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Background: To classify triple-negative breast cancer (TNBC) immunotyping using the
public database, analyze the differences between subtypes in terms of clinical
characteristics and explore the role and clinical significance of immune subtypes in
TNBC immunotherapy.

Methods: We downloaded TNBC data from the cBioPortal and GEO databases. The
immune genes were grouped to obtain immune gene modules and annotate their
biological functions. Log-rank tests and Cox regression were used to evaluate the
prognosis of immune subtypes (IS). Drug sensitivity analysis was also performed for
the differences among immune subtypes in immunotherapy and chemotherapy. In
addition, dimension reduction analysis based on graph learning was utilized to reveal
the internal structure of the immune system and visualize the distribution of patients.

Results: Significant differences in prognosis were observed between subtypes (IS1, IS2,
and IS3), with the best in IS3 and the worst in IS1. The sensitivity of IS3 to immunotherapy
and chemotherapy was better than the other two subtypes. In addition, Immune
landscape analysis found the intra-class heterogeneity of immune subtypes and further
classified IS3 subtypes (IS3A and IS3B). Immune-related genes were divided into seven
functional modules (The turquoise module has the worst prognosis). Five hub genes
(RASSF5, CD8A, ICOS, IRF8, and CD247) were screened out as the final characteristic
genes related to poor prognosis by low expression.

Conclusions: The immune subtypes of TNBC were significantly different in prognosis,
gene mutation, immune infiltration, drug sensitivity, and heterogeneity. We validated the
independent role of immune subtypes in tumor progression and immunotherapy for TNBC.
This study provides a new perspective for personalized immunotherapy and the prognosis
evaluation of TNBC patients in the future.
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1 INTRODUCTION

Breast cancer (BC) has become a central women’s health problem
worldwide, with the highest incidence of malignant tumors
among Chinese women (Chen et al., 2018). According to the
expression of estrogen receptors (ER), progesterone receptors
(PGR), and human epidermal growth factor receptor 2 (HER2),
three subtypes are commonly used for breast cancer clinical
classification: the ER/PGR-positive subtype, the HER2-positive
subtype, and TNBC, with the most aggressive behavior. TNBC
accounts for nearly 15% of BC patients annually, and it is
characterized by a high metastasis/recurrence rate and a short
survival time (Shen et al., 2020). Approximately 50% of TNBC
patients who undergo radical surgery without metastasis will
develop a disease recurrence (Liedtke et al., 2008). The five-year
survival rates for regional andmetastatic TNBChave been reported
to be 65 and 11%, respectively, and these are significantly lower
than those for other tumor subtypes (Gupta et al., 2020).

Traditional treatment regimens, including surgical resection,
radiotherapy, and chemotherapy, often have poor outcomes and
prominent adverse effects in TNBC patients (Liedtke et al., 2008;
Foulkes et al., 2010). In recent years, immunotherapy has been
used with some success to treat an increasing number of cancer
patients, such as those with melanoma, renal cell carcinoma, and
lung cancer (Schachter et al., 2017; Topalian et al., 2019).
Similarly, TNBC also has potential immunogenicity due to its
genomic instability and high mutation rate (Kwa and Adams,
2018). At present, immunotherapy for BC mainly involves tumor
vaccine therapy, cytokine therapy, monoclonal antibody therapy,
and adoptive cell therapy. However, deficiencies, including low
response rates and limited survival benefits, make it difficult for
immunotherapy to be widely used in TNBC, suggesting that there
may be a specific subtype associated with immunotherapy benefits
(Caparica et al., 2019; Gupta et al., 2020). Therefore, a better
understanding of the tumor immunemicroenvironment (TIME) is
needed to improve immunotherapy’s response to and outcomes.

In this study, we conducted a multicohort retrospective study
to identify three verifiable immune subtypes of TNBC. Then,
subtype validation and comprehensive molecular identification
were performed using independent data. The results suggested
that each IS was associated with different gene expression profiles.
Different subtypes showed widely different patterns in tumor
genetic aberrations, cytokine profiles, tumor-infiltrating immune
cell composition, and functional orientation (immune activation
and suppression), leading to significant differences in clinical
prognosis. This study provided a conceptual framework for
understanding the TIME of TNBC, which has potential
clinical significance for designing novel immunotherapy and
appropriate combination strategies.

