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Abstract

Next-basket recommendation considers the problem of recommending a set of items into the next 

basket that users will purchase as a whole. In this paper, we develop a novel mixed model with 

preferences, popularities and transitions (M2) for the next-basket recommendation. This method 

models three important factors in next-basket generation process: 1) users’ general preferences, 2) 

items’ global popularities and 3) transition patterns among items. Unlike existing recurrent neural 

network-based approaches, M2 does not use the complicated networks to model the transitions 

among items, or generate embeddings for users. Instead, it has a simple encoder-decoder based 

approach (ed-Trans) to better model the transition patterns among items. We compared M2 with 

different combinations of the factors with 5 state-of-the-art next-basket recommendation methods 

on 4 public benchmark datasets in recommending the first, second and third next basket. Our 

experimental results demonstrate that M2 significantly outperforms the state-of-the-art methods on 

all the datasets in all the tasks, with an improvement of up to 22.1%. In addition, our ablation 

study demonstrates that the ed-Trans is more effective than recurrent neural networks in terms 

of the recommendation performance. We also have a thorough discussion on various experimental 

protocols and evaluation metrics for next-basket recommendation evaluation.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see 
https://creativecommons.org/licenses/by-nc-nd/4.0/

Corresponding author: Xia Ning. ning.104@osu.edu. 

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.

HHS Public Access
Author manuscript
IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2023 April 20.

Published in final edited form as:
IEEE Trans Knowl Data Eng. 2023 April ; 35(4): 4033–4046. doi:10.1109/tkde.2022.3142773.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.computer.org/csdl


Index Terms—

Recommender systems; next-basket recommendation; encoder-decoder architecture; mixed 
models

1 Introduction

Next-basket recommendation [1], [2], [3], [4], [5] considers the problem of recommending 

a set of items into the next basket that users will purchase as a whole, based on the 

baskets of items that users have purchased. It is different from the conventional top-N 
recommendation problem in recommender systems, in which users will purchase a single 

item at each time. Next-basket recommendation has been drawing increasing attention from 

research community due to its wide applications in the grocery industry [1], [3], fashion 

industry [6] and tourism industry [7], etc. With the prosperity of deep learning, many 

deep models, particularly based on recurrent neural networks (RNNs) [1], [3], [4], [5] have 

been developed for next-basket recommendation purposes, and have demonstrated superior 

performance [1], [3]. These methods, especially these RNN-based methods, often focus on 

modeling the transitions between different baskets, but are not always effective to model 

various important factors that may determine next baskets. For example, the transition 

among individual items in different baskets is an important factor, as given the individual 

items in the previous baskets, the probability of being interacted/purchased in the next 

basket is not equal for all the items. Users’ general preference is another important factor 

as different users generally will have different preferences on items. Recently developed 

RNN-based methods [1], [3], [4] typically explicitly model the transitions among baskets, 

while implicitly model the transitions among individual items. For example, these methods 

use mean pooling or weighted sum to aggregate the items in a same basket, and then use the 

recurrent units to model the transitions among baskets. However, during such aggregation, 

the information of individual items could be smoothed out so that these methods could not 

accurately model the transitions among individual items. In addition, due to the recurrent 

nature of RNNs, it is challenging to train these RNN-based methods efficiently in parallel. 

Another limitation with existing methods is that, existing methods [2] usually model users’ 

general (i.e., long-term) preferences using the embeddings of users. However, due to the 

notoriously sparse nature of data in recommendation problems, these learned embeddings 

may not be able to accurately capture users’ preferences. To mitigate the limitations in the 

existing basket recommendation methods, in this paper, we develop a set of novel mixed 

models, denoted as M2, for the next-basket recommendation problem.

M2 models three important factors in order to generate next-basket recommendations for 

each user. The first factor is users’ general preferences, which will measure long-term 

preferences of users that tend to remain consistent across multiple baskets during a certain 

period of time. The second factor is items’ global popularities, which will measure the 

overall popularities of items among all the users. The third factor is the transition patterns 

among items across baskets, which will capture the transition patterns on items over 

different baskets. These three factors will be combined together using weights that will 

be determined by these factors, and thus recommend items into the next basket. With 
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different combinations of factors, M2 has three variants M2-p2, M2-gp2 and M2-gp2t. M2-

p2 recommends items using users’ general preferences and items’ global popularities. In 

M2-p2, these two factors are combined using a global weight. M2-gp2 is similar to M2-p2 

except that instead of using a global weight, M2-gp2 learns personalized weights to combine 

the two factors. M2-gp2t uses all the three factors for more accurate recommendations. 

