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ABSTRACT: In theoretical modeling of a physical system, a
crucial step consists of the identification of those degrees of
freedom that enable a synthetic yet informative representation of
it. While in some cases this selection can be carried out on the
basis of intuition and experience, straightforward discrimination of
the important features from the negligible ones is difficult for many
complex systems, most notably heteropolymers and large
biomolecules. We here present a thermodynamics-based theoreti-
cal framework to gauge the effectiveness of a given simplified
representation by measuring its information content. We employ
this method to identify those reduced descriptions of proteins, in
terms of a subset of their atoms, that retain the largest amount of
information from the original model; we show that these highly
informative representations share common features that are intrinsically related to the biological properties of the proteins under
examination, thereby establishing a bridge between protein structure, energetics, and function.

1. INTRODUCTION
The quantitative investigation of a physical system relies on the
formulation of a model of it, that is, an abstract representation
of its constituents and the interactions among them in terms of
mathematical constructs. In the realization of the simplest
model that entails all of the relevant features of the system
under investigation, one of the most crucial aspects is the
determination of its level of detail. The latter can vary
depending on the properties and processes of interest: the
quantum-mechanical nature of matter is explicitly incorporated
in ab initio methods,1 while effective classical interactions are
commonly employed in the all-atom (AA) force fields used in
AA molecular dynamics (MD) simulations.2,3 Representations
of a molecular system whose resolution level is lower than the
atomistic one are commonly dubbed coarse-grained (CG)
models:4−8 in this case, the fundamental degrees of freedom, or
effective interaction centroids, are representatives of groups of
atoms, and the interactions among these CG sites are
parametrized so as to reproduce equilibrium properties of
the reference system.
An important distinction should be made between

reproducing a given property and describing it. For example, it
is evident that the explicit incorporation of the electronic
degrees of freedom in the model of a molecule is necessary to
reproduce its vibrational spectrum with qualitative and
quantitative accuracy; on the other hand, the latter can be
measured and described from the knowledge of the nuclear
coordinates alone, i.e., from the inspection of a subset of the
system’s degrees of freedom. This is a general feature, in that

the understanding of a complex system’s properties and
behavior can typically be achieved in terms of a reduced set
of variables: statistical mechanics provides some of the most
recognizable examples of this, such as the description of
systems composed of an Avogadro’s number of atoms or
molecules in terms of a handful of thermodynamical
parameters.
In computer-aided studies, and particularly in the fields of

computational biophysics and biochemistry, recent techno-
logical advancementsmost notably massive parallelization,9

GPU computing,10 and tailor-made machines such as
ANTON11have extended the range of applicability of
atomistic simulations to molecular complexes composed of
millions of atoms;12−14 even in the absence of such impressive
resources, it is now common practice to perform micro-
seconds-long simulations of relatively large systems, up to
hundred thousands of atoms. However, a process of filtering,
dimensionality reduction, or feature selection is required in
order to distill the physically and biologically relevant
information from the immense amount of data in which it is
buried.
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The problem is thus to identify the most synthetic picture of
the system that entails all and only its important properties: an
optimal balance is sought between parsimony and informative-
ness. This objective can be pursued by making use of the
language and techniques of bottom-up coarse-grained model-
ing;5,15 in this context, in fact, one defines a mapping operator
M that performs a transformation from a high-resolution
configuration ri (i = 1, ..., n) of the system described in great
detail to a simpler, coarser configuration RI (I = 1, ..., N < n) at
lower resolution:

cM r R r( )I I
i

n

Ii i
1

∑= =
= (1)

where n and N are the number of atoms in the system and the
number of CG sites chosen, respectively. The linear
coefficients cIi in eq 1 are constant, positive, and subject to
the normalization condition ∑icIi = 1 to preserve translational
invariance. Furthermore, coefficients are generally taken to be
specif ic to each site,15 that is, an atom i taking part in the
definition of CG site I will not be involved in the construction
of another site J (cJi = 0 ∀ J ≠ I).
Once the mapping M is chosen, the interactions among CG

sites must be determined. In this respect, several method-
ologies have been devised in the past decades to parametrize
such CG potentials.4−8 Some approaches aim at reproducing
as accurately as possible the exact effective potential obtained
through the integration of the microscopic degrees of freedom
of the system, that is, the multibody potential of mean force
(MB-PMF); this is achieved in practice by tuning the CG
interactions so as to reproduce specific low-resolution
structural properties of the reference systems.16,17 Recently,
other methods have been proposed that target not only the
structure but also the energetics.18,19

In this work, we do not tackle the issue of parametrizing
approximate CG potentials but rather focus on the
consequences of the simplification of the system’s description
even if the underlying physics is the same, i.e., configurations
are sampled with the reference AA probability. In other words,
we focus purely on the effect of projecting the AA
conformational ensemble onto a CG configurational space
using the mapping as a filter.
Inevitably, in fact, a CG representation loses information

about the high-resolution reference,5,20 and the amount of
information lost depends only on the number and selection of
the retained degrees of freedom. In CG modeling, the mapping
is commonly chosen on the basis of general and intuitive
criteria: for example, it is rather natural to represent a protein
in terms of one single centroid per amino acid (usually the
choice falls on the α-carbon of the backbone).21 However, it is
by no means assured that a given representation that is natural
and intuitive to the human eye is also the one that allows the
CG model to retain the largest amount of information about
the original higher-resolution system.22,23 A quantitative
criterion to assess how much detail is lost upon structural
coarsening is thus needed in order to make a sensible choice.
In the past few years, various methods have been developed

that target the problem of the automated construction of a
simplified representation of a protein at a resolution level lower
than atomistic. In a pioneering work, Gohlke and Thorpe
proposed to partition a protein into a few sizewise diverse
blocks, distributing the amino acids among the different
domains so as to minimize the degree of internal flexibility of

the latter.24 This picture of a protein subdivided into quasi-rigid
domains, which has been further developed by several other
authors,25−31 is founded on the notion of a simplified model
where groups of atoms are assigned to coarse-grained sites not
according to their chemistry (e.g., one residue ↔ one site) but
rather on the basis of the local properties of the specific
molecule under examination. These partitioning methods,
however, employ only structural information, in that they aim
to minimize each block’s internal strain, while the energetics of
the system is neglected.
Some approaches systematically reduce the number of atoms

in a system’s representation by grouping them according to
graph-theoretical procedures. For example, the method
reported by De Pablo and co-workers maps the static structure
on a graph and hierarchically decimates it by clustering
together the “leaves”;32 alternative methods lump residues in
effective sites on the basis of a spectral analysis of the graph
Laplacian.33 More recently, Li et al.34 developed a graph neural
network-based method to match a data set of manually
annotated CG mappings.
Alternatively, it was proposed to retain only those atoms that

guarantee the set of new interactions to quantitatively
reproduce the MB-PMF.22,35 However, these methods are
based on linearized elastic network models36−41 that have the
remarkable advantage of being exactly solvable, thus allowing a
direct comparison between the CG potential and MB-PMF,
but cannot be taken as significant representations of the
system’s highly nonlinear interactions.
It follows that all of these pioneering approaches rely either

on purely geometrical/topological information obtained from a
single static structure; on an ensemble of structures, neglecting
energetics and thermodynamics; or on extremely simplified
representations of both structure and interactions that do not
guarantee general applicability to systems of great complexity.
Here we tackle the issue of the automated, unsupervised

construction of the most informative simplified representation
of biological macromolecules in purely statistical-mechanical
terms, that is, in the language that is most naturally employed
to investigate such systems. Specifically, we search for the
mapping operator that, for a given number of atoms retained
from the original AA model, provides a description whose
information content is as close as possible to that of the
reference. In this context, then, the term “coarse-grained
representation” should not be interpreted as a system with
effective interactions whose scope is to reproduce a certain
property, phenomenon, or behavior; rather, the representations
we discuss here are simpler pictures of the reference system
evolving according to the reference microscopic Hamiltonian
but viewed in terms of fewer degrees of freedom. Our objective
is thus the identification of the most informative simplified
picture among those possible.
To this end, we make use of the concept of mapping entropy,

Smap,
17,42−44 a quantity that measures the quality of a CG

representation in terms of the “distance” between probability
distributionsthe Boltzmann distribution of the reference AA
system and the equivalent distribution when the AA
probabilities are projected into the CG coordinate space.
The mapping entropy is ignorant of the parametrization of the
effective interactions of the simplified model: Smap effectively
compares the reference system, described through all of its
degrees of freedom, to the same system in which
configurations are viewed through “coarse-graining lenses”.
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The difference between these two representations lies only in
the resolution, not in the microscopic physics.
Recently, the introduction of a mapping-entropy-related

metric proved to be a powerful instrument for determining the
optimal coarse-graining resolution level for a biological
system.44 Applied to a set of model proteins, this method
was capable of identifying the number of sites that needed to
be employed in the simplified CG picture to preserve the
maximum amount of thermodynamic information about the
microscopic reference. However, such analysis was carried out
at a fixed CG resolution distribution, with a homogeneous
placement of sites along the protein sequence. Moreover,
calculations were performed using an exactly solvable yet very
crude approximation to the system’s microscopic interactions,
namely, a Gaussian network model.
Motivated by these results, in the following we develop a

computationally effective protocol that enables the approx-
imate calculation of the mapping entropy for an arbitrarily
complex system. We employ this novel scheme to explore the
space of the system’s possible CG representations, varying the
resolution level as well as the distribution, with the objective of
identifying the ones featuring the lowest mapping entropy
that is, allowing for the smallest amount of information loss
upon resolution reduction. The method is applied to three
proteins of substantially different size, conformational varia-
bility, and biological activity. We show that the choice of
retained degrees of freedom, guided by the objective of
preserving the largest amount of information while reducing
the complexity of the system, highlights biologically mean-
ingful and a priori unknown structural features of the proteins
under examination, whose identification would otherwise
require computationally more intensive calculations or even
wet lab experiments.