2 MATERIALS AND METHODS

2.1 Source of Expression Profile Data
(METABRIC and GEO)
The cBioPortal database is an open and freely available resource
for storing and exploring multiple cancer genomics datasets. We

downloaded the METABRIC BC data from the cBioPortal
database, including the collected clinical information, gene
expression profile, and mutation data (https://www.cbioportal.
org/study/summary?id�brca_metabric) (299 TNBC samples, S1_
metabric_brca_cli.txt). GEO data were downloaded from the
Gene Expression Omnibus (GEO), and the GSE58812(107
samples) dataset with survival time was selected (S2_GEO_
TNBC_Clinical.txt), and samples without survival status were
removed.

2.2 Source of Immune-Related Genes
The following categories of genes were collected as immune-
related genes for subsequent analysis by literature mining (Breuer
et al., 2013):

i) immune cell-specific genes derived from unicellular RNA-seq
data;

ii) genes encoding costimulatory and costimulatory molecules;
iii) genes encoding cytokines and cytokine receptors;
iv) genes involved in antigen processing and presentation, and

other immune-related genes.

Finally, a total of 2,006 immune-related genes were collected
(S3_Immune_related_genes.v2.txt).

2.3 Identification of Immune Subtypes and
Gene Modules and Assessment of Relevant
Characteristics
The “ConsensusClusterPlus” package was used to construct the
consistency matrix and clustering classification of the TNBC
samples (Wilkerson and Hayes, 2010). The immune subtypes
of the samples were obtained by screening the expression data of
the immune-related genes. We performed 500 bootstraps using
the PAM algorithm and adopted “Canberra” as a measure of
distance. Each bootstrap process involved 80% of patients from
the training set. The clustering number was set as 2–10. Then, we
calculated the consistency matrix and cumulative consistency
distribution function to determine the best classification. At the
same time, the immune genes were grouped by consistent
clustering with identical settings and parameters to obtain
immune gene modules.

In the METABRIC dataset (training set), the prognostic value
of IS was evaluated by the log-rank test and univariate and
multivariate Cox regression with clinical information as the
covariate and overall survival (OS) as the endpoint. Then, in
the GSE58812 dataset (validation set), the association of immune
subtypes with various immune-related molecular and cellular
characteristics was evaluated using ANOVA.

2.4 Functional and Single-Sample Gene Set
Enrichment Analysis
First, we annotated the biological function of the immune gene
modules. Then, we performed DAVID (Version 6.8) to annotate
the biological process of genes from each module in the Gene
Ontology database, taking immune-related genes collected as the
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background. The association of immune subtypes with immune-
related molecular and cellular characteristics was evaluated using
an ANOVA algorithm (Thorsson et al., 2018).

ssGSEA defines an enrichment score, representing the
absolute degree of enrichment of the gene set in each sample
in a given data set. Sort and normalize the gene expression values
of a given sample, sort the genes by their absolute expression
levels, and calculate their empirical cumulative distribution
differences. In order to compare the distribution of immune
cell components in different immune subtypes, we obtained 28
kinds of immunity. The marker genes of the cells are scored for
each type of immune cell to determine the score of 28 types of
immune cells in each patient.

2.5 Prediction of Immune and Chemical
Reactions
The RNA-Seq expression profile of METABRIC-TNBC samples
combined with subclass mapping was used to predict the clinical
response of TNBC immune subtypes to immunotherapy drugs.
Using subclass mapping, we compared the similarity of the
immunotherapy patients between three immune subtypes and
the GSE91061 dataset, with a low p-value corresponding to a high
similarity. Then, we predicted the chemotherapy response in each
sample based on the Genomics of Drug Sensitivity in Cancer
(GDSC, https://www.cancerrxgene.org/). Four chemotherapeutic
agents commonly used in TNBC were selected: cisplatin,
paclitaxel, gemcitabine, and gefitinib. The R package
“pRRophetic” was used to predict the IC50 of the four drugs.

2.6 Immune Landscape
Considering the dynamic characteristics of the immune system,
we used a graph-based learning method for dimension reduction
analysis to reveal the immune system’s internal structure and
visualize the distribution of individual patients. This analysis
allows high-dimensional gene expression data to be projected into
the tree structure of low-dimensional space by retaining local
geometric information. This method simulated cancer
progression and defined the developmental trajectory of
single-cell gene expression data (Sun et al., 2014; Trapnell
et al., 2014). In this study, we extended the analysis to the
immune gene expression profile. The immune landscape
reflected the relationship between patients in a nonlinear
manifold, which may complement the discrete immune
subtypes defined in linear Euclidean space.

