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Background: Linezolid is associated with myelosuppression, which may cause failure in
optimally treating bacterial infections. The study aimed to define the pharmacokinetic/
toxicodynamic (PK/TD) threshold for critically ill patients and to identify a dosing strategy for
critically ill patients with renal insufficiency.

Methods: The population pharmacokinetic (PK) model was developed using the
NONMEM program. Logistic regression modeling was conducted to determine the
toxicodynamic (TD) threshold of linezolid-induced myelosuppression. The dosing
regimen was optimized based on the Monte Carlo simulation of the final model.

Results: PK analysis included 127 linezolid concentrations from 83 critically ill patients at a
range of 0.25–21.61mg/L. Creatinine clearance (CrCL) was identified as the only covariate
of linezolid clearance that significantly explained interindividual variability. Thirty-four
(40.97%) of the 83 patients developed linezolid-associated myelosuppression. Logistic
regression analysis showed that the trough concentration (Cmin) was a significant predictor
of myelosuppression in critically patients, and the threshold for Cmin in predicting
myelosuppression with 50% probability was 7.8 mg/L. The Kaplan–Meier plot revealed
that the overall median time from the initiation of therapy to the development of
myelosuppression was 12 days. Monte Carlo simulation indicated an empirical dose
reduction to 600 mg every 24 h was optimal to balance the safety and efficacy in
critically ill patients with CrCL of 30–60ml/min, 450mg every 24 h was the alternative
for patients with CrCL <30ml/min, and 600mg every 12 h was recommended for patients
with CrCL ≥60ml/min.

Conclusion:Renal function plays a significant role in linezolid PKs for critically ill patients. A
dose of 600mg every 24 h was recommended for patients with CrCL <60ml/min to
minimize linezolid-induced myelosuppression.
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INTRODUCTION

Critical infection is recognized as an important determinant of
outcome for patients in intensive care units (ICUs). Initial
appropriate anti-infective therapy is associated with
significantly improved clinical outcomes (Kollef et al., 1999;
MacArthur et al., 2004; Kumar et al., 2006). However,
achieving adequate exposure is challenging for critically ill
patients because a variety of pathophysiological changes may
significantly influence serum drug concentration.

Linezolid is predominantly metabolized through the oxidation
of its morpholine ring to an inactive form by nonenzymatic
oxidative reactions (Zurenko et al., 1996). According to the label
sheet, the pharmacokinetics (PKs) of linezolid is insignificantly
altered by patients’ age, gender, or by the presence of renal or
hepatic insufficiency. Consequently, no dose adjustments are
recommended for patients at any stage of renal dysfunction,
including hemodialysis. However, the clearance (CL) of linezolid
was found to increase by 50% during hemodialysis (Brier et al.,
2003). Similarly, linezolid concentrations were significantly
higher in patients with renal insufficiency than in those
without (Wu et al., 2006; Matsumoto et al., 2009; Tsuji et al.,
2011; Pea et al., 2012; Tsuji et al., 2013; Cossu et al., 2014;
Matsumoto et al., 2014; Crass et al., 2019).

Myelosuppression, which can result in thrombocytopenia and
anemia, is the most frequent adverse effect in patients receiving
linezolid. Thrombocytopenia exhibits the highest incidence,
occurring in >30% of patients undergoing linezolid therapy
(Lin et al., 2006; Wu et al., 2006; Ikuta et al., 2011; Takahashi
et al., 2011; Nukui et al., 2013; Dong et al., 2014; Hirano et al.,
2014). The incidence of anemia among such patients is 2.8–47.3%
(Senneville et al., 2004; Lin et al., 2006; Takahashi et al., 2011; Pea
et al., 2012). Risk factors for the development of
thrombocytopenia during linezolid therapy include renal
insufficiency (Lin et al., 2006; Ikuta et al., 2011; Takahashi
et al., 2011; Hirano et al., 2014), long-term linezolid
administration (Gerson et al., 2002; Takahashi et al., 2011),
low baseline platelet count (Niwa et al., 2009; Cattaneo et al.,
2013; Dong et al., 2014), and low body weight (Niwa et al., 2009;
Dong et al., 2014). Similarly, the risk factors for linezolid-induced
anemia include renal insufficiency, age, and low baseline
hemoglobin count (Wu et al., 2006; Tsuji et al., 2011). In
addition, renal impairment has been identified as a significant
factor for elevated linezolid exposure, which was the main cause
of myelosuppression (Morata et al., 2016; Pea et al., 2017). A
recent study pointed out that the linezolid dosing in renal
impairment patients should be reappraised to improve safety
(Crass et al., 2019). However, this study was conducted in a
population that did not include critically ill patients. Besides, the
recommended dosage in patients with renal impairment only
achieved approximately 65% of the therapeutic target. Therefore,
a dose modification and more frequent monitoring of linezolid
exposure are necessary for critically ill patients.