2. RESULTS

In this section we report the main findings of our work.
Specifically, (i) we outline the theoretical and computational
framework that constitutes the basis for the calculation of the
mapping entropy; (ii) we illustrate the biological systems on
which we apply the method; and (iii) we describe the results of
the mapping entropy minimization for these systems and the
properties of the associated mappings.
2.1. Theory. The concept of mapping entropy as a measure

of the loss of information inherently generated by performing a
coarse-graining procedure on a system was first introduced by
one of us in the framework of the relative entropy method17

and subsequently expanded in refs 42−44. For the sake of
brevity, we here omit the formal derivation connecting the
relative entropy Srel and the mapping entropy as well as a
discussion of the former. A brief summary of the relevant
theoretical results presented in refs 17 and 42−44 is provided
in Appendix A.
In the following we restrict our analysis to the case of

decimation mappings M in which a subset of N < n atoms of
the original system are retained while the remaining ones are
integrated out, so that

I

N

M r r( ) , 1 for one and 0 otherwiseI i i i

i

n

i
1

∑

σ σ

σ

= =

=
= (2)

In this case, as shown in Appendix A, the mapping entropy
Smap reads as

42
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where DKL(pr(r) ∥ p̅r(r)) is the Kullback−Leibler (KL)
divergence45 between pr(r), the probability distribution of
the high-resolution system, and p̅r(r), the distribution obtained
by observing the latter through “coarse-graining glasses”.
Following the notation of ref 42, p̅r(r) is defined as

p pr M r M r( ) ( ( ))/ ( ( ))r R 1̅ = Ω (4)

where pR(R) is the probability of the CG macrostate R, given
by

p p

Z

R r r M r R

r M r R

( ) d ( ) ( ( ) )

1
d e ( ( ) )

R r

u r( )

∫
∫

δ

δ

= −

= −β−
(5)

in which β = 1/kBT, u(r) is the microscopic potential energy of
the system, and Z = ∫ dr e−βu(r) is its canonical partition
function, while Ω1(R) is defined as

R r M r R( ) d ( ( ) )1 ∫ δΩ = −
(6)

which is the degeneracy of the macrostatehow many
microstates map onto the CG configuration R.
The calculation of Smap in eq 3 thus amounts to determining

the distance (in the KL sense) between two, although both
microscopic, conceptually very different distributions. In
contrast to pr(r), eq 4 shows that p̅r(r) assigns the same
probability to all configurations that map onto the same CG
macrostate R; this probability is given by the average of the
original probabilities of these microstates. Importantly, p̅r(r)
represents the high-resolution description of the system that
would be accessible only starting f rom its low-resolution
descriptioni.e., pR(R). Grouping together configurations
into a CG macrostate has the effect of flattening the detail of
their original probabilistic weights. An attempt to revert the
coarse-graining procedure and restore atomistic resolution by
reintroducing the mapping operatorM in pR(R) can only result
in microscopic configurations that are uniformly distributed
within each macrostate.
Because of the smearing of probabilities, the coarse-graining

transformations constitute a semigroup.46 This irreversible
character highlights a fundamental consequence of coarse-
graining strategies: a loss of information about the system. The
definition based on the KL divergence (eq 3) is useful for
practical purposes. A more direct understanding of this
information loss and how it is encoded in the mapping
entropy, however, can be obtained by considering the nonideal
configurational entropies of the original and CG representa-
tions,

s k p V pr r rd ( ) ln( ( ))r r
n

rB∫= −
(7)

s k p V pR R Rd ( ) ln( ( ))R R
N

RB∫= −
(8)
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which respectively quantify the information contained in the
associated probability distributions pr(r) and pR(R):

47 the
higher the entropy, the more uniform the distribution, which
we associate with a lower information content. By virtue of
Gibbs’ inequality, from eq 3 one has Smap ≥ 0. Furthermore, as
shown in Appendix A,

s s S 0R r map− = ≥ (9)

so that the entropy of the CG representation is always higher
than that of the reference microscopic representation, implying
that a loss of information occurs in decreasing the level of
resolution.42,44 Critically, the difference between the two
information contents is precisely the mapping entropy.
The information that is lost in the coarse-graining process as

quantified by Smap depends only on the mapping operator M
in our case, on the choice of the retained sites. This paves the
way for the possibility of assessing the quality of a CG mapping
on the basis of the amount of information about the original
system that it is able to retain, a qualitative advancement with
respect to the more common a priori selection of CG
representations.21 Unfortunately, eqs 3 and 9 do not allow
except for very simple microscopic models (see ref 44)a
straightforward computational estimate of Smap for a system
arising from a choice of its CG mapping, as the observables to
be averaged involve logarithms of high-dimensional probability
distributions and ultimately configuration-dependent free
energies. However, having introduced the loss of information
per macrostate Smap(R), defined by the relation42,44

S p SR R Rd ( ) ( )Rmap map∫=
(10)

in Appendix B we show that this problem can be overcome by
further subdividing microscopic configurations that map to a
given macrostate according to their potential energy. Let us
define Pβ(U|R) as the conditional probability that a system
thermalized at inverse temperature β has energy U provided
that is in macrostate R:

P U
p U

p

p
p u U

R
R

R

R
r r M r R r

( )
( , )

( )
1
( )

d ( ) ( ( ) ) ( ( ) )

R

R

R
r∫ δ δ

| =

= − −

β

(11)

Then Smap(R) can be exactly rewritten as follows (see
Appendix B):

S k U P UR R( ) ln d ( )e U U
map B

( )R

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ∫= ′ ′|β

β ′−⟨ ⟩β|

(12)

where ⟨U⟩β|R is the average of the potential energy restricted to
the CG macrostate R, given by

U U P U URd ( )R ∫⟨ ⟩ = |β β| (13)

This derivation enables a direct estimate of the mapping
entropy Smap from configurations sampled according to the
microscopic probability distribution pr(r). For a given
mapping, the histogram of these configurations with respect
to CG coordinates R and energy U approximates the
conditional probability Pβ(U|R) and, consequently, Smap(R)
(see eq 12); the total mapping entropy can thus be obtained as
a weighted sum of the latter over all CG macrostates (eq 10).

The only remaining difficulty consists of obtaining accurate
estimates of the exponential average in eq 12, which are prone
to numerical errors. As is often done in these cases (see, e.g.,
free energy calculations through Jarzynski’s equality or the free
energy perturbation method48,49), it is possible to rely on a
cumulant expansion of eq 12, which when truncated at second
order provides

S k U UR( )
2

( )R Rmap B

2
2β≈ ⟨ − ⟨ ⟩ ⟩β β| | (14)

Inserting eq 14 into eq 10 results in a total mapping entropy
given by

S k p U UR R
2

d ( ) ( )R R Rmap B

2
2∫β≈ ⟨ − ⟨ ⟩ ⟩β β| | (15)

For a CG representation to exhibit a mapping entropy of
exactly zero, it is required that all microstates r that map onto a
given macrostate R = M(r) have the same energy in the
reference system. Indeed, in this case one has Pβ(U|R) = δ(U
− u̅R) in eq 12, where u̅R is the potential energy common to all
microstates within macrostate R, and consequently, Smap(R) =
0. Equation 14 highlights that deviations from this condition
result in a loss of information associated with a particular CG
macrostate that is proportional to the variance of the potential
energy of all the atomistic configurations that map to R. The
overall mapping entropy is an average of these energy variances
over all macrostates, each one weighted with the corresponding
probability.
In the numerical implementation we thus seek to identify

those mappings that cluster together atomistic configurations
having the same energy, or at least very close energies, in order
to minimize the information loss arising from coarse-graining.
With respect to eq 15, we further approximate Smap as its
discretized counterpart S̃map (see Methods):