2.7 WGCNA Analysis
The R package WGCNA was used to identify the co-expression
modules of the immune genes, The research showed that the co-
expression network was scale-free. In other words, the logarithm
(log(k)) of the occurrence of nodes with a connectivity degree of k
was negatively correlated with the logarithm (log(P(k))) of the
occurrence probability of this node (correlation coefficient
>0.85). Next, the representation matrix was transformed into
an adjacency matrix, then transformed into a topological matrix.
We utilized the average-linkage hierarchical clustering method to
cluster the target genes based on the topological overlap matrix

(TOM). Moreover, the standard for hybrid dynamic clipping trees was
required, and the minimum number of genes in each network module
was set as 30. Then, we calculated the eigengenes of each module
successively once the gene modules were identified. Cluster analysis
was performed to combine the modules close to each other into new
modules (height � 0.25, deep split � 2, min module size � 30).

2.8 Statistical Analysis
All statistical analyses were conducted using R (Version 3.6.3).
The χ2 test or Fisher exact test was used for categorical variables.
A p-value <0.05 was considered to be statistically significant.

3 RESULTS

3.1 Molecular Typing Based on
Immune-Related Genes
A total of 1,702 immune-related genes in the METABRIC-TNBC
microarray were obtained. The 299 TNBC samples were clustered
by “ConsensusClusterPlus.” Furthermore, we obtained three
immune subtypes (Figure 1C; S4_METABRIC_TNBC_
subtype.txt) in terms of cumulative distribution function
(CDF) (Figures 1A,B). Further analysis of prognostic
characteristics revealed a better prognosis for IS3 and a worse
prognosis for IS1 (Figure 1D, p � 0.0028). We observed no
significant differences in age, stage, or grade among the three
immune subtypes (Figures 1E–G). In addition, the analysis of the
GSE58812 dataset suggested a conclusion consistent with the
METABRIC dataset. IS3 had the best prognosis among the three
immune subtypes, while IS1 had the worst prognosis, showing
significant differences (Figure 1H, p � 0.0081).

3.2 Evaluation of Immune Subtypes and
Related Clinical Characteristics
3.2.1 Association of Immune Subtypes With TMB and
Common Gene Mutations
We downloaded a mutation dataset and a copy number variation
dataset from the METABRIC-TNBC sample (targeted
sequencing of 173 genes), and through conditional screening
(mutation frequency >3; significantly high-frequency mutation
genes (p < 0.05)), we finally obtained ten genes
(metabric.subtype.mut.sig.gene.txt; Figure 2A). The results
suggested that NCOR2 and UTRN had significant differences
between IS2 and IS3 in the mutant samples. However, THADA
showed significant differences between IS2 and IS3 in both the
amplified and deleted samples, withmore amplification occurring
in IS2 than in IS3 (Figure 2B).

3.2.2 Expression of Classic Markers of
Chemotherapy-Induced Immune Responses and
Immune Checkpoint Genes in the Immune Subtypes
To observe the expression distribution of classical markers in the
chemotherapy-induced immune response among the three
immune subtypes, we calculated gene differences in the
METABRIC-TNBC cohort and GSE58812 dataset. In the
METABRIC-TNBC cohort, 13/24 genes verified significant
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differences in each subtype (Figure 3A). In the GSE58812 cohort,
15/26 genes showed significant differences in each subtype
(Figure 3B). These results indicated differences in
chemotherapy-induced immune response markers among the
different immune subtypes, which may contribute to the different
clinical progression of tumors.

Simultaneously, we obtained 47 immune checkpoint-related
genes (Danilova et al., 2019) and, significant differences were
found in 40 (85.1%) genes in the METABRIC-TNBC and 39
(83.0%) genes in the GSE58812 (Figures 3C,D).

3.2.3 Immune Characteristics in Different Immune
Subtypes
To compare the distribution of immune cell components in the
different immune subtypes, we obtained 28 immune cell marker
genes (Charoentong et al., 2017). Based on the ssGSEA method,
we calculated 28 immune scores of corresponding patients in the
Metabric-TNBC and GSE58812 cohorts (Figure 4A). The
numbers of effector memory CD8 T cells, MDSCs, type 1 T
helper cells, immature B cells, activated B cells, and activated CD8
T cells were significantly lower in IS1 than in IS3 (Figure 4B).