The present study aimed to define the therapeutic range based
on linezolid trough concentration in critically ill patients. The
application of drug therapeutic monitoring based on single blood
sampling is much more convenient in clinics than monitoring

AUC. We also determined a dosage modification for critically ill
patients with renal impairment.

MATERIALS AND METHODS

Patients and Ethics
This was a retrospective, observational study of hospitalized
critically ill patients receiving linezolid for confirmed or
suspected multiresistant Gram-positive bacterial infections
from January 2018 to December 2019 at the First Affiliated
Hospital of Wenzhou Medical University. The inclusion
criteria were as follows: 1) patients receiving intensive care
aged ≥18 years with confirmed or suspected Gram-positive
bacterial infections; 2) patients who received intravenous
linezolid for at least 3 days; and 3) patients for whom at least
one steady-state concentration of linezolid was collected. The
exclusion criteria were as follows: 1) patients who received renal
replacement therapy or extracorporeal membrane oxygenation;
2) patients who died within 24 h after being treated with linezolid;
3) patients with baseline PLT <75 × 109 cells//L; 4) patients with
baseline hemoglobin <6.8 g/dl for males or <6 g/dl for females; 5)
patients with baseline absolute neutrophil count <500 cells/μl;
and 6) patients with baseline TBIL > 5 times the upper limit of
normal. The baseline was defined at the initiation of linezolid
therapy.

The study was designed in accordance with legal requirements
and the Declaration of Helsinki and was approved by the Ethical
Committees of the First Affiliated Hospital of Wenzhou Medical
University, China [(2021)034], registered at the Chinese Clinical
Trial Registry (ChiCTR2100047882). The informed consent was
free passed by the Ethics Committee in Clinical Research (ECCR)
of the First Affiliated Hospital of Wenzhou Medical University.

Pharmacokinetic Sampling
Routine therapeutic drug monitoring (TDM) data of linezolid
were retrospectively obtained from a database maintained at the
Department of Pharmacy. The decision to administer linezolid
and its dosing regimens (dose amount, dosing interval, duration
of intravenous administration, and duration of therapy) were
made by the attending physician. An opportunistic sampling
strategy was performed when a steady-state concentration of
linezolid has been achieved (at least 3 days from the start of
treatment). Most of the TDM samples collected were peak or
trough concentrations. The concentration–time profile of
linezolid for the included patients is shown in Supplementary
Figure S1. The exact time of linezolid treatment and TDM
sampling were able to be indexed.

Plasma samples were separated by centrifugation for 5 min at
15,000 rpm and were determined within 24 h after sampling.
Quantification of the plasma concentration of linezolid was
performed using a validated high-performance liquid
chromatography–tandem mass spectrometry (LC-MS/MS)
assay (Phillips et al., 2001). Intra- and inter-day assay
coefficients of variation were <10%, and the lower limit of
quantification was 0.1 mg/L. Individual laboratory parameters
and demographic data of patients, including gender, age, height,

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8445672

Wu et al. Linezolid Dosage Strategy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


body weight (WT), white blood cell count (WBC), hemoglobin
(Hb), platelet count (PLT), total bilirubin (TBIL), serum albumin
(ALB), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and serum creatinine (SCr), were
collected. CrCL was calculated using the Cockcroft–Gault
equation. Data organization and visualization were performed
using R (version 3.6.1) and R Studio (version 1.3.1093).