S k p U UR
2

( ) ( )
i

N

R i R Rmap B

2

1

2
i i

cl

∑β̃ = ⟨ − ⟨ ⟩ ⟩β β
=

| |
(16)

where we identify Ncl discrete CG macrostates Ri, each of
which contributes to S̃map with its own probability pR(Ri),
taken as the relative population of the cluster. We then employ
an algorithmic procedure to estimate and efficiently minimize,
over the possible mappings, a cost function (see eq 25 in
Methods)

SmapΣ ≡ ⟨ ̃ ⟩ (17)

defined as an average of values of S̃map computed over different
CG configuration sets, each of which is associated with a given
number of conformational clusters Ncl.
Finally, it is interesting to note that the mapping entropy in

the form presented in eq 15 appears in the dual-potential
approach recently developed by Lebold and Noid.18,19 In those
works, the authors obtained an approximate CG energy
function E(R) that is able to accurately reproduce the exact
energetics of the low-resolution systemi.e., the average
energy ⟨U ⟩β|R in macrostate R (see eq 13). This was achieved
by minimizing the functional

E E uM r r( ( )) ( )2 2χ [ ] = ⟨| − | ⟩ (18)

with respect to the force field parameters contained in E, where
the average in eq 18 is performed over the microscopic model.
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Expressing ⟨U ⟩β|R as a function of r through the mapping M
allows χ2[E] to be decomposed as18,19

E U u

E U

M r r

M r M r

( ( )) ( )

( ( )) ( ( ))

R

R

2 2

2

χ [ ] = ⟨|⟨ ⟩ − | ⟩

+ ⟨| − ⟨ ⟩ | ⟩
β

β

|

| (19)

Minimizing χ2[E] on E(R) for a given mapping as in refs 18
and 19 is tantamount to minimizing the second term in eq 19
with the objective of reducing the error introduced by
approximating ⟨U ⟩β|R through E(R).
However, a comparison of eqs 15 and 19 shows that Smap

coincides, up to a multiplicative factor, with the first term of eq
19. Critically, the latter depends only on the mapping M and
would be nonzero also in the case of an exact parametrization
of E, i.e., for E(R) ≡ ⟨U⟩β|R. The approach illustrated in the
present work goes in a direction complementary to that of refs
18 and 19, as we concentrate on identifying those mappings
that minimize the one contribution to χ2[E] that is due to, and
depends only on, the CG representation M.
2.2. Biological Structures. It is worth stressing that the

results of the previous section are completely general and
independent of the specific features of the underlying system.
Of course, characteristics of the input such as the force field
quality, the simulation duration, the number of conformational
basins explored, etc. will impact the outcome of the analysis, as
is necessarily the case in any computer-aided investigation;
nonetheless, the applicability of the method is not prevented or
limited by these features or other system properties, e.g., the
specific molecule under examination, its complexity, its size, or
its underlying all-atom modeling.
To illustrate the method in its generality, here we focus our

attention on three proteins that we chose to constitute a small
yet representative set of case studies. These molecules cover a
size range spanning from ∼30 to ∼400 residues and a similarly
broad spectrum of conformational variability and biological
function, and they can be taken as examples of several classes
of enzymatic and non-enzymatic proteins.
Each protein is simulated for 200 ns in the NVT ensemble

with physiological ion concentration. Out of 200 ns, snapshots
are extracted from each trajectory every 20 ps, for a total of 104

AA configurations per protein employed throughout the
analysis. Details about the simulation parameters, quantitative
inspection of MD trajectories, characteristic features of each
protein’s results, and the validation of the latter with respect to
the duration of the MD trajectory employed can be found in
the Supporting Information. Hereafter we provide a
description of each molecule along with a brief summary of
its behavior as observed along MD simulations.
The first protein is a recently released50 31-residue tamapin

mutant (TAM, PDB code 6D93). Tamapin is the toxin
produced by the Indian red scorpion. It features a remarkable
selectivity toward a peculiar calcium-activated potassium
channel (SK2), whose potential use in the pharmaceutical
context has made it a preferred object of study during the past
decade.51,52 Throughout our simulation, almost every residue
is highly solvent-exposed. Side chains fluctuate substantially,
thus giving rise to extreme structural variability.
The second protein is adenylate kinase (AKE, PDB code

4AKE), which is a 214 residue phosphotransferase enzyme that
catalyzes the interconversion between adenine diphosphate
(ADP) and adenine monophosphate (AMP) on the one hand,
and the energy-rich complex adenine triphosphate (ATP) on
the other hand.53 It can be subdivided in three structural

domains: CORE, LID, and NMP.54 The CORE domain is
stable, while the other two undergo large conformational
changes.55 Its central biochemical role in the regulation of the
energy balance of the cell and its relatively small size,
combined with the possibility to observe conformational
transitions over time scales easily accessible by plain MD,56

make it an ideal candidate to test and validate novel
computational methods.22,57,58 In our MD simulation, the
protein displays many rearrangements in the two motile
domains, which happen to be quite close at many points.
Nevertheless, the protein does not undergo a full open ⇄
closed conformational transition.
The third protein is α-1-antitrypsin (AAT, PDB code

1QLP). With 5934 atoms (372 residues), this protein is almost
2 times bigger than AKE. AAT is a globular biomolecule, and it
is well-known to exhibit a conformational rearrangement over
the time scales of minutes.59−61 During our simulated
trajectory, the molecule experiences fluctuations particularly
localized in regions corresponding to the most solvent-exposed
residues. The protein bulk appears to be very rigid, and there is
no sign of a conformational rearrangement.

2.3. Minimization of the Mapping Entropy and
Characterization of the Solution Space. The algorithmic
procedure described in Methods and Appendix B enables one
to quantify the information loss experienced by a system as a
consequence of a specif ic decimation of its degrees of freedom.
This quantification, which is achieved through the approximate
calculation of the associated mapping entropy, opens the
possibility of minimizing such a measure in the space of CG
representations in order to identify the mapping that, for a
given number of CG sites N, is able to preserve as much
information as possible about the AA reference.
In the following we allow CG sites to be located only on

heavy atoms, thus reducing the maximum number of possible
sites to Nheavy. We then investigate the properties of various
kinds of CG mappings having different numbers of retained
sites N. Specifically, we consider three chemically intuitive
values of N for each biomolecule: (i) Nα, the number of Cα

atoms in the structure (equal to the number of amino acids);
(ii) Nαβ, the number of Cα and Cβ atoms; and (iii) Nbkb, the
number of heavy atoms belonging to the main chain of the
protein. The values of N for mappings (i)−(iii) in the cases of
TAM, AKE, and AAT are listed in Table 1 together with the
corresponding values of Nheavy.

Even with N restricted to Nα, Nαβ, and Nbkb, the
combinatorial dependence of the number of possible
decimation mappings on the number of retained sites and
Nheavy makes their exhaustive exploration unfeasible in practice
(see Methods). To identify the CG representations that
minimize the information loss, we thus rely on a Monte Carlo
simulated annealing (SA) approach (Methods).62,63 For each
analyzed protein and value of N, we perform 48 independent
optimization runs, i.e., minimizations of the mapping entropy
with respect to the CG site selection; we then store the CG

Table 1. Values of Nα, Nαβ, Nbkb, and Nheavy (See the Text)
for Each Analyzed Protein

protein Nα Nαβ Nbkb Nheavy

TAM 31 59 124 230
AKE 214 408 856 1656
AAT 372 723 1488 2956
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representation characterized by the lowest value of Σ in each
run, thus resulting in a pool of optimized solutions. In order to
assess their statistical significance and properties, we also
generate a set of random mappings and calculate the associated
Σ values, which constitute our reference values.
Figure 1 displays, for each value of N considered, the

distributions of mapping entropies obtained from random
choices of the CG representations of TAM, AKE, and AAT
together with each protein’s optimized counterpart. For N =
Nbkb and N = Nα in Figure 1 we also report the values of Σ
associated with physically intuitive choices of the CG mapping
that are commonly employed in the literature: the backbone
mapping (N = Nbkb), which neglects all atoms belonging to the
side chains; and the Cα mapping (N = Nα), in which we retain
only the Cα atoms of the structures. The first is representative
of united-atom CG models, while the second is a ubiquitous
and rather intuitive choice to represent a protein in terms of a
single bead per amino acid.21

The optimality of a given mapping with respect to a random
choice of the CG sites can be quantified in terms of the Z
score,

Z opt μ
σ

=
Σ −

(20)

where μ and σ represent the mean and standard deviation,
respectively, of the distribution of Σ over randomly sampled
mappings. Table 2 summarizes the values of Z found for each

N for the proteins under examination, including Z[backbone]
and Z[Cα], which were computed with respect to the random
distributions generated with N = Nbkb and N = Nα respectively.
For the physically intuitive CG representations, Figure 1

shows that the value of Σ associated with the backbone
mapping is very high for all structures. For TAM in particular,
the amount of information retained is so low that the mapping
entropy is 4.37 standard deviations higher than the average of

Figure 1. Distributions of the values of the mapping entropy Σ [in kJ mol−1 K−1] in eq 17 for random mappings (light-blue histograms) and
optimized solutions (green histograms). Dark-blue dashed lines show the best fit with normal distributions over the random cases. Each column
corresponds to an analyzed protein and each row to a given number N of retained atoms. In the first and last rows, corresponding to numbers of
CG sites equal to the numbers of Cα atoms and backbone atoms (Nα and Nbkb, respectively), the values of the mapping entropy associated with the
physically intuitive choice of the CG sites (see the text) are indicated by vertical lines (red for N = Nα, purple for N = Nbkb). It should be noted that
the σ ranges have the same width in all of the plots.