FIGURE 1 | The immune subtypes in the METABRIC-TNBC cohort. (A) CDF curves of the METABRIC-TNBC cohort samples. (B) CDF Delta area curve of the
METABRIC-TNBC cohort sample. The Delta area curve of the consensus clustering indicates the relative change in area under the cumulative distribution function (CDF)
curve for each category number k compared with k−1. The horizontal axis represents the category number k, and the vertical axis represents the relative change in area
under the CDF curve. (C) Consensus matrix, the heat map of sample clustering when k � 3. (D) KM curve of the prognosis among the three immune subtypes. (E)
Proportion of immune molecular subtypes in different stages of the METABRIC-TNBC cohort. (F) Proportion of immune molecular subtypes in different grades of the
METABRIC-TNBC cohort. (G) Proportion of immune molecular subtypes in different ages of the METABRIC-TNBC cohort. (H) Prognostic differences among the three
immune molecular subtypes in the GSE58812 cohort. The lower part is the proportion, and the upper part is the distribution difference between the two parts, with a
statistical significance of p � −log10.
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Similar findings were also observed in the GSE58812 cohort,
suggesting that the poor prognosis of TNBC may be related to
cellular inhibition (Figures 4C,D).

At the same time, we explored the relationships among the
three immune subtypes and the PAM50 molecular classification.
We found that the proportion of Basal subtype in IS1 and IS2 was
significantly higher than that of IS3; the proportion of claudin-
low type in IS3 was significantly higher than that of IS1 and IS2
(Basal_BC-the worst prognosis, and claudin-low_BC-better
prognosis. Figure 4E); We analyzed the prognostic differences
of the PAM50 molecular subtypes of TNBC and indicated that
there are significant differences in the prognosis of the PAM50
molecular subtypes (Figure 4F); In addition, the immune cell
scores are significantly different in PAM50 subtypes (Figure 4G),
indicating that immune cells (activated CD8 T cells, activated
CD4 T cells, type 1 T helper cells, immature B cells and activated
B cells etc.) have a higher proportion of claudin subtype with
better prognosis.

3.3 Difference Analysis of Immune Subtypes
in Response to Immunotherapy/
Chemotherapy
We further analyzed the differences among the different immune
subtypes for the responses to immunotherapy and chemotherapy.

The results suggested that IS3 was more sensitive to programmed
cell death-1 (PD-1) inhibitors than the other two subtypes
(Figure 5A). We also analyzed the responses of different
subtypes to several traditional chemotherapy drugs, including
paclitaxel, veliparib, olaparib, and talazoparib, and found that IS3
was more sensitive to these drugs than the other subtypes
(Figures 5B–E).

3.4 The Immune Landscape of
Triple-Negative Breast Cancer
To visualize and reveal the potential structure of the individual
distributions, we applied dimensionality reduction based on
graph learning to the expression profile of the immune-related
genes. This analysis placed each patient into a graph with a sparse
tree structure, defined as the immune landscape of TNBC. The
position of the patients represented the general characteristics of
the tumor microenvironment in the corresponding subtype
(Figure 6A). The horizontal coordinates were highly
correlated with a variety of immune cells. The horizontal
coordinates had the highest correlation with type 1 T helper
cells, image B cells, MDSCs, effector memory CD8 T cells,
activated CD8 T cells, and activated B cells (Figure 6B, |R| >
0.8). However, vertical coordinates showed the highest
correlation with central memory CD8 T cells, activated CD4

FIGURE 2 | (A)Mutation characteristics of significantly mutated genes in each IS. (B)Difference analysis of UTRN, NCOR2, and ThADA genes in immune subtypes.
The chi-square test determined the p-value. p < 0.05 is represented by *, while p < 0.01 is represented by **.
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T cells, and immature dendritic cells (DCs). Interestingly, IS1 was
vertically distributed at opposite ends of the immune landscape,
suggesting significant intraclass heterogeneity in each subtype.
According to the position of IS3 in the immune landscape, it
could be further divided into two subtypes (Figure 6C), which
exhibited specific immune expression patterns (Figure 6D). In
addition, different locations of the immune landscape also
indicated different prognostic characteristics (Figures 6E,F). In
summary, the analysis of the immune landscape provided further
complementary results for the immune subtypes we mentioned
earlier.

3.5 Construction of Immune Gene Modules
and Functional Analysis
3.5.1 Identification of Immune Gene Co-Expression
Modules
We clustered samples-expression (soft threshold � 3) and chose β
� 10 to ensure a scale-free network (Figure 7A) using WGCNA.