Hematological Toxicity Analysis of Linezolid
Myelosuppression was defined as follows: 1) thrombocytopenia:
PLT <125 × 109 cells/L and a decrease of ≥25% PLT in
comparison with the baseline levels; 2) anemia: a reduction of
≥25% of Hb compared with the baseline. The baseline levels were
defined as the hematological parameters at the initiation of
linezolid therapy.

Population Pharmacokinetic Modeling of
Linezolid
Population PK analysis was performed using the nonlinear mixed
effects modeling program NONMEM (version 7.4, Icon
Development Solutions, Ellicott City, MD, United States) and
Pirana (version 2.9.7). R (version 3.6.0) and Xpose (version 4.3.2)
software packages were applied to generate diagnostic plots. The
first-order conditional estimation method with inter- and intra-
subject variability was used throughout the model development
procedure. One- and two-compartment structural models with
first-order elimination were explored for the linezolid plasma
concentration–time profiles. Between-subject variability (BSV)
was modeled using exponential function. Residual variability was
assessed using additive, proportional, and combined (additive
plus proportional) error models. The base model was selected
based on the visual inspection of diagnostic plots and various
goodness-of-fit criteria, including precision and plausibility of
parameter estimation, improvement of the objective function
value (OFV), Akaike information criteria (AIC), and Bayesian
information criterion (BIC).

Covariates were included using a stepwise forward selection
process with a threshold decrease in OFV of 3.84 (p < 0.05, 1
degree of freedom [df]) until no further decrease in OFV was
observed. All of the significant covariates were then incorporated
into the basic model to construct a full model. In backward
elimination, the covariate was retained in the final model with a
threshold increase in OFV of 6.63 (p < 0.01, 1 df); otherwise, it
was eliminated from the model. The additional criteria for
retaining the covariate in the final model were a decrease in
the unexplained BSV and an increase in PK parameter estimate
precision.

For internal validation of the final model, goodness-of-fit
plots, including observed concentrations (DV) versus
individual prediction (IPRED), DV versus population
prediction (PRED), conditional weighted residuals (CWRES)
versus PRED, and CWRES versus time after last dose (TAD),
were performed. A nonparametric bootstrap procedure was
conducted to assess the performance and stability of the final
model (Ette and Onyiah, 2002; Ette et al., 2003). Random
sampling with replacement was utilized to generate 1,000

replicate datasets using the individual as the sampling unit.
The median and 95% confidence intervals (CIs) of the
resulting parameters were calculated and compared with the
final parameter estimates obtained using the NONMEM
program. To evaluate the predictive performance, the statistics
of the observed and simulated time–concentration profiles were
compared using prediction- and variability-corrected visual
predictive check (pvcVPC) (Bergstrand et al., 2011). The
dataset was simulated 1,000 times using the $SIMULATION
block in NONMEM® for pvcVPC. The 90% CIs for the 5th,
50th, and 95th percentiles of the simulated concentrations were
calculated, plotted against time after the last dose, and compared
with the observed concentrations.

Monte Carlo Simulation
Monte Carlo simulations were performed using the final model to
identify the pragmatic dose adjustment of linezolid. Simulations
were performed with the covariate sets from individual patients
included in model building, serving as a template for 1,000
simulated subjects. The probability of target attainment (PTA)
of the Cmin target was calculated for each dose (daily doses of
300–1,800 mg/day with increments between 150 and 300 mg)
among simulated subjects with CrCL values of <30 ml/min,
30–59 ml/min, 60–89 ml/min, and ≥90 ml/min.

Statistical Analyses
Statistical analyses were performed using SPSS version 21.0 (IBM
Corp). All study variables were summarized by descriptive
statistics. The Cmin and AUC0-24 at steady state of each patient

TABLE 1 | Baseline characteristics of patients included for pharmacokinetic
analysis set or hematological toxicity analysis set.