Table 2. Z Scores for Each Analyzed Proteina

TAM AKE AAT

Z̅[Nα] −2.22 ± 0.06 −7.85 ± 1.14 −6.96 ± 1.03
Z[Nαβ] −2.38 ± 0.08 −6.09 ± 0.79 −6.64 ± 0.84
Z̅[Nbkb] −2.65 ± 0.09 −5.55 ± 0.62 −7.24 ± 0.85
Z[backbone] 4.37 5.65 4.31
Z[Cα] 0.87 3.36 3.28

aWe report the means (Z̅) and standard deviations of the
distributions of Z values of the optimized solutions for all values of
N investigated. Results for the standard mappings (Z[backbone] for
backbone atoms only and Z[Cα] for Cα atoms only) are also included.
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the reference distribution of random mappings (see Table 2).
This suggests that neglecting the side chains in a CG
representation of a protein is detrimental, at least as far as
the structural resolution is concerned. In fact, the backbone of
the protein undergoes relatively minor structural rearrange-
ments when exploring the neighborhood of the native
conformation, thereby inducing negligible energetic fluctua-
tions; for side chains, on the other hand, the opposite is true,
with comparatively larger structural variability and a similarly
broader energy range associated with it. Removing side chains
from the mapping induces the clustering of atomistically
different structures with different energies onto the same
coarse-grained configuration, the latter being solely determined
by the backbone. The corresponding mapping entropy is thus
largeworse than a random choice of the retained atoms
since it is related to the variance of the energy in the
macrostate.
Calculations employing the Cα mapping for the three

structures show that this provides Σ values that are very close
to the ones we find with the backbone mapping, thus
suggesting that Cα atoms retain about the same amount of
information that is encoded in the backbone. This is
reasonable given the rather limited conformational variability
of the atoms along the peptide chain. However, a comparison
of the random case distributions for Nα and Nbkb as the
number of retained atoms in Figure 1 reveals that the former
generally has a broader spread than the latter because of the
lower number of CG sites; consequently, the value of Σ for the
Cα atom mapping is closer to the bulk of the distribution of the
random case than that of the backbone mapping.
We now discuss the case of optimized mappings, that is, CG

representations retaining the maximum amount of information
about the AA reference. Each of the 48 minimization runs,
which were carried out for each protein in the set and value of
N considered, provided an optimal solutiona deep local
minimum in the space of CG mappings; the corresponding Σ
values are spread over a compact range of values that are
systematically lower than, and do not overlap with, those of the
random case distributions (Figure 1).
The optimal solutions for AKE and AAT span wide intervals

of Σ values; for N = Nα in particular, the support of this set and
of the corresponding random reference have comparable sizes.
A quantitative measure of this broadness is displayed in the
distributions of Z scores for the optimal solutions presented in
Table 2. In both proteins, we observe that the Σ values

associated with the optimal mappings increase with the degree
of coarse-graining, N; this is a consequence of keeping the
number of CG configurations of each system (conformational
clusters; see section 4.2) constant across different resolutions.
As N increases, the available CG conformational clusters are
populated by more energetically diverse conformations,
thereby incrementing the associated energy fluctuations. On
the other hand, TAM shows narrowly peaked distributions of
optimal values of Σ whose position does not vary with the
number of retained sites. Both effects can be ascribed to the
fact that most of the energy fluctuations in TAMand
consequently the mapping entropyare due to a subset of
atoms that are almost always maintained in each optimal
mapping (see section 2.4), in contrast to a random choice of
the CG representation. At the same time, the associated Z
scores are lower than the ones for the bigger proteins for all
values of N under examination, as TAM conformations
generally feature a lower variability in energy than the other
molecules.
For all of the investigated proteins, the absence of an overlap

between the distributions of Σ associated with the random and
optimized mappings raises some relevant questions. First, one
might wonder what kind of structure the solution space has, that
is, whether the identified solutions lie at the bottom of a rather
flat vessel or, on the contrary, each of them is located in a
narrow well, neatly separated from the others. Second, it is
reasonable to ask whether some degree of similarity exists
between these quasi-degenerate solutions of the optimization
problem and, if so, what significance this has.
In order to answer these questions, for each structure we

select four pairs of mapping operators Mopt that result in the
lowest values of Σ. We then perform 100 independent
transitions between these solutions, constructing intermediate
mappings by randomly swapping two non-overlapping atoms
from the two solutions at each step and calculating the
associated mapping entropies. Figure 2 shows the results of
this analysis for the pair of mappings with the lowest Σ; all of
the other transitions are reported in Figure S2. It is interesting
to notice that the end points (that is, the optimized mappings)
correspond to the lowest values of Σ along each transition
path; as the size of the protein increases, the values of Σ for
intermediate mappings get closer to the average of Σrandom. By
this analysis we cannot rule out the absence of lower minima
over all of the possible paths, although it seems quite unlikely
given the available sampling.

Figure 2. Values of the mapping entropy Σ [in kJ mol−1 K−1] for mappings connecting two optimal solutions. In each plot, one per protein under
examination, the two lowest-Σ mappings are taken as initial and final end points (black dots) for paths constructed by swapping pairs of atoms
between them (blue dots). For each protein, 100 independent paths at the given N = Nαβ were constructed, and the mapping entropy of each
intermediate point was computed. In each plot, horizontal lines represent the mean (red) and minimum (green) values of Smap obtained from the
corresponding distributions of random mappings presented in Figure 1.
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Finally, it is interesting to observe the pairwise correlations
of the site conservation probability within a pool of solutions,
as it is informative about the existence of atom pairs that are, in
general, simultaneously present, simultaneously absent, or
mutually exclusive. As reported in detail in Figures S6 and S7,
no clear evidence is available that conserving a given atom can
increase or decrease in a statistically relevant manner the
conservation probability of another: this behavior supports the
idea that the organization internal to a given optimal mapping
is determined in a nontrivial manner by the intrinsically
multibody nature of the problem at hand.
These analyses thus address the first question by showing

that at least the deepest solutions of the optimization
procedure are distinct from each other. It is not possible to
(quasi)continuously transform an optimal mapping into
another through a series of steps while keeping the value of
the mapping entropy low. Each of the inspected solutions is a
small town surrounded by high mountains in each direction,
isolated from the others with no valleys connecting them.

The second question, namely, what similarity (if any) exists
among these disconnected solutions, is tackled in the following
section.

2.4. Biological Significance. The degree of similarity
between the optimal mappings can be assessed by a simple
average, returning the frequency with which a given atom is
retained in the 48 solutions of the optimization problem.
Figure 3 shows the values of Pcons, the probability of

conserving each heavy atom, for each analyzed protein and
degree of coarse-graining N investigated, computed as the
fraction of times it appears in the corresponding pool of
optimized solutions. One can notice the presence of regions
that appear to be more or less conserved. Quantitative
differences between the three cases under examination can
be observed: while the heat map of TAM shows narrow and
pronounced peaks of conservation probability, the optimal
solutions for AKE feature a more uniform distribution, where
the maxima and minima of Pcons extend over secondary
structure fragments rather than small sets of atoms. The
distribution gets even more blurred for AAT.