Finally, a total of seven modules were obtained (Figures 7B,C).
We further analyzed the correlation of each module with clinical
characters (Figure 7D). Among these, the highest correlation was
detected between the turquoise module and IS3. The correlation
between gene significance (GS) and module membership (MM)
of genes within the turquoise module was also analyzed,
indicating a high positive correlation between each other
(S5_METABRIC_TNBC_Module_gene_cor.txt, Figure 7E).

3.5.2 Functional and Prognostic Analysis of Immune
Gene Co-expression Modules
We found that some gene modules were significantly associated
with the prognosis of TNBC by identifying all immune-related
gene modules (Figure 8A). For example, a low score for the
turquoise module predicted a poor outcome. Functional
enrichment analysis illustrated that the turquoise module was
related to T cell activation, regulation of T cell activation,
leukocyte differentiation, cell-cell adhesion, and other immune
processes (Figure 8B). It also showed a high correlation with the

FIGURE 3 | (A) Differential expression distribution of classic markers induced by chemotherapy in the METABRIC-TNBC cohort. (B) Differential expression
distribution of classic markers induced by chemotherapy in the GSE58812 cohort. (C)Differential expression distribution of immune checkpoint genes in theMETABRIC-
TNBC cohort. (D) Differential expression distribution of immune checkpoint genes in the GSE58812 cohort. ANOVA tested significant differences. * represents p < 0.05,
** represents p < 0.01, *** represents p < 0.001, and **** represents p < 0.0001.
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first principal component in the immune landscape (Figure 8C).
The gene expression profile with an eigenvector correlation
coefficient greater than 0.85 from the turquoise module most
related to the prognosis was extracted from the METABRIC-
TNBC and GSE58812 datasets. We adopted the mean expression
as the sample characteristic to classify patients and analyzed the
prognostic differences between patients with high and low scores.
The high score group had a significantly better prognosis in the
METABRIC-TNBC dataset, and a similar phenomenon was
observed in the GSE58812 dataset (Figures 8D,E). Finally, a

total of five genes (correlation >0.85) to the module
characteristics and the most significant prognosis in the
turquoise module were selected as hub genes: RASSF5, CD8A,
ICOS, IRF8, and CD247. Their low expression was revealed to
be associated with a poor prognosis. In addition, we calculated
the correlation between module eigengenes (ME) and gene
mutations (spearman method). Based on the correlation
analysis results, we screened out the top 10 genes that are
most relevant to each module (S_Fig. turquoise;
S_module_mutation. pdf).

FIGURE 4 | (A) Enrichment score difference of 28 immune cells among immune subtypes in the METABRIC-TNBC cohort. (B) There are several immune cell
enrichment scores with significant differences between good and poor prognosis subtypes in the METABRIC-TNBC cohort. (C) Enrichment score difference of 28
immune cells among immune subtypes in the GSE58812 cohort. (D) There are several immune cell enrichment scores with significant differences between good and
poor prognosis subtypes in the GSE58812 cohort. (E) Intersection of three immune subtypes with PAM50 molecular subtypes. (F) Survival analysis of the PAM50
analysis subtype. (G) Distribution of 28 immune cell enrichment scores in the three immune subtypes.
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4 DISCUSSION

This study classified 299 TNBC samples of METABRIC-TNBC
based on 1,702 immune-related cell genes. These samples can be
divided into three subtypes (IS1-3), and there are significant
differences in prognosis between subtypes; Immune-related genes
can be divided into seven functional modules, and the
distribution of immune subtypes in functional modules is
different; in validation dataset (GSE58812), immune subtypes
and gene modules have a high degree of reproducibility. This
study provides a new perspective for understanding the tumor
immune microenvironment of TNBC and may provide a
reference for the design and reasonable combination of
individualized immunotherapy.