The details of these three variants will be presented in Section 4. In particular, different 

from existing methods, M2 explicitly models the transitions among individual items using a 

simple, efficient, and effective encoder-decoder based framework, denoted as ed-Trans. M2 

also explicitly models users’ general preferences using the frequencies of items that each 

user has interacted with instead of the user embeddings.

We compare M2 with 5 most recent, state-of-the-art methods on 4 public benchmark 

datasets in recommending the first, second and third next basket. Our experimental 

results demonstrate that M2 significantly outperforms the state-of-the-art methods on all 

the datasets in all the tasks, with an improvement of up to 22.1%. We also conduct a 

comprehensive ablation study to verify the effects of the different factors. The results of 

the ablation study show that learning all the factors together could significantly improve the 

recommendation performance compared to learning each of them alone. The results also 

show that the encoder-decoder based ed-Trans in learning item transitions among baskets 

could outperform RNN-based methods on the benchmark datasets.

The major contributions in this paper are as follows:

• We developed a novel mixed model M2 for next-basket recommendation. M2 

explicitly models three important factors: 1) users’ general preferences, 2) items’ 

global popularities, and 3) transition patterns among items.

• We developed a novel, simple yet effective encoder-decoder based framework 

ed-Trans to model transition patterns among items in baskets.

• M2 significantly outperforms state-of-the-art methods. Our experimental results 

over 4 benchmark datasets demonstrate that M2 achieves significant improvement 

in both recommending the next basket and recommending the next a few baskets, 

with an improvement as much as 22.1%. Our ablation study shows that the 

factors are complementary and enable better performance if learned together 

(Section 6.5).

• Our ablation study also shows that ed-Trans in learning item transitions among 

baskets could on its own significantly outperform RNN-based methods over the 

benchmark datasets, with an improvement as much as 25.4% (Section 6.5.2).

• Our cluster analysis shows that ed-Trans is able to learn similar embeddings 

for items which have similar transition patterns (Section 6.7).

• We discussed the potential issues of evaluation metrics, experimental protocols 

and settings that are typically used in next-basket recommendation, and 

discussed the use of a more appropriate protocol and setting in our experiments 

(Section 7).
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• For reproducibility purposes, we released our source code and Supplementary 

Materials at https://github.com/ninglab/M2.

2 Related Work

2.1 Next-Basket Recommendation

Numerous next-basket recommendation methods have been developed, particularly using 

Markov Chains (MCs) and Recurrent Neural Networks (RNNs) etc. Specifically, MCs-based 

methods, such as factorized personalized Markov chains (FPMC) [2], use MCs to model the 

pairwise item-item transition patterns to recommend the next item or the next basket of 

items for each user. Wan et al. [8] developed factorization-based methods triple2vec and 

adaLoyal, in which the item-item complementarity, user-item compatibility and user-item 

loyalty patterns are modeled for the next-basket recommendation. Recently, RNN-based 

methods have been developed for the next-basket recommendation. For instance, Yu et al. 
[3] used RNNs to model users’ dynamic short-term preference at different timestamps. 

Wang et al. [9] developed a hierarchical attentive encoder-decoder model, which iteratively 

predicts the next baskets by learning the transitions among items and leveraging both the 

positive and negative feedbacks from users. Hu et al. [1] developed an encoder-decoder 

RNN method Sets2Sets. Sets2Sets employs an RNN as encoder to learn users’ 

dynamic preference at different timestamps and another RNN as decoder to generate the 

recommendation score from the learned preferences for each recommendation candidate. 

Sets2Sets has been demonstrated as the state of the art, and outperforms an extensive set 

of existing methods.

Aside from model-based methods, popularity-based approaches such as popularity on people 

(POP) [1] and popularity on each person (POEP) [1], are also recently employed for the 

next-basket recommendation. POP ranks items based on their popularity among all the users 

and recommend the top-k most popular items to each user. POEP is the personalized version 

of POP. It ranks items based on their popularity of each user and recommends the top-k most 

popular items of each user. These two popularity-based methods have been demonstrated as 

strong baselines on the next-basket recommendation in the recent work [1].