Figure 3. Probability Pcons that a given atom is retained in the optimal mapping at various numbers N of CG sites and for each analyzed protein,
expressed as a function of the atom index. Atoms are ordered according to their numbers in the PDB file. The secondary structure of the proteins is
depicted using Biotite:64 green waves represent α-helices, and orange arrows correspond to β-strands.
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As index proximity does not imply spatial proximity in a
protein structure, we mapped the aforementioned probabilities
to the three-dimensional configurations. Results for TAM are
shown in Figure 4, while the corresponding ones for AKE and
AAT are provided in Figure S3. From the distributions of Pcons
for different numbers of retained sites N it is possible to infer
some relevant properties of optimal mappings.
With regard to TAM (Figure 4), it seems that at the highest

degree of CG (N = Nα), only two sites are always conserved,
namely, two nitrogen atoms belonging to the ARG6 and
ARG13 residues (Pcons(NH1, ARG6) = 0.92; Pcons(NH2,
ARG13) = 0.96). The atoms that constitute the only other
arginine residue, ARG7, are well-conserved but with lower
probability. By increasing the resolution, i.e., employing more
CG sites (N = Nαβ), we see that the atoms in the side chain of
LYS27 appear to be retained more than average together with
atoms of GLU24 (Pcons(NZ, LYS27) = 0.65; Pcons(OE2,
GLU24) = 0.75). At N = 124, the distribution becomes more
uniform but is still sharply peaked around terminal atoms of
ARG6 and ARG13.
Interestingly, ARG6 and ARG13 have been identified to be

the main actors involved in the TAM−SK2 channel
interaction.65−67 Andreotti et al.65 suggested that these two
residues strongly interact with the channel through electro-
statics and hydrogen bonding. Furthermore, Ramıŕez-Cordero
et al.67 showed that mutating one of the three arginines of
TAM dramatically decreases its selectivity toward the SK2
channel.
It thus appears that the mapping entropy minimization

protocol was capable of singling out the two residues that are
crucial for a complex biological process. The rationale for this
can be found in the fact that such atoms strongly interact with
the remainder of the protein, so that small variations of their
relative coordinates have a large impact on the value of the
overall system’s energy. Retaining these atoms and fixing their
positions in the coarse-grained conformation thus enable the
model to discriminate effectively one macrostate from another.
We note that this result was achieved solely by relying on

data obtained in standard MD simulations. This aspect is
particularly relevant, as the simulations were performed in
absence of the channel, whose size is substantially larger than
that of TAM. Consequently, we stress that valuable biological
information, otherwise obtained via large-scale, multicomplex
simulations, bioinformatic approaches, or experiments, can be
retrieved by means of straightforward simulations of the
molecule of interest in the absence of its substrate.
For AKE (Figure S3), we find that for N = Nα the external,

solvent-exposed part of the LID domain is heavily coarse-
grained, while its internal region is more conserved. The
CORE region of the protein is always largely retained, without

noteworthy peaks in probability. Such peaks, on the contrary,
appear in correspondence to the terminal nitrogens of ARG36,
LYS57, and ARG88 (Pcons(NH2, ARG36) = 0.52; Pcons(NZ,
LYS57) = 0.48; Pcons(NH2, ARG88) = 0.58). The two
arginines are located in the internal region of the NMP arm, at
the interface with the LID domain. ARG88 is known to be the
most important residue for catalytic activity,68,69 being central
in the process of phosphoryl transfer.70 Phenylglyoxal,71 a drug
that mutates ARG88 to a glycine, has been shown to
substantially hamper the catalytic capacity of the enzyme.70

ARG36 is also bound to phosphate atoms.69 Finally, LYS57 is
on the external part of NMP and has been identified to play a
pivotal role in collaboration with ARG88 to block the release
of adenine from the hydrophobic pocket of the protein.72

More generally, this amino acid is crucial for stabilizing the
closed conformation of the kinase,73,74 which was never
observed throughout the simulation. The overall probability
pattern persists as N increases, even though it is less
pronounced.
For AAT, Figure S3 shows that the associated optimizations

heavily coarse-grain the reactive center loop of the protein. On
the other hand, two of the most conserved residues in the pool
of optimized mappings, MET358 and ARG101, are central to
the biological role of this serpin. MET358 (Pcons(CE,
MET358) = 0.31) constitutes the reactive site of the protein.75

Being extremely inhibitor-specific, mutation or oxidation of
this amino acid leads to severe diseases. In particular, heavy
oxidation of MET358 is one of the main causes of
emphysema.76 The AAT Pittsburgh variant shows MET358−
ARG mutation, which leads to diminished antielastase activity
but markedly increased antithrombin activity.59,75,77 In turn,
ARG101 (Pcons(CZ, ARG101) = Pcons(NH1, ARG101) =
Pcons(NH2, ARG101) = 0.35) has a crucial role due to its
connection to mutations that lead to severe AAT defi-
ciency.60,61

In summary, we observe that in all of the proteins
investigated, the presented approach identifies biologically
relevant residues. Most notably, these residues, which are
known to be biologically active in the presence of other
compounds, are singled out f rom substrate-f ree MD simulations.
With the exception of MET358 of AAT, the most probably
retained atoms belong to amino acids that are charged and
highly solvent-exposed. To quantify the statistical significance
of the selection operated by the algorithm, we note that the
latter detects those fragments out of pools of 8, 69, and 100
charged residues for TAM, AKE, and AAT, respectively. If we
account for solvent exposure, these numbers are reduced to 7,
32, and 40 when amino acids with solvent-accessible surface
area (SASA) higher than 1 nm2 are considered.

Figure 4. Structure of tamapin (one bead per atom) colored according to Pcons, the probability for each atom to be retained in the pool of optimal
mappings. Each structure corresponds to a different number N of retained CG sites. Residues presenting the highest retainment probability across
N (ARG6 and ARG13) are highlighted.
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Another aspect worth mentioning is the fact that several
atoms pinpointed as highly conserved in optimal mappings are
located in the side chains of relatively large residues, such as
arginine, lysine, and methionine. It is thus legitimate to wonder
whether a correlation might exist between the size of an amino
acid and the probability that one or more of its atoms will be
present in a low-Smap reduced representation. An inspection of
the root-mean-square fluctuation values of the three proteins’
atoms versus their conservation probability (see Figure S4)
shows no significant correlation for low or intermediate values
of Pcons; highly conserved atoms, on the other hand, tend to be
located on highly mobile residues because a relatively large
conformational variability is a prerequisite for an atom to be
determinant in the mapping. In conclusion, highly mobile
residues are not necessarily highly conserved, while the
opposite is more likely.

3. DISCUSSION AND CONCLUSIONS
In this work, we have addressed the question of identifying the
subset of atoms of a macromolecule, specifically a protein, that
retains the largest amount of information about its conforma-
tional distribution while employing a reduced number of
degrees of freedom with respect to the reference. The
motivation behind this objective is to provide a synthetic yet
informative representation of a complex system that is
simulated in high resolution but observed in low resolution,
thus rationalizing its properties and behavior in terms of
relatively few important variables, namely, the positions of the
retained atoms.
This goal was pursued by making use of tools and concepts

largely borrowed from the field of coarse-grained modeling, in
particular bottom-up coarse-graining. The latter term identifies
a class of theoretical and computational strategies employed to
construct a simplified model of a system that would be too
onerous to simulate if it were treated in terms of a high-
resolution description. Coarse-graining methods make use of
the configurational landscape of the reference high-resolution
model to construct a simplified representation that retains its
large-scale properties. The interactions among effective sites
are parametrized by directly integrating out (in an exact or
approximate manner) the higher-resolution degrees of freedom
and imposing the equality of the probability distributions of
the coarse-grained degrees of freedom in the two representa-
tions.5

These approaches have a long and successful history in the
fields of statistical mechanics and condensed matter, the most
prominent, pioneering example probably being Kadanoff’s spin
block transformations of ferromagnetic systems.78 This
process, which lies at the heart of real-space renormalization
group (RG) theory, allows the relevant variables of the system
to naturally emerge out of a (potentially infinite) pool of
fundamental interactions, thus linking microscopic physics to
macroscopic behavior.79,80

The generality of the concepts of the renormalization group
and coarse-graining has naturally taken them outside of their
native environment,81−83 with the whole field of coarse-grained
modeling of soft matter being one of the most fruitful
offsprings of this cross-fertilization.5 However, a straightfor-
ward application of RG methods in this latter context is
severely restricted by fundamental differences between the
objects of study. Most notably, the crucial assumptions of self-
similarity and scale invariance, which justify the whole process
of renormalization at the critical point, clearly do not apply to,

say, a protein in that the latter certainly does not resemble
itself upon resolution reduction. Furthermore, scaling laws
cannot be applied to a system such as a biomolecule that is
intrinsically finite, for which the thermodynamic limit is not
defined.
Additionally, one of the key consequences of self-similarity

at the critical point is that the filtering process put forward by
the renormalization group turns out to be largely independent
of the specific coarse-graining prescription: the set of relevant
macroscopic variables emerges as such for almost whatever
choice of mapping operator is taken to bridge the system
across different length scales.84 In the case of biological matter,
where the organization of degrees of freedom is not fractal but
rather hierarchicalfrom atoms to residues to secondary
structure elements and so onthe mapping operator acquires
instead a central role in the “renormalization” process. The
choice of a particular transformation rule, projecting an
atomistic conformation of a molecule to its coarse-grained
counterpart, more severely implies an externali.e., not
emergentselection of which variables are relevant in the
description of the system and which others are redundant. In
this way, what should be the main outcome of a genuine
coarse-graining procedure is demeaned to be one of its
ingredients.
It is only recently that the central importance of the

resolution distribution, i.e., the definition of the CG
representation, has gradually percolated into the field of
biomolecular modeling.22,44 Moving away from a priori
selection of the effective interaction sites,21 a few different
strategies have been developed that rather aim at the automatic
identification of CG mappings. These techniques rely on
specific properties of the system under examination: examples
include quasi-rigid domain decomposition24−31 or graph-
theory-based model construction methods that attempt to
create CG representations of chemical compounds based only
on their static graph structure;32,33,85 other approaches aim at
selecting those representations that closely match the high-
resolution model’s energetics.22,35 Finally, more recent
strategies rooted in the field of machine learning generate
discrete CG variables by means of variational autoencoders.86