Characteristic Valuea

Age (years) 62 [16, 99]
Sex
Male 54 (65.06%)
Female 29 (34.94%)
Height (cm) 165 [143, 181]
Total body weight (kg) 64 [40, 110]
Daily dose (mg/kg/d) 20.17 [11.33, 33.27]
Treatment duration (days) 8 [4, 58]
MRSA microbiology: positive 15 (16.85%)
Myelosuppression 34 (40.97%)
Thrombocytopenia (n, %) 30 (36.14%)
Anemia (n, %) 14 (16.87%)

Clinical data
Hemoglobin (g/L) 99 [67, 170]
Platelet (⨉109/L) 232 [64, 658]
White cell count (⨉109/L) 8.68 [3.11, 87.86]
Total bilirubin (μmol/L) 10 [2.5, 87]
AST (U/L) 29 [10, 5,742]
ALT (U/L) 32 [1, 2,449]
ALB (g/L) 30 [12, 42]
Serum creatinine (μmol/L) 81 [33, 687]
CrCL (ml/min) 65.38 [9.99, 195.60]

Abbreviations; AST, aspartic transaminase; ALT, alanine transaminase; ALB, serum
albumin; CrCL, estimated creatinine clearance (CrCL) calculated using the
Cockcroft–Gault equation.
aValues are No. (%) or median [minimum, maximum].
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were predicted via the maximum a posteriori probability (MAP)
Bayesian function of NONMEM using the final PK model as the
Bayesian prior. AUC0-24 was calculated by the linear-log
trapezoidal rule using the concentrations at continuous time
(10 min-interval) predicted via Bayesian estimation.
Specifically, the linear trapezoidal approach was used during
the ascending phase and the log-linear method was used
during the descending phase. Logistic regression modeling for
the toxicity of linezolid was conducted to determine whether the
trough concentration or AUC0-24 of linezolid was a significant
predictor of myelosuppression during treatment. The time from
the initiation of linezolid treatment to the development of
myelosuppression was estimated using the Kaplan–Meier
curve analysis. All statistical tests were two-sided. p values
<0.05 were considered statistically significant.

RESULTS

Baseline Characteristics of Patients
In total, 83 critically ill patients with a mean ± S.D. age of
60.57 ± 14.64 years and body weight of 64.11 ± 11.21 kg were
included in the present study. The demographic data of the
included patients are summarized in Table 1. The overall rate
of myelosuppression occurrence, including thrombocytopenia
and anemia, in this study was 40.97%. The incidence rates of
thrombocytopenia and anemia were 36.14 and 16.87%,
respectively. The median daily dose of linezolid selected by
the physician was 20.17 mg/kg/d, and most patients received
the drug every 12 h.

Population Pharmacokinetic Analysis
A total of 127 linezolid concentrations derived from 83 patients at
a range of 0.25–21.61 mg/L were obtained for population PK
modeling. The PK characteristics of linezolid illustrated by a 1-
compartment model with linear elimination showed the best fit of
the observed concentration–time data based on reduction in OFV
and residual variability. The intra-individual variability for V was
fixed as 0 because it was very small (ŋ<0.0025); it might be
because of the limited data of peak concentrations. The
proportional error model was used to evaluate the residual
variability. Parameter estimates and diagnostic plots of the
base model are provided in Supplementary Table S1 and

Supplementary Figure S2. Covariate model building identified
CrCL as the only covariate on linezolid CL that significantly
explained interindividual variability. The final PK model is
represented as follows:

CL(L/h) � 3.66 + 2.18 ×
CrCL

65
, (1)

V(L) � 54, (2)
where CL is the individual clearance, V is the individual volume
of distribution, and CrCL is the estimated creatinine clearance.
The parameter estimates of the final model are displayed in
Table 2.

The mean ± SD individual empirical Bayesian estimate of
CL was 6.35 ± 2.32 L/h, across all patients with V estimated at
54 L. Furthermore, dividing the included patients into the
group with linezolid-induced myelosuppression and the
group without, the estimated CL was significantly lower in
patients with linezolid-induced myelosuppression compared
with that in the patients without (4.91 ± 1.51 L/h vs. 7.57 ±
2.35 L/h, p = 0.027).

The diagnostic goodness-of-fit plots of the final model are
shown in Figure 1. The CWRES versus PRED of the final
model showed a stochastic distribution around zero, and most
residuals were within an acceptable range (−2 to 2). The
median with 95% CI parameter estimates obtained from a
1,000-run bootstrap analysis is given in Supplementary Table
S2. The parameter estimates of the final PK model lay within
the 95% CIs from the nonparametric bootstrap procedure, and
the biases between the final model estimates and the
bootstrapped median parameter estimates were within ±10%
for all parameters, which demonstrated the good stability of
the final model. The pvcVPC of concentrations versus time
after the last dose reflected a good fit between the
observations and simulations (Supplementary Figure S3).
Overall, the linezolid population PK model evaluation
results revealed that the final model provided an adequate
description of the data and a good prediction of individual PK
parameters.

