedentary breaks 
were univariately (positively) correlated with relative FMD 
(Figure 2F).

Discussion

The purpose of this study was to test the hypothesis that 
higher total habitual sedentary time, fewer breaks in pro-
longed sedentary bouts, and an increase in the number of 
prolonged sedentary bouts would be associated with worse 
(i.e., lower) popliteal FMD responses. Our results support 
that increased engagement in habitual sedentary bouts > 1 
hour and fewer sedentary breaks were associated with 



124 Vascular Medicine 27(2)

poorer popliteal endothelial-dependent vasodilation. In 
contrast to our hypothesis, total sedentary time was not 
associated with popliteal FMD responses.

Our results demonstrate that lower popliteal FMD was 
related to total time in prolonged bouts of sedentary time > 
1 hour (Figure 2B/E). This observation is consistent with 
laboratory studies, which demonstrated that acute pro-
longed bouts of sedentary time decreased lower-limb FMD 
responses.4,5,21 As a lower-limb vessel, the popliteal artery 
is highly susceptible to decreases in blood flow and subse-
quent shear stress that accompanies bouts of sedentary 
activity.16,22,23 Restaino et al.24 reported that sitting-induced 
popliteal endothelial dysfunction is mediated by a reduc-
tion in local shear stress which explains how habitual pro-
longed bouts of sedentary time may attenuate FMD 
responses. Specifically, habitual exposure of the popliteal 
artery to reduced local shear stress during prolonged seden-
tary bouts creates a pro-atherosclerotic environment that 
promotes endothelial dysfunction and increases the risk of 
atherosclerosis.25 Although we cannot determine the exact 
mechanism responsible for our cross-sectional observa-
tions, more total time in prolonged bouts of sedentary time 
was associated with poorer lower-limb endothelial health. 
Interestingly, total sedentary time was not associated  
with popliteal endothelial-dependent vasodilation (Figure 
2A/D). This highlights the importance of investigating the 
effects of sedentary patterns in addition to total sedentary 
time on lower-limb vascular function.

Our results also align with laboratory-based studies that 
observed that breaking up prolonged sitting bouts mitigated 
robust declines in FMD.5,21 Carter et al.21 and Thosar et al.5 
recommend that 0.5 breaks/waking hour and one break/
waking hour, respectively, was effective in preventing 
reduction in superficial femoral FMD. In contrast, this 
study demonstrated that participants engaged in 2.8 breaks/
waking hour and that each additional break was associated 
with a 0.43% increase in popliteal relative FMD (Table 2). 
However, in comparison to the superficial femoral artery, 
the popliteal artery is subject to a robust distal deformation 
(i.e., kinked) in a knee-bent sitting posture, which may fur-
ther attenuate blood flow/shear stress and endothelial func-
tion.26 Sedentary breaks were an independent (positive) 
predictor of absolute FMD (Table 2), suggesting that break-
ing up sedentary bouts may offer protective benefits to pop-
liteal health. This suggests that sedentary breaks may be 
important to include in a future version of the World Health 
Organization’s sedentary behaviour guidelines.27

Study strengths and limitations

The present study is strengthened by the use of thigh-
worn inclinometry rather than subjective questionnaires 
or nonthigh worn accelerometers that cannot distinguish 
standing time from sedentary time and thus cannot truly 
quantify sedentary time or patterns. Examination of sed-
entary breaks and time spent engaged in prolonged bouts, 

Table 2. Univariate and multivariate regression analyses examining the determinants of popliteal relative and absolute FMD.