All of these methods take into account the system structure, or
its conformational variability, or its energy, but none of them
integrates these complementary properties in a consistent
framework embracing topology, structure, dynamics, and
thermodynamics.
In this context, information-theoretical measures, such as the

mapping entropy,17,42−44 can bring novel and potentially very
fruitful features.87 In fact, this quantity associates structural and
thermodynamic properties, so that both the conformational
variability of the system and its energetics are accurately taken
into account. Making use of the advantages offered by the
mapping entropy, we have developed a protocol to identify, in
an automated, unsupervised manner, the low-resolution
representation of a molecular system that maximally preserves
the amount of thermodynamic information contained in the
corresponding higher-resolution model.
The results presented here suggest that the method may be

capable of identifying not only thermodynamically consistent
but also biologically informative mappings. Indeed, a central
result reported here is that those atoms consistently retained
with high probability across various lowest-Smap mappings for
different numbers of CG sites tend to be located in amino
acids that play a relevant role in the function of the three
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proteins under examination. Most importantly, these key
residues, whose biological activity consists of binding with
other molecules, have been singled out on the basis of plain
MD simulations of the substrate-free molecules in explicit
solvent. In general, the vast majority of available techniques for
the identification of putative binding or allosteric sites in
proteins explicitly or implicitly rely on the analysis of the
interaction between the molecule of interest and its partner
be that a small ligand, another protein, or something else.88−93

This is the case, for example, of binding site prediction
servers,94,95 which perform a structural comparison between
the target protein and those archived in a precompiled,
annotated database; other bioinformatic tools make use of
machine learning methods96−99with all of the pros and cons
that come with training over a possibly vast but certainly finite
data set of known cases.100 To the best of our knowledge, the
remaining alternative methods perform a structural analysis of
the protein in search of binding pockets based on purely
geometrical criteria.101,102 The results obtained in the present
work, on the contrary, suggest that a significant fraction of
biologically relevant residues, whose function is intrinsically
related to interactions with other molecules, might be
identified as such from the analysis of simulations in absence
of the substrate. This observation would imply that a substantial
amount of information about functional residues, even those
that exploit their activity through the interaction with a partner
molecule, is entailed in the protein’s own structure and
energetics. In the past few decades, the successful application
of extremely simplified representations of proteins such as
elastic network models has shown that the key features of a
protein’s large-scale dynamics are encoded in its native
structure;27,36−41,103−107 in analogy with this, we hypothesize
that the mapping entropy minimization protocol is capable of
bringing to light those relational properties of proteins
namely the interaction with a substratefrom the thermody-
namics of the single molecule in the absence of its partner.
The mapping entropy minimization protocol establishes a

quantitative bridge between a molecule’s representationand
hence its information contenton the one side and the
structure−dynamics−function relationship on the other. This
method might represent a novel and useful tool in various
fields of applications, e.g., for the identification of important
regions of proteins, such as druggable sites and allosteric
pockets, relying on simple, substrate-free MD simulations and
efficient analysis tools. In this study, a first exploration of the
method’s capabilities, limitations, and potential developments
has been carried out, and several perspectives lie ahead that
deserve further exploration. Among the most pressing and
interesting ones, we mention the investigation of how the
optimized mappings depend on the conformational space
sampling; the relation of mapping entropy minimization to
more established schemes such as the maximum entropy
method; and the viability of a machine-learning-based
implementation of the protocol, e.g., making use of deep
learning tools that have proven to be strictly related to coarse-
graining, dimensionality reduction, and feature extraction. All
of these avenues are objects of ongoing study.
In conclusion, it is our opinion that the proposed automated

selection of coarse-grained sites has great potential for further
development, being at the nexus between molecular
mechanics, statistical mechanics, information theory, and
biology.

4. METHODS
In this section we describe the technical preliminaries and the
details of the algorithm we employ to obtain the CG
representation M (see eq 2) that minimizes the loss of
information inherently generated by a coarse-graining
procedurethat is, the mapping entropy.
Equation 15 provides us with a way of measuring the

mapping entropy of a biomolecular system associated with any
particular choice of decimation of its atomistic degrees of
freedom. One can visualize a decimation mapping (eq 2) as an
array of bits, where 0 and 1 correspond to not retained and
retained atoms, respectively. Order matters: swapping two bits
produces a different mapping operator. Applying this
procedure, one finds that the total number of possible CG
representations of a biomolecule, irrespective of how many
atoms N are selected out of n, is

n
N n N( )

2
N

n
n

0

∑ !
! − !

=
= (21)

which is astronomical even for the smallest proteins. In this
work, we restrict the set of possibly retained sites to the Nheavy
heavy atoms of the compoundexcluding hydrogensthus
significantly reducing the cardinality of the space of mappings.
Nonetheless, finding the global minimum of eq 15 for a
reasonably large molecule would be computationally intract-
able whenever N is different from 1, 2, Nheavy − 1, and Nheavy −
2. As an example, there are 2.4 × 1038 CG representations of
tamapin with 31 sites (N = Nα) and 9.6 × 10887 representations
for antitrypsin with 1488 sites (N = Nbkb).
Hence, it is necessary to perform the minimization of the

mapping entropy through a Monte Carlo-based optimization
procedure, and we specifically rely on the simulated annealing
protocol.62,63 As it is typically the case with this method, the
computational bottleneck consists of the calculation of the
observable (the mapping entropy) at each SA step.
We develop an approximate method that is able to obtain

the mapping entropy of a biomolecule by analyzing an MD
trajectory that can contain up to tens of thousands of frames.
At each SA step, that is, for each putative mapping, the
algorithm calculates a similarity matrix among all of the
generated configurations. The entries of this matrix are given
by the root-mean-square deviation (RMSD) between structure
pairs, the latter being defined only in terms of the retained sites
associated with the CG mapping, and aligned accordingly; we
then identify CG macrostates by clustering frames on the basis
of the distance matrix, making use of bottom-up hierarchical
clustering (UPGMA108). Finally, we determine the observable
of interest from the variances of the atomistic intramolecular
potential energy of the protein corresponding to the frames
that map onto the same CG conformational cluster (see eq
16).
The protocol is initiated with the generation of a mapping

such that the overall number of retained sites is equal to N.
Then, in each SA step, the following operations are performed:

1. swap a retained site (σi = 1) and a removed site (σj = 0)
in the mapping;

2. compute a similarity matrix among CG configurations
using the RMSD;

3. apply a clustering algorithm on the RMSD matrix in
order to identify the CG macrostates R;