Unlike existing RNN-based approaches, M2 does not use the Markov chains or complicated 

RNNs to model the transitions among items, or generate embeddings for users. Instead, 

M2 models the transitions among items using a simple yet effective fully-connected layer, 

and explicitly models users’ general preferences as the frequencies of items that users have 

interactions with. Our experimental results demonstrate the superior performance of M2 over 

the state-of-the-art baseline methods. Our ablation study also shows that the fully-connected 

layer is more effective than RNNs in terms of the recommendation performance.

2.2 Sequential Recommendation

Sequential recommendation is to generate the recommendation of the next items based on 

users’ historical interactions as in a sequence. This task is closely related to the next-basket 

recommendation. Please refer to Section S1 in the Supplementary Materials, which can 

be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/
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10.1109/TKDE.2022.31427731 for a detailed discussion about the relations between these 

two tasks. The sequential recommendation methods focus on capturing the sequential 

dependencies among individual items instead of baskets. In the last few years, numerous 

sequential recommendation methods have been developed, particularly using neural 

networks such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks 

(CNNs) and attention or gating mechanisms, etc. RNN-based methods such as User-based 

RNN [10] explicitly integrates user characteristics into gated recurrent units (GRUs) 

for personalized recommendation. Skip-gram-based methods such as item2vec [11] and 

prod2vec [12] leverage the skip-gram model [13] to learn transition patterns among 

individual items. Recently, CNN-based and attention-based methods have been developed 

for sequential recommendation. For example, Tang et al. [14] developed a convolutional 

sequence embedding recommendation model (Caser), which uses convolutional filters on the 

most recent items to extract union-level features. Kang et al. [15] developed a self-attention 

based sequential model (SASRec), which uses attention mechanisms to capture the most 

informative items in users’ historical interactions to generate recommendations. Sun et al. 
[16] further developed a bidirectional self-attention based sequential model (BERT4Rec), 

which employs a bidirectional attention mechanism to better model users’ historical 

interactions. Recently, Ma et al. [17] developed a hierarchical gating network (HGN), which 

uses gating mechanisms to identify important items and generate recommendations. Peng et 
al. [18] developed hybrid associations models (HAM), which adapt the pooling mechanisms 

to model the association patterns and synergies among items.

2.3 Session-Based Recommendation

Session-based recommendation seeks to generate the recommendations of the next items 

in the current session or future sessions based on users’ interactions in historical sessions. 

This task is also closely related to the next-basket recommendation. The session-based 

recommendation methods focus on capturing the intra- or inter-session dependencies to 

generate the recommendations [19]. In the last few years, neural networks such as RNNs, 

attention mechanisms and graph neural networks (GNNs) are employed in developing 

session-based recommendation methods. RNN-based methods such as GRU4Rec [20] and 

GRU4Rec+ [21] employ gated recurrent units (GRUs) to capture the users’ dynamic 

short-term preferences over sessions. Attention-based methods such as NARM [22] and 

STAMP [23] employ attention mechanisms to identify the important items in recent 

sessions to capture users’ short-term preferences. Recently, GNN-based methods have 

also been developed for the session-based recommendation. For example, Wu et al. [24] 

developed a GNN-based recommendation model (SR-GNN) to better model the long-term 

dependency among sessions. Qiu et al. [25] re-examined the item ordering in session-

based recommendations and developed a GNN-based model (FGNN) to identify the items 

representing users’ short-term preferences in sessions.

1.Section references starting with “S” refer to the sections in the Supplementary Materials, available online.
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3 Definitions and Notations

In this paper, the historical interactions (e.g., purchases, check-ins) of the i -th user in 

chronological order are represented as a sequence of baskets Bi = {bi(1), bi(2), ⋯}, where 

bi(t) is a basket of one or more items in the t-th interaction. Note that there may be multiple, 

same items in each basket. The number of baskets in Bi and the number of items in bi(t) 
is denoted as Ti and ni(t), respectively. In this paper, we consider all the baskets in users’ 

history and all the items in each basket. We do not have a predefined maximum length for 

the basket sequences, and maximum size for each basket. When no ambiguity arises, we will 

eliminate i in Bi/bi(t), Ti and ni(t). In this paper, all the vectors are by default row vectors and 

represented using lower-case bold letters; all the matrices are represented using upper-case 

letters. The key notations are in Table 1.