Variable Univariate analysis Multiple regression analysis

R (p-value) Unstandardized β
(95% CI)

SE t-value Significant predictor
(p-value)

Relative FMD
 Age (years) –0.524 (< 0.001) –0.030 (–0.051, –0.009) 0.011 –2.837 YES (0.006)
 SBP (mmHg) –0.246 (0.015) –0.013 (–0.053, 0.028) 0.020 –0.618 NO (0.538)
 MAP (mmHg) –0.245 (0.015) –0.003 (–0.059, 0.053) 0.013 –0.109 NO (0.913)
 Mean RBCv (cm·s–1) 0.211 (0.037) 0.146 (–0.044, 0.335) 0.096 1.524 NO (0.131)
 SRAUC (a.u.) 0.251 (0.013) 1.38* (–5.10*, 7.90*) 3.300* 0.423 NO (0.673)
 MPA (min·day–1) 0.390 (< 0.001) 0.021 (–0.001, 0.043) 0.011 1.906 NO (0.060)
 Sedentary breaks (breaks·waking h–1) 0.214 (0.037) 0.425 (–0.066, 0.916) 0.247 1.719 NO (0.089)
 Sedentary bouts > 1 h (min·day–1) –0.304 (0.002) –0.005 (–0.009, –0.001) 0.002 –2.606 YES (0.011)
 Intercept – 5.409 (0.829, 9.990) 2.305 2.347 YES (0.021)
Absolute FMD
 Age (years) –0.403 (< 0.001) –0.002 (–0.003, –0.001) 0.001 –0.322 YES (0.001)
 Peak diameter (mm) 0.278 (0.006) 0.050 (0.033, 0.068) 0.009 5.495 YES (< 0.001)
 Mean RBCv (cm·s–1) 0.203 (0.045) 0.013 (0.002, 0.024) 0.006 2.356 YES (0.021)
 MPA (min·day–1) 0.315 (0.002) 155.9* (22.4*, 289.4*) 0.001 2.320 YES (0.023)
 Sedentary breaks (breaks·h–1) 0.201 (0.047) 0.036 (0.007, 0.066) 0.015 2.452 YES (0.016)
 Sedentary bouts > 1 h (min·day–1) –0.223 (0.028) –25.02* (–47.67*, –2.378*) 11.40* –2.195 YES (0.031)
 Intercept – –0.157 (–0.340, 0.025) 0.092 –1.712 NO (0.090)

Univariate analysis represents the variables that exhibited a significant (p < 0.05) relationship with relative/absolute popliteal FMD. Multiple regres-
sion analyses were conducted by simultaneously entering all significant univariate variables as predictors of relative/absolute popliteal FMD as the 
outcome. The relative FMD multiple regression model including all predictors had an R = 0.634 (R2 = 0.402, p < 0.001). The absolute FMD multiple 
regression model including all predictors had an R = 0.666 (R2 = 0.443, p < 0.001).
*, Multiplied by 10–5.
a.u., arbitrary units; β, unstandardized beta; FMD, flow-mediated dilation; MAP, mean arterial pressure; MPA, moderate-intensity physical activity; 
RBCv, red blood cell velocity; SBP, systolic blood pressure; SRAUC, shear rate area under curve (reactive hyperemia).
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versus only total sedentary time, in a relatively large het-
erogeneous sample also adds to the impact of our find-
ings. However, we acknowledge that this study is limited 
by its cross-sectional design and is unable to establish 
cause and effect. Lastly, our pooled sample was composed 
of mostly healthy younger (< 30 years: n = 64) and older 
adults (> 55 years: n = 34). As such, our findings cannot 
be extrapolated to middle-aged adults or persons with vas-
cular diseases.

Conclusion

In conclusion, more time spent engaged in prolonged sed-
entary time, but not total sedentary time, was associated 
with worse popliteal endothelial-dependent vasodilator 
function. This provides support for the current sedentary 
behaviour guidelines from the World Health Organization 

that recommend minimizing the amount of time spent in 
prolonged sitting.27 Also, it presents evidence for the addi-
tion of recommending breaking up long periods of sitting 
as often as possible to the existing guidelines. Decreasing 
habitual time spent engaged in prolonged sedentary bouts 
and implementing more sedentary breaks could be an effec-
tive strategy to promote better lower-limb arterial health.
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