4. compute S̃map using eq 16.
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Once the new value of S̃map is obtained, the move is accepted/
rejected using a Metropolis-like rule. The overall workflow of
the algorithm is illustrated schematically in Figure 5.
For the sake of the accuracy of the optimization, more

exhaustive sampling is better, and hence, the number of
sampled atomistic configurations should be at least on the
order of tens of thousands. However, in that case step 2 would
require the alignment of a huge number of structure pairs for
each proposed CG mapping, which in turn would dramatically
slow down the entire process. This problem is circumvented
performing a reasonable approximation in the calculation of
the CG RMSD matrix.
4.1. RMSD Matrix Calculation. The RMSD between two

superimposed structures x and y is given by

x y x y
n

RMSD( , )
1

( )
i

n

i i
1

2∑= −
= (22)

where n is the number of sites in the system, be they atomistic
or CG, and xi and yi represent the Cartesian coordinates of the
ith elements in the two sets. According to Kabsch,109,110 it is
possible to find the superimposition that minimizes this
quantity, namely, the rotation matrix U that has to be applied
to x for a given y in order to reach the minimum of the RMSD.
The aforementioned procedure is not computationally heavy

per se; in our case, however, we would have to repeat this
alignment for all configuration pairs in the MD trajectory every
time a new CG mapping is proposed along the Monte Carlo
process, thus making the overall workflow inctractable in terms
of computational investment.
The simplest solution to this problem is to discard the

differences in the Kabsch alignment between two CG
structures differing by a pair of swapped atoms. This
assumption is particularly appealing from the point of view
of speed and memory, since the expensive and relatively slow
alignment procedure produces a result (a rotation matrix) that
can be stored with negligible use of resources. In order to take
advantage of this simplification without losing accuracy, for
each structure and degree of coarse-graining we select an
interval of SA steps TK in which we consider the rotation

matrices constant. After these steps, the full Kabsch alignment
is applied again.
This approximation results in a substantial reduction in the

number of operations that we have to execute at each Monte
Carlo step. At first, given the initial random mapping operator
M, we build the sets of coordinates that have been conserved
by the mapping operator Γ(M) = M(r). Then we compute
RMSD(Γα(M), Γβ(M)), the overall RMSD matrix between
every pair of aligned structures Γα and Γβ, where α and β run
over the MD configurations. For all moves M → M′ within a
block of TK Monte Carlo steps, where M and M′ differing only
in a pair of swapped atoms, this quantity is then updated with
the simple rule

s s

a a

N

N

M M

M M

MSD( ( ), ( ))

MSD( ( ), ( ))
1

MSD( ( ), ( ))

1
MSD( ( ), ( ))

Γ ′ Γ ′

= Γ Γ − Γ Γ

+ Γ Γ

α β

α β α β

α β (23)

where s and a are the removed (substituted) and added atoms,
respectively, and MSD is the mean-square deviation.
This approach clearly represents an approximation to the

correct procedure; it has to be emphasized, however, that the
impact of this approximation is increasingly perturbative as the
size of the system grows. Furthermore, the computational gain
that the described procedure enables is sufficient to counter-
balance the fact that the exact protocol would be so inefficient
to make the optimization impossible. For example, with TK =
1000 for AAT with N = Nbkb, our approximation gives a speed-
up factor of the order of 103.

4.2. Hierarchical Clustering of Coarse-Grained Con-
figurations. Several clustering algorithms exist that have been
applied to group molecular structures based on RMSD
similarity matrices.111,112 Many such algorithms have been
developed and incorporated in the most common libraries for
data science. Among the various available methods, we choose
to employ the agglomerative bottom-up hierarchical clustering
with average linkage (UPGMA) algorithm.108 Here we briefly
recapitulate the basics underpinnings of this procedure:

Figure 5. Schematic representation of the algorithmic procedure described in the text that we employ to minimize the mapping entropy, the latter
being calculated by means of eq 25. The full similarity matrix is computed once every TK steps, while in the intermediate steps we resort to the
approximation given by eq 23. TK depends on both the protein and N. TMAX is the number of simulated annealing steps (here TMAX = 2 × 104).
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1. In the first step, the minimum of the similarity matrix is
found, and the two corresponding entries x, y (leaves)
are merged together in a new cluster k.

2. k is placed in the middle of its two constituents. The
distance matrix is updated to take into account the
presence of the new cluster in place of the two close
structures: d(k, z) = (d(x, z) + d(y, z))/2.

3. Steps 1 and 2 are iterated until one root is found. The
distance among clusters k and w is generalized as
follows:

d k w
d k i w j

k w
( , )

( , )

i k j w
∑ ∑=

[ ] [ ]
| | × | |∈ ∈ (24)

where |k| and |w| are the populations of the clusters and
k[i] and w[j] are their elements.

4. The actual division into clusters can be performed by
cutting the tree (dendrogram) using a threshold value on
the intercluster distance or taking the first value of the
distance that gives rise to a certain number of clusters
Ncl. In both cases it is necessary to introduce a
hyperparameter. In our case, the latter is a more viable
choice to reduce the impact of roundoff errors. Indeed,
the first criterion would push the optimization to create
as many clusters as possible in order to minimize the
energy variance inside them (a cluster with one sample
has zero variance in energy).

This algorithm, whose implementation113,114 is available in
Python Scipy,115 is simple, relatively fast (O(n2 log n)), and
completely deterministic: given the distance matrix, the output
dendrogram is unique.
Although this algorithm scales well with the size of the data

set, it may not be robust with respect to small variations along
the optimization trajectory. In fact, even the slightest
modifications of the dendrogram may lead to abrupt changes
in S̃map. This is perfectly understandable from an algorithmic
point of view, but it is deleterious for the stability of the
optimization procedure. Furthermore, the aforementioned
choice of Ncl is somehow arbitrary. Hence, we perform the
following analysis in order to enhance the robustness of S̃map at
each Monte Carlo (MC) move and to provide a quantitative
criterion to set the hyperparameter:

1. compute the RMSD similarity matrix between all of the
heavy atoms of the biological system under consid-
eration;

2. apply the UPGMA algorithm to this object, retrieving
the all-atom dendrogram;

3. impose lower and upper bounds on the intercluster
distance depending on the conformational variability of
the structure (see Table 3);

4. visualize the cut dendrogram to identify the numbers of
different clusters available at each of the two threshold
values (Ncl

+ and Ncl
−; Table 3);

5. build a list CL of five integers, selecting three
(intermediate) values between Ncl

− and Ncl
+;

6. define the observable as the average over the values of
S̃map (see eq 16) computed choosing different Ncl values:

S N
1

CL
( )

N CL
map cl

cl

∑Σ =
| |

̃
∈ (25)

where |CL| is the cardinality of the chosen list.

The overall procedure amounts to identifying many different
sets of CG macrostates R on which S̃map can be computed,
assuming that the average of this quantity can be used
effectively as the driving observable inside the optimization.
This trivial assumption increases the robustness of the SA
optimization and allows all of the values of S̃map calculated at
different distances from the root of the dendrogram to be kept
in memory.

4.3. Simulated Annealing. We use Monte Carlo
simulated annealing to stochastically explore the space of the
possible decimation mappings associated with each degree of
coarse-graining. We here briefly describe the main features of
our implementation of the SA algorithm, referring the reader
to a few excellent reviews for a comprehensive description of
the techniques that can be employed in the choice of
temperature decay and parameter estimation.116,117

We run the optimization for 2 × 103 MC epochs, each of
which is composed of 10 steps. This amounts to keeping the
temperature constant for 10 steps and then decreasing it
according to an exponential law. For the ith epoch, we have
T(i) = T0e

−i/ν. The hyperparameters T0 and ν are crucial for a
well-behaved MC optimization. We choose ν = 300 so that the
temperature at i = 2000 is approximately T0/1000. In order to
feed our algorithm with reasonable values of T0, for each of
100 random mappings we perform 10 MC stochastic moves
and measure ΔΣ, the difference between the observables
computed in two consecutive steps. Then we estimate T0 so
that a move that leads to an increment of the observable equal
to the average of ΔΣ would possess an acceptance probability
of 0.75 at the first step.

4.4. Data Available. For each analyzed protein, the raw
data for all of the CG representations investigated in this work,
including random, optimized, and transition mappings,
together with the associated mapping entropies are freely
available on the Zenodo repository (https://zenodo.org/
record/3776293). We further provide all of the scripts we
employed to analyze such data and construct all of the figures
presented in this work.

■ APPENDIX A: RELATIVE ENTROPY AND MAPPING
ENTROPY

Bottom-up coarse-graining approaches aim at constructing
effective low-resolution representations of a system that
reproduce as accurately as possible the equilibrium statistical-
mechanical properties of the underlying high-resolution
reference. In particular, this problem is phrased in terms of
the parametrization of a CG potential that approximates the
reference system’s multibody potential of mean force (MB-
PMF) U0,

U k T V p Rln( ( )) constantN
R

0
B= − + (26)

Table 3. Bounds on Intercluster Distances and
Corresponding Numbers of Clusters

protein upper bound (nm) lower bound (nm) Ncl
+ Ncl

−

TAM 0.20 0.18 91 34
AKE 0.25 0.20 147 29
AAT 0.20 0.15 96 7
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where pR(R) is the probability that the atomistic model will
sample a specific CG configuration R. In the canonical
ensemble, one has

p p

Z

R r r M r R

r M r R

( ) d ( ) ( ( ) )

1
d e ( ( ) )

R r

u r( )