First, the distribution of immune-related genes in different
immune subtypes was screened and demonstrated significantly
different. For example, the differential expression of NCOR2 and
UTRN genes confirmed in our research has been closely related to
BC’s occurrence and progression in previous studies (Li et al.,
2007; van Agthoven et al., 2009). NCOR2 is nuclear receptor co-
inhibitor 2, which has a background concentration in cells, plays a
transcriptional inhibitory role, and participates in the regulation
of multiple cell pathways such as proliferation and inflammation
(Hong et al., 2001; Alrfaei et al., 2013); UTRN protein is a
ubiquitous cytoskeletal protein that connects the extracellular
matrix and the microfilament skeleton and maintains the
integrity of the membrane structure. The destruction and
disorder of microfilaments are the phenotypic characteristics
of many in vitro cancer cell lines and a reflection of the
malignant biological behavior of cancer cells (Li et al., 2007).
We discuss the THADA gene (also called thyroid adenoma-
associated protein) separately, located on the short arm 2p21 of
chromosome 2, first discovered in thyroid tumors (Rippe et al.,
2003). THADA encodes a thyroid adenoma-related protein in the
thyroid, pancreas, and other tissues (Ling, 2020; Castillo-Higuera

et al., 2021; Macerola et al., 2021), which is related to energy
metabolism disorders. In this study, we found that the missense
and amplification of this gene in the IS3 subtype were
significantly lower than the other two subtypes, and its
expression was consistent with a better prognostic trend.
Breast and thyroid have common etiological factors and are
jointly regulated by the hypothalamic-pituitary-glandular axis,
and the interaction between their hormones may be one of the
reasons for the coexistence of the two diseases. The differential
expression of thyroid adenoma-associated proteins appears in
different subtypes of TNBC patients. Can other secondary
primary tumors (such as thyroid cancer) be found after
follow-up, thereby increasing the detection rate of thyroid
cancer? It is necessary to study this phenomenon in depth.

The TIME refers to the complex network of internal and
external environments for the occurrence, growth, and metastasis
of tumors, including tumor cells, immune molecules,
extracellular matrix, cancer-associated fibroblasts (CAFs),
tumor-associated macrophages (TAMs), and other immune-
related cells (Malone et al., 2020; Qattan, 2020). On the one
hand, innate and acquired immune responses mediated by
immune cells and molecules can eliminate tumor cells to
inhibit tumor emergence. On the other hand, the escaped
tumor cell phenotype mutations form a particular
immunosuppressive microenvironment, which can avoid the
recognition and attack of the immune system through the loss
of human histocompatibility antigenicity and the secretion of
immunosuppressive molecules, which is defined as an immune
escape (Liu and Cao, 2016). Multiple components of the TIME
have been shown to play essential roles in tumor progression. For
example, TAMs can be polarized into M2 macrophages to secrete
metabolic enzymes, transcription factors, and chemokines, which
play a role in promoting tumor growth (Sami et al., 2020). CAFs
activated by normal fibroblasts and colony-stimulating factors
secreted by DCs in the TIME were also detected to have

FIGURE 5 | (A) Submap analysis showed that IS3 could be more sensitive to the programmed cell death protein one inhibitor (Bonferroni-corrected p < 0.05). Box
plots of the estimated IC50 for paclitaxel (B), veliparib (C), olaparib (D), and talazoparib (E).
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FIGURE 6 | (A) Immune landscape in TNBC. Each dot represents a sample, and each color represents a molecular subtype. The horizontal axis represents the first
principal component, while the vertical axis represents the second principal component. (B) Heat map of the correlation between two principal components and 28
immune cell types. (C) Immune landscape and molecular subgroups of three immune subtypes in TNBC. (D) Immune landscapes and samples from two different
locations in TNBC. (E) Immune landscape in TNBC. (F) Prognostic differences among samples at different locations in the immune landscape for TNBC.
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immunosuppressive and invasion-supporting effects (Park et al.,
2018; Blackley and Loi, 2019), complementary to the results of
our study.

In TIME, there is a particular member to be mentioned, which
is TIL. It is a mixture of anti-inflammatory and antitumor cells,
75% of T lymphocytes (Kwa and Adams, 2018). TILs are
frequently detected in BC, especially in TNBC, suggesting
richer immune infiltration and more significant
immunogenicity. A large amount of clinical data has proven
that the number of TILs is significantly positively correlated with
the expected survival of TNBC patients and is an independent
biomarker for patient prognosis (Park et al., 2018; Qattan, 2020).
In 2019, the WHO officially listed TILs as one of the biomarkers
for the clinicopathological analysis of BC (Blackley and Loi,
2019). In our study, significant differences were observed in
the distribution of the number of lymphocyte members among

the three immune subtypes. We found that Effector memory CD8
T cell, MDSC, Type 1 T helper cell, Immature B cell, Activated
B cell, and Activated CD8 T cell is significantly lower in IS1
subtypes than IS3 subtypes. It also explains the poor prognosis of
IS1. The classification of cancer subtypes according to the
expression matrix is molecular typing (GEP). For example, the
standard clinical GEP classification based on PAM50 (Prediction
analysis of microarray 50) can divide breast cancer into different
subtypes. We analyzed the relationship between the three
immune subtypes and PAM50 molecular subtype; it can be
seen that the subtype with poor prognosis in PAM typing has
the highest proportion in IS1 or IS2 subtypes, while the subtype
with better prognosis in PAM50 typing is in IS3 The highest
proportion in the middle, which explains why there are
prognostic differences between our subtype classifications. It
can play a good role in prognostication, and it can also be