4 Methods

4.1 Modeling Important Factors in M2

M2 has three variants M2-p2, M2-gp2 and M2-gp2t. Fig. 1 presents the M2-p2 and M2-

gp2 models. Fig. 2 presents the M2-gp2t model. In these figures, each input basket is 

represented as a vector of n (i.e., the number of items) dimensions, in which the value in 

each dimension represents the number of the corresponding item in this basket. M2 generates 

recommendations for the next baskets of items for each user using three factors: 1) users’ 

general preferences, 2) items’ global popularities and 3) the transition patterns among items 

across baskets. These three factors will be used to calculate a recommendation score for 

each candidate item in the next baskets. In this section, we will first describe how these three 

factors are modeled. In the next Section, we will describe how the three variant methods use 

these factors for recommendations.

4.1.1 Modeling Users’ General Preferences (UGP)—Previous studies have shown 

that users’ interactions are significantly affected by their general preferences [1], [6], 

which are also known as the long-term preferences in the literature [6], [18]. For example, 

some users prefer items of low price, while others may like luxurious items that could be 

expensive. Therefore, we explicitly model the general preferences of users, denoted as UGP, 

in M2. Existing methods [2] usually model users’ general preferences using the embeddings 

of users. However, there is limited, if any, validation showing that the learned embeddings 

could accurately capture users’ preferences and to what extent. Thus, in M2, we propose to 

use the frequencies of items that each user has interactions with to represent users’ general 

preferences. The intuition is that if a user has many interactions with an item, the user has a 

high preference on the item and the item represents the user’s preference.

Specifically, given each user’s historical interactions, her/his general preference is 

represented as follows,

p = p1, p2, ⋯, pn ∈ ℝ1 × n, (1)

where
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pj = nj/∑
j

nj, (2)

n is the total number of unique items among all the baskets, and nj is the total number 

of interactions with item j of the user among all her/his interactions, and thus pj ≥ 0, 

Σjpj = 1. Here, we do not weight the interactions on items differently based on when 

they occur. This is because in real applications, we typically only use the data in the 

past, relatively short period of time (e.g., a few months) to train recommendation models 

[26]. In this short period, we can assume that most of the users will not change their 

general preferences dramatically, and thus all their interacted items will contribute to their 

UGP estimation evenly. A distinct advantage of the preference representation UGP as in 

Equation (1) compared to embedding representations for user preferences is that the UGP 

representation is very intuitive and easy to validate, and loses minimum user information.

The formulation of users’ general preferences in Equation (1) is designed for the application 

scenarios that users are likely to have multiple interactions with the same item (e.g., online 

shopping, grocery shopping). For the other few application scenarios that do not have this 

property (e.g., movie recommendation), our formulation may not be applicable. We leave the 

investigation of these applications in the future work.

4.1.2 Modeling Items’ Global Popularities (IGP)—It has been shown in the 

literature [1], [2], [27], [28] that the items’ global popularities also significantly influence 

users’ purchases. Specifically, users may prefer popular items than those non-popular ones 

due to the herd behaviors [29], that is, they prefer to purchase items that are also purchased 

by many others. In M2, the items’ global popularities are represented as in the following 

vector v,

v = v1, v2, ⋯, vn ∈ ℝ1 × n, (3)

where n is the total number of unique items among all the baskets, and vj is a learnable 

scalar to represent the global popularities of item j. Intuitively, if item j is popular, vj will be 

large. Here, following the ideas in Koren et al. [27], we learn the popularity representations 

(i.e., vj) for items via learning and optimizing from data for better performance rather than 

directly calculating them from data.