Linezolid Therapeutic Target Analyses
A strong correlation (r2 = 0.9969) was found between the Cmin

and AUC0-24. The linear regression line was AUC0-24 =
26.354×Cmin+91.607. The ratio of the AUC to MIC was
determined to be the most important PK/PD index for
linezolid against strains of S. aureus and strains of S.
pneumoniae with varying antibacterial susceptibilities, and the
antibacterial activity of linezolid may be maximized when AUC0-
24/MIC ratio ≥80, which was derived from a study conducted in
critically ill patients (Rayner et al., 2003). Given the MIC90 of
linezolid for most staphylococci is 2 mg/L (Jones et al., 2007), to
achieve the PK/PD index (AUC0-24/MIC ≥80) for the efficacy of
linezolid, an AUC0-24 of 160 mg h/L was required when the MIC
was 2 mg/L. Using the linear regression equation, the Cmin for
AUC0-24 = 160 mg h/L was 2.6 mg/L. Thus, the Cmin required for
sufficient efficacy was ≥2.6 mg/L.

Linezolid-induced myelosuppression was observed in 34
(40.97%) of the 83 patients. Figure 2 shows the relationship

TABLE 2 | Population pharmacokinetic parameter estimates from the final model.

Parameter Estimate (%) RSE (%) Shrinkage (%)

Fixed effects
TVCL [L/h] 3.66 15
CrCL on CL 2.18 21
TVV [L] 54 17

Between-subject
variability (BSV)a

BSV_CL [%CV] 36.30 10 3
Residual variability (RV)
Proportional error [%CV] 19.05 19 24

aBSV calculated as
������
eω2 − 1

√
.
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between the Cmin and the myelosuppression (absence, 0;
presence, 1). The Cmin of linezolid was a significant
predictor of myelosuppression in critically patients
according to the following equation: probability of
myelosuppression = 1/[1 + exp (3.767–0.481*Cmin)]. The
threshold for the Cmin of linezolid that caused
myelosuppression with 50% probability was 7.8 mg/L. In
general, the target Cmin range based on the aforementioned
results was considered to be 2.6–7.8 mg/L. In addition, the
Kaplan–Meier plot revealed that the overall median time from
the initiation of therapy to the development of
myelosuppression was 12 days (Figure 3).

Monte Carlo Simulation
The simulated PTA of linezolid therapeutic range (Cmin 2.6–7.8 mg/
L) with various dosage regimens in patients with various CrCLs were
quantified in Table 3 and Figure 4. The target for PTA was defined
as > 80%. The low probability of attaining therapeutic Cmin values in
patients with renal impairment (CrCL <60ml/min) with a standard
linezolid dose of 600 mg every 12 h is primarily due to an increase in
the probability of attaining supratherapeutic Cmin (>7.8 mg/L). An
empirical dose reduction to 600mg every 24 h was the optimal to
balance safety and efficacy in patients with CrCL of 30–59ml/min,
whereas 450mg every 24 h was the alternative for patients with
CrCL <30ml/min.

FIGURE 1 | Diagnostic goodness-of-fit plots of the final model. (A) Observed concentration (DV) vs. individual predicted concentration (IPRED); (B) DV vs.
population-predicted concentration (PRED); (C) conditional weighted residuals (CWRES) vs. PRED; and (D) CWRES vs. time. The red lines in the upper panel represent
loess smooth lines and linear fit lines, respectively.
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DISCUSSION

This is the first study focused on critically ill patients aimed at
drawing the therapeutic target of linezolid as well as dosage
modification for critically ill patients with renal impairment.
The therapeutic range of Cmin was considered to be
2.6–7.8 mg/L to balance the efficacy and safety of linezolid,

and linezolid treatment for ≥12 days was associated with the
risk of myelosuppression. This study also developed a population
PKmodel, which showed a significant relationship between CrCL
and the total clearance of linezolid, and dose reduction to 600 mg
every 24 h was the alternative for critically ill patients with CrCL
of 30–59 ml/min, whereas 450 mg every 24 h was the alternative
for patients with CrCL <30 ml/min.