FIGURE 7 | (A) Analysis of network topology for various soft-thresholding powers. (B) Gene dendrogram and module colors. (C) Distribution of gene numbers in
seven modules. (D)Heatmap of the correlations between seven modules and three subtypes. (E) Scatter diagram of module membership vs. gene significance for IS3 in
the turquoise module.
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used as a supplement to PAM50. Through the analysis of
Figure 5G, we can see that among the subtypes with poor
prognosis in PAM50, the expression of immune cells such as
Activated B cell and Activated CD8 T cell is low. This
phenomenon is similar to the expression of immune cells in
the IS1 subtype, which is used to explain why the prognosis of
Basal and Her-2 subtypes is poor.

These immune cells were mainly present in IS3 with the best
tumor prognosis, we also observed that 47 immune checkpoint-
related genes were significantly different in the two cohorts and
were responsible for maintaining autoimmune tolerance and
regulating the persistence and intensity of the immune
response. Interestingly, the suppression of immune checkpoint
genes has been confirmed to reverse the inhibition of the TIME
on tumor immunity and accelerate the apoptosis of tumor cells,
which is a potential new possibility for future treatment of TNBC
(Shen et al., 2020).

Through the analysis of immune characteristics of immune
subtypes, we further analyzed the immune checkpoints in
different subtypes. Immune checkpoints are a class of
immunosuppressive molecules. During the occurrence and
development of tumors, immune checkpoints become one of
the main reasons for immune tolerance. Immunotherapy has
opened a new door to treating malignant tumors; therefore, many

patients have achieved ideal therapeutic effects. Similarly,
immunotherapy has also brought about breakthroughs in the
treatment of TNBC with strong immunogenicity. At present, the
most classic research direction is the PD1/PD-L1 pathway. PD1 is
a group of transmembrane proteins expressed on the surface of
T cells, B cells, and NK cells that promotes lymphocyte failure and
inhibits tumor apoptosis by binding to the ligand PD-L1
(Francisco et al., 2009). Inhibitors targeting PD1 and PD-L1
have been treat cancer patients with some exciting but limited
results. PD-L1-positive patients in Impassion130 gained an
additional 7 months of overall survival (OS) after using
atezolizumab, while PD-L1-negative patients showed little
benefit (Simmons et al., 2020). In another group of patients
with metastatic TNBC, the addition of atezolizumab did not
significantly improve patient OS compared with chemotherapy
alone (Gupta et al., 2020). It may be due to the different subtypes
and stages of TNBC having different susceptibilities to drugs. In
METABRIC-TNBC and GSE58812, there are significant
differences in immune checkpoint genes between different
subtypes. For example, our common CD274 (PD-L1), CTLA4,
LAG3, PDCD1 (PD-1) are significantly increased in IS3, and the
other two subtypes are significantly different, and most of the
immune checkpoints are significantly elevated in IS3. According
to the results of Immune Subtype vs. Immunotherapy/

FIGURE 8 | (A) Univariate analysis results of gene module eigengenes. (B) Gene enrichment analysis of the turquoise module. (C) Correlation between the
turquoise module eigengene and the first principal component in the immune landscape. (D) KM survival curve distribution of patients grouped in the METABRIC-TNBC
cohort according to the expression of model characteristic genes screened from the turquoise module. (E) KM survival curve distribution of patients grouped in the
GSE58812 cohort according to the expression of model characteristic genes screened from the turquoise module.
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Chemotherapy Difference Analysis (Figure 6), the IS3 subtype
has a lower IC50 value and higher response to Paclitaxel,
Veliparib, Olaparib, and Talazoparib; compared to the other
two subtypes, IS3 is more sensitive to PD-1 inhibitors. These
results suggest that TNBC patients of the IS3 subtype are more
sensitive to chemotherapy and immunotherapy; if patients with
the IS3 subtype develop resistance during chemotherapy,
immunotherapy (PD-1 inhibitors) may provide some help.