∫
∫

δ

δ

= −

= −β−
(27)

where β = 1/kBT, u(r) is the microscopic potential energy of
the system, pr(r) ∝ exp(−βu(r)) is the Boltzmann distribution,
and Z is the associated configurational partition function.
From eqs 26 and 27 it follows that a computer simulation of

the low-resolution system performed with the potential U0

(more precisely, a free energy) would allow the CG sites to
sample their configurational space with the same probability as
they would in the reference system. Unfortunately, the
intrinsically multibody nature of U0 is such that its exact
determination is largely unfeasible in practice.118 Considerable
effort has thus been devoted to devise increasingly accurate
methods to approximate the MB-PMF with a CG potential
U;16,17,119,120 however, the latter is in general defined in terms
of a necessarily incomplete set of basis functions.4−7 It is thus
natural to look for quantitative measures of a CG model’s
quality with respect to U0.
In this respect, one of the most notable examples of such

metrics is the relative entropy,17,42−44
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where DKL(p1∥p2) denotes the Kullback−Leibler divergence
between two probability distributions p1 and p2,

45 with Srel ≥ 0
by virtue of Gibbs’ inequality. In eq 28, pr(r) is the atomistic
probability distribution of the system, while Pr(r|U) is defined
as a product of probabilities over the CG and AA configura-
tional spaces:42,44

P U
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M r
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( ( ) )r

r
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R| = |

(29)

The term PR(R|U) ∝ exp(−βU(R)) in eq 29 runs over CG
configurations and describes the probability that a CG model
with approximate potential U(R) samples the CG config-
uration R. Then, to obtain Pr(r|U) it is sufficient to multiply
PR(R|U) by the atomistic probability pr(r) of sampling r
normalized by the Boltzmann weight pR(R) of the CG
configuration R (see eq 27).
KL divergences quantify the information loss between

probability distributions; specifically, DKL(s(r)∥t(r)) repre-
sents the information that is lost by representing a system
originally described by a probability distribution s(r) using
another distribution t(r).45 Given a CG mapping M, the
relative entropy Srel in eq 28 implicitly measures the loss that
arises as a consequence of approximating the exact CG PMF
U0 for a system by an effective potential U, that is, the error
introduced by using an incomplete interaction basis to describe
the low-resolution system. By substituting eq 29 into eq 28 and
introducing 1 = ∫ dR δ(M(r) − R), one indeed obtains
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that is, a KL divergence DKL(pR(R)∥PR(R|U)) between the
exact and approximate probability distributions in the CG
configuration space with no explicit connection to the
underlying microscopic reference. As such, Srel is a measure
of an approximate CG model’s quality. However, it is possible
to expand Srel as a difference between two information losses
(the one due to U and the one due to U0) calculated with
respect to the atomistic system,
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where n and N denote the numbers of atomistic and CG sites,
respectively.
Both KL divergences in eq 31 are positive defined because of

Gibbs’ inequality, with DKL(pr(r)∥VN−nPR(M(r)|U)) ≥
DKL(pr(r)∥VN−npR(M(r))) because Srel ≥ 0; the second one
is called the mapping entropy, Smap:

17,42,44,121
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It is noteworthy that Smap does not depend on the approximate
CG force field U but only on the mapping operator M.
In multiscale modeling applications, one seeks to minimize

the relative entropy with respect to the coefficients in terms of
which the coarse-grained potential U(R) is parametrized for a
given mapping.17,42−44 The aim is to generate CG config-
urations that sample the atomistic conformational space with
the same microscopic probability pr(r) (see eq 28). However,
since the model can generate only configurations in the CG
space, minimizing eq 28 is tantamount to minimizing eq 30,
that is, the “error” introduced by approximating U0 with U;
furthermore, in the minimization with respect to U the
contribution of the mapping entropy vanishes because the
latter does not depend on the coarse-grained potential. In this
context, then, Smap represents only a constant shift of the KL
distance between the AA and the CG models, and a
minimization of the first term of eq 31 is equivalent to a
minimization of eq 28.
When taken per se, on the other hand, the mapping entropy

provides substantial information about the modeling of the
system. In fact, this quantity represents the loss of information
that would be inherently generated by reducing the resolution
of a system even in the case of an exact coarse-graining
procedure, in which U = U0 and Srel = 0.42 In the calculation of
Smap, the reference AA density is compared with a distribution
in which probabilities are smeared out and redistributed
equally to all of the microscopic configurations r inside each
CG macrostate.
Starting from eq 32, Rudzinski and Noid further divide Smap

into a sum of two terms,42
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where the first one is purely geometrical, while the second one
accounts for the smearing of the probabilities generated by the
coarse-graining procedure. In eq 33, Ω1(M(r)) = ∫ dr δ(M(r)
− R) is the degeneracy of the CG macrostate Ri.e., how
many microstates map onto a given CG configurationand

p pr M r M r( ) ( ( ))/ ( ( ))r R 1̅ = Ω (34)

is the average probability of all microstates that map to the
macrostate R = M(r).
The geometric term in eq 33 does not vanish in general.42

However, if the mapping takes the form of a decimation (see
eq 2), one has

VM r( ( )) n N
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(35)

and the first logarithm in eq 33 is identically zero, so that
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In the case of decimation mappings, moreover, a direct
relation holds between the mapping entropy Smap as expressed
in eq 36 and the nonideal configurational entropies of the
original and CG systems:42,44
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Indeed, introducing eq 27 in eq 38 allows sR to be rewritten as
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Subtracting eq 37 from eq 39 results in
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and by virtue of eqs 34 and 35, one finally obtains

s s SR r map− = (41)

further highlighting that the mapping entropy represents the
difference in information content between the distribution
obtained by reducing the level of resolution at which the
system is observed, pR(R), and the original microscopic
reference, pr(r).

■ APPENDIX B: EXPLICIT CALCULATION OF THE
MAPPING ENTROPY

We here provide full details of our derivation of the mapping
entropy, as in eqs 10−12, and its cumulant expansion
approximation, eq 15, starting from eq 36.
In the case of CG representations obtained by decimating

the number of original degrees of freedom of the system, the

mapping entropy Smap in eq 36 vanishes if the probabilities of
the microscopic configurations that map onto the same CG
one are the same.42,44 In the canonical ensemble, the
requirement is that those configurations must possess the
same energy. This can be directly inferred by writing the
negative of the average in eq 36 as
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so that if u(r′) = u(r) ∀ r′ such that M(r′) = M(r), the
argument of the logarithm is unity and the right-hand side of
eq 42 vanishes.
Importantly, this implies that no information on the system

is lost along the coarse-graining procedure if CG macrostates
are generated by grouping together microscopic configurations
characterized by having the same energy. In our case, this
translates into the search for isoenergetic mappings.
By introducing 1 = ∫ dR δ(M(r) − R) into eq 42, one

obtains
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(43)

p SR R Rd ( ) ( )R map∫=
(44)

so that the overall mapping entropy is decomposed as a
weighted average over the CG configuration space of the
mapping entropy Smap(R) of a single CG macrostate,
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Equation 45 shows that determining Smap(R) for a given
macrostate R involves a comparison of the energies of all pairs
of microscopic configurations that map onto it. A further
identity 1 = ∫ dU′ δ(u(r′) − U′) that fixes the energy of
configuration r′ can be inserted into the logarithm in eq 45 to
switch from a configurational integral to an energy integral.
This provides:
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where
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is the microcanonical (unweighted) conditional probability of
possessing energy U′ given that the CG macrostate is R. It is
possible to write it as Ω1(U′, R)/Ω1(R), that is, the
multiplicity of AA configurations such that M(r) = R and
u(r′) = U′ normalized by the multiplicity of configurations that
map to R.
A second identity 1 = ∫ dU δ(u(r) − U) on the energies

provides the following expression for Smap(R):
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The last integral in eq 48, which we dub Pβ(U|R),

P U
p

p
u UR r

r

R
M r R r( ) d

( )

( )
( ( ) ) ( ( ) )r

R
∫ δ δ| = − −β

(49)

is now the canonicali.e., Boltzmann-weightedconditional
probability of possessing energy U provided that M(r) = R,
namely, pR(U, R)/pR(R). One thus obtains
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where

U U P U URd ( )R ∫⟨ ⟩ = |β β| (51)

is the canonical average of the microscopic potential energy
over the CG macrostate R.
A direct calculation of Smap(R) starting from the last line of

eq 50 requires the average over the microcanonical distribution
P(U′|R), which is not straightforwardly accessible in NVT
simulations. However, there is a connection between P(U|R)
in eq 47 and Pβ(U|R) in eq 49: if one writes pR(R) as ∫ dU′
exp[−β(U′)]Ω1(U′, R) and pR(U, R) as exp[−β(U)]Ω1(U,
R), standard reweighting provides
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Equation 52 enables one to convert the microcanonical average
in eq 50 to a canonical one, so that
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Finally, by means of a second-order cumulant expansion of eq
12, one obtains

S k U UR( )
2

( )R Rmap B

2
2β≈ ⟨ − ⟨ ⟩ ⟩β β| | (54)

Insertion of eq 54 into eq 44 results in a total mapping entropy
given by eq 15.
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