The results of the PK analysis indicated that the one-
compartment model with first-order elimination along with
CrCL as a significant covariate on CL was optimal for the PK
data modeling. The typical value of CL in the final PK model of
this study was 6.35 L/h, which is consistent with other PK studies
of linezolid performed in critically ill patients (Taubert et al.,
2016; Soraluce et al., 2020). A comparison of our estimates of PK
parameters with those reported in the literature is presented in
Supplementary Table S3 (Whitehouse et al., 2005; Plock et al.,
2007; Abe et al., 2009; Keel et al., 2011; Sasaki et al., 2011; Tsuji
et al., 2013; Luque et al., 2014; Matsumoto et al., 2014; Taubert
et al., 2016; Töpper et al., 2016; Zhang et al., 2016; Tsuji et al.,
2017; Crass et al., 2019; Garcia-Prats et al., 2019; Li et al., 2019;
Wang et al., 2019; Xie et al., 2019; Soraluce et al., 2020). According
to the label of linezolid, its clearance occurs by both renal and
hepatic mechanisms (approximately 30 and 65%, respectively).
Thus, the covariates associated with renal and hepatic
functionality were analyzed in the population PK analysis.
However, only CrCL was included in the final model. Despite
using the available bilirubin and transaminases data as candidate
covariates, none of them improved the PK model. It might be due
to the lack of reliable, economical, and untroublesome parameters

FIGURE 2 | Linezolid trough plasma concentrations (Cmin) and logistic
regression model for myelosuppression (absence, 0; presence, 1).

FIGURE 3 | Kaplan–Meier plot showing the time from the initiation of linezolid therapy to the development of myelosuppression (n = 83).
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of liver function that account for the drug clearance (Watkins
et al., 2014; Wicha et al., 2017). Linezolid is currently
administered at a fixed dose of 600 mg every 12 h despite the
high between-subject variability in exposure and reduced CL in
patients with renal insufficiency. It has been reported that renal
impairment and end-stage renal disease have been associated
with an increased risk of developing thrombocytopenia in
patients receiving linezolid (Wu et al., 2006; Matsumoto et al.,
2009; Takahashi et al., 2011; Hanai et al., 2016; Rabon et al., 2018).
In addition, a clear exposure–toxicity relationship has been
identified for myelosuppression (Matsumoto et al., 2010; Tsuji
et al., 2011; Cattaneo et al., 2013; Dong et al., 2014). Thus, it is
likely that increased linezolid exposure is the underlying reason
for the higher risk of linezolid-related toxicity in patients with

renal impairment. In addition, while renal function also plays a
critical role in the clearance of the major metabolites of
linezolid (Souza et al., 2020), linezolid and its major
metabolites share a chemical feature (aniline functional group)
which medicinal chemistry has demonstrated to be a risk
factor for myelosuppression (Crivori et al., 2011; Stepan et al.,
2011).

Previous studies have assessed the association between the Cmin,
AUC0-24 of linezolid and thrombocytopenia. The first report was
published byMatsumoto et al. in 2010 (Matsumoto et al., 2010), who
found that patients developing thrombocytopenia had linezolid
trough concentrations ranging from 14.4 to 35.6 mg/L, and they
developed a logit model equation identifying a trough concentration
of 22.1 mg/L as the upper threshold for risk of thrombocytopenia

TABLE 3 | Simulated probability of attaining linezolid trough concentrations associated with efficacy and toxicity stratified by renal function.

Linezolid
dosage
regimen

%Probability

CrCL <30 ml/min CrCL 30–59 ml/min CrCL 60–89 ml/min CrCL ≥90 ml/min

600 mg q24h 76.30 84.17 59.47 48.30
600 mg q12h 49.13 56.90 81.20 79.33
600 mg q8h 0.33 1.43 24.13 29.8
450 mg q24h 88.40 81.17 48.30 32.30
450 mg q12h 67.97 66.57 71.33 61.10
450 mg q8h 3.13 10.27 39.67 63.43
300 mg q24h 76 56.67 20.93 14.4
300 mg q12h 81.10 69.27 53.33 38.40
300 mg q8h 26.67 47.50 65.07 77.80

Abbreviations; CrCL, estimated creatinine clearance (CrCL) calculated using the Cockcroft–Gault equation.
The bold values are the values with the highest PTA of the dosage regimen stratified by renal function.