In the next step, we adopt a pseudo-chronological analysis
similar to single-cell sequencing (according to changes in gene
expression of different cell subgroups over time, to construct cell
lineage development. A virtual time sequence refers to the
transformation and evolution between cells. The order and
trajectory of replacement), the dimensionality reduction
method based on graph learning is used to visualize the
potential distribution of patients, and the immune landscape
of TNBC is constructed. Through analysis, we found significant
intra-class heterogeneity in the subtypes (IS1, IS2). Coincidently,
intratumor and intratumoral heterogeneity has also been noted to
increase the challenge of adjuvant therapy for TNBC in several
previous studies (Lee et al., 2019; Simmons et al., 2020). At
present, there is still a lack of pragmatic immune markers to
screen the immune predominance population.

Further studies of biomarker thresholds are necessary to
separate high-risk and low-risk populations and select more
personalized treatments. At the same time, we need to explore
the tumor immune drivers associated with different subtypes and
stages of TNBC to conduct immunotherapy more effectively. An
improved preclinical model can maximize the preservation of the
characteristics and clinical predictability of the human tumor-
immune system for better clinical transformation. In addition,
previous reports have discussed the advantages of combinations
of different immunotherapies and the addition of
immunotherapies to traditional treatment modalities (Gupta
et al., 2020; Simmons et al., 2020). Assessing the timing,
sequencing, and efficacy of combination therapies may
optimize outcomes and prolong the survival of TNBC patients.

Last but not least, a more accurate prediction of the efficacy
and a reduction of the adverse effects of immunotherapy is also a
problem to be solved. Several biomarkers have been proposed to
monitor treatment outcomes and assess the estimated survival of
TNBC patients, including imaging examinations, TILs, and a
pathologic complete response (PCR), while additional studies are
needed to confirm these findings (Blackley and Loi, 2019; Waks
and Winer, 2019; Vagia et al., 2020). In our analysis, we further
divided IS3 into two subtypes (IS3A, IS3B) according to its
position in the immune landscape, further refined the immune
subtypes of TNBC, and provided ideas for individualized
treatment in the future; The location of the drug has different
prognostic characteristics, and this analysis method has specific
clinical significance.

In addition, some of the seven immune-related gene modules
identified were highly reproducible immune subtypes and
predicted the outcomes of TNBC patients based on their
scores. We also screened out the top five genes in the module
most closely associated with the prognosis, including RASSF5,
CD8A, ICOS, IRF8, and CD247. RASSF5 is a member of the

RASSF gene family, which selectively binds and activates RAS. It
has been observed to be involved in the regulation of cell
differentiation and proliferation (Li et al., 2018). The RASSF5
gene is highly methylated in numerous tumors, such as
neuroblastoma, oral cancer, and liver cancer, suggesting that it
may be a potential tumor suppressor (Djos et al., 2012; Liu et al.,
2018). Another member, IRF8, was also down-regulated in
colorectal and BC tumor tissues, involved in antigen capture
and response to interferon (Gatti et al., 2021). Correspondingly,
high expression of IRF8 was associated with longer OS and may
be related to inhibition of migration and invasion by inducing
tumor cell cycle arrest and apoptosis. In addition, CD8A is mainly
expressed in natural killer cells and dendritic cells and plays a
cytotoxic role in tumors. An association between high expression
of CD8A and better prognosis has been reported in both lung
adenocarcinoma and colon cancer (Herrera et al., 2020; Ma et al.,
2020). Similarly, ICOs are mainly expressed on activated
cytotoxic T cells, memory T cells, and regulatory T cells,
which were rarely introduced in the role of TNBC (Xiao et al.,
2020). Last but not least, CD247 was thought to be involved in
the recognition and presentation of tumor cells in the immune
system, and its loss of function can lead to the development
of immunodeficiency (Ye et al., 2019). Its functional deficits
have been reported in several malignancies, including
pancreatic, ovarian cancers and BC (Ishigami et al., 2002;
Pappas et al., 2009).

In summary, we identified three TNBC immune subtypes
and observed significant differences in several subtypes,
including the prognosis, gene mutations, immune
infiltration, drug sensitivity, and heterogeneity. Our
research has laid a clinical foundation for the classification
and additional immunotherapy of TNBC. We believe that an
increasing number of TNBC patients will benefit from
immunotherapy as scientific research and medical
technology advance. The era of personalized
immunotherapy for TNBC will finally come.
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