FIGURE 4 | Simulated probability of achieving target attainment of linezolid (Cmin: 2.6–7.8 mg/L) stratified by renal function.
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(Hiraki et al., 2012). However, this proposed target was challenged by
the findings from Pea et al. and Matsumoto et al. who identified a
much lower threshold of trough concentration (6.5 and 8.1mg/L,
respectively) associated with 50% probability of risking
thrombocytopenia (Pea et al., 2012; Matsumoto et al., 2014). The
present study showed that the Cmin threshold of linezolid that caused
myelosuppression with 50% probability was 7.8 mg/L in critically ill
patients. Using the linear regression equation, the AUC0-24 for Cmin

of 7.8 mg/L was estimated to be 297.2mg h/L, which was consistent
with previous findings (Pea et al., 2012; Cattaneo et al., 2013; Nukui
et al., 2013). In addition, we showed that administration of linezolid
for ≥12 days was associated with a high risk of myelosuppression.
Therefore, critically ill patients receiving linezolid for≥12 days should
be monitored carefully. Individualized dosing and monitoring of
linezolid trough concentration could potentially help overcome the
limitation of linezolid toxicity, especially in renal insufficiency
patients. The previous studies suggested that a CrCL of <30ml/
min should be used as a threshold for predicting the risk of linezolid-
induced thrombocytopenia (Sasaki et al., 2011; Hirano et al., 2014),
whereas YuKi et al. pointed out that patients with CrCL of <60ml/
min and those on hemodialysis are at high risk of thrombocytopenia,
which is consistent with our result (Hanai et al., 2016). However, the
dose adjustment recommendation was not provided by the study. In
the present study, according to the simulated probability of attaining
linezolid target trough concentrations, a dose reduction to 600mg
every 24 h was the alternative for patients with CrCL of 30–59ml/
min, whereas 450mg every 24 h was the alternative for patients with
CrCL <30ml/min. However, it should be mentioned that dosage
adjusted according to CrCL could not always achieve the target
trough concentration in all patients because inter-individual
variability still exists. In addition, it should also be noted that the
dosage regimen should be subsequently adjusted following the
change in the renal function, especially for critically ill patients
whose initial renal impairment is caused by severe infection,
because their renal impairment will soon be improved after
alleviating the severe infection. TDM has been suggested by some
authors to optimize linezolid therapy in critically ill patients (Pea
et al., 2010; Cattaneo et al., 2013). Therefore, the combination of using
the recommended initial dose and subsequently adjusting the dose
guided by TDM could enable effective linezolid therapies while
avoiding adverse events.

There are some limitations to this study. First, PK analysis was
performed using the data obtained from linezolid TDM
retrospectively, even though the dosing time and sampling
time were precisely recorded. Second, we did not investigate
the effects of concomitant medications that are capable of causing
myelosuppression. Third, the effect of renal replacement therapy
on linezolid clearance was not clarified in the study, since patients
who had renal replacement therapy were excluded from this
study. Fourth, the distribution of plasma concentrations collected
in this study was mainly trough concentrations, and only a small
part of peak concentrations was included. Thus, we admitted that
the estimated apparent volume and prediction of peak
concentrations in the population PK model may not fit well
because of the limited data of peak concentrations.

In conclusion, the population PK analysis revealed that renal
function significantly affects the PKs of linezolid. The therapeutic
target for linezolid was considered to be Cmin of 2.6–7.8 mg/L to
minimize linezolid-induced myelosuppression while maintaining
treatment efficacy in critically ill patients. Furthermore, a
simulation based on the constructed PK model suggested a
reduced dose of 600 mg every 24 h was recommended for
patients with CrCL of 30–59 ml/min, whereas 450 mg every
24 h was the alternative for patients with CrCL <30 ml/min.
Given the high between-subject variability of linezolid PKs,
TDM is necessary to ensure optimal therapy across patient
population.
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