4.1.3 Modeling Transitions Among Items (TPI) via an Encoder-Decoder 
Framework (ed-Trans)—The transitions among items is another important factor in 

inducing the next baskets of items that the users will be interested in [2], [14], [18]. For 

example, if a user purchased cat toys in a basket, she/he is likely to purchase cat food and 

treats in the next baskets compared to wine and beers, as there could be stronger transitions 

among cat items compared to from cat items to alcohols. In M2, we explicitly model the 

item transitions, denoted as TPI, and their effects on the next baskets. Specifically, we model 

the item transitions via an encoder-decoder based framework, denoted as ed-Trans, which 

takes the individual items in the historical interactions as input to predict the items in the 

next baskets.
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ed-Trans Encoder.: We first represent the items aggregated over all the baskets of each 

user using a vector g

g = g1, g2, ⋯, gj, ⋯, gn ∈ ℝ1 × n, (4)

where gj is the total number of interactions with item j of the user among all her/his baskets, 

weighted by a time-decay parameter

gj = ∑
t = 1

T
γT − t1(item j ∈ b(t)), (5)

where γ ∈ (0, 1] is the time-decay parameter to emphasize the items in the most recent 

baskets more than those in early baskets, and 1(x) is an indicator function (1(x) = 1 if x 
is is true, otherwise 0). Existing methods usually use RNNs to learn weights for different 

baskets. However, recommendation datasets are always super sparse so that RNNs may not 

learn meaningful weights in such sparse datasets. Instead, in M2, we leverage the fact that 

the recent interacted items affect the next basket of items more significantly compared to the 

items interacted much earlier [14], [15], and use the time-decay factor γ to explicitly assign 

and incorporate the different weights.

Given g, we use a simple fully-connected layer as the encoder to encode the hidden 

representation of the next basket h ∈ ℝ1 × d as follows:

h = tanh(gW ), (6)

where W ∈ ℝn × d is a learnable weight matrix and tanh() is the non-linear hyperbolic 

tangent activation function. Thus, the fully-connected layer represents the transition from 

all previous items to the items in the next basket. Here, we do not explicitly normalize 

g because the learnable parameter W will accommodate the normalization. Different from 

RNN-based methods which learn the transition patterns in a recurrent fashion and update the 

hidden states sequentially at each time stamp, the aggregation through the fully-connected 

layer in Equation (6) can be done much more efficiently as the item representation in 

Equation (4) can be done within a map-reduce framework [30] and thus in parallel. 

Therefore, ed-Trans could be more efficient than RNN-based methods especially on 

modeling long interaction sequences.

ed-Trans Decoder.: Given h, we use a fully-connected layer as the decoder to decode the 

recommendation scores s for all the item candidates in the next basket as follows:

s = softmax(hA + b), (7)

where s ∈ ℝ1 × n is a vector in which the j -th dimension has the recommendation score of 

item j, A ∈ ℝd × n is a learnable matrix and b is a bias vector. The bias vector can also be 

interpreted as the items’ global popularities because it is shared among all the baskets. Thus, 

ed-Trans could capture both the transition patterns and items’ global popularities.
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4.2 Calculating Recommendation Scores in M2

4.2.1 Recommendation Scores Using UGP and IGP—We propose a variant of M2 to 

generate recommendations by combining the representations of users’ general preferences 

p and items’ global popularities v only. This method is referred to as mixed models with 

preferences and popularities and denoted as M2-p2. In M2-p2, the recommendation scores of 

item candidates are calculated as follows:

r = (1 − α)p + α softmax(v), (8)

where r ∈ ℝ1 × n is the vector of recommendation scores, and α is a learnable weight to 

model the importance of users’ general preferences and items’ global popularities in users’ 

interactions. The softmax function is employed to normalize v to be in the same range with 

p. The intuition here is that, as shown in the literature [1], [2], users’ general preferences and 

items’ global popularities significantly affect users’ interactions. Thus, combing these two 

important factors should lead to reasonable recommendations. Based on the scores, the items 

with the top-k largest scores will be recommended into the next basket.

In M2-p2, in principle, α could be modeled as a tunable parameter or a learnable weight. 

To be consistent with the other M2 variants that will be presented in Sections 4.2.2 and 

4.2.3, and to optimize performance, we model α as a learnable weight, and learn it in an 

end-to-end fashion.

4.2.2 Recommendation Scores Using Gating Networks—One possible limitation 

of M2-p2 could be that in M2-p2, we use a single weight α for all the users. In this way, 

M2-p2 can not capture the pattern that the weight could be different on different users. To 

resolve this limitation, we follow the idea of gating networks [17] to calculate personalized 

weight α. Specifically, we calculate the α using p (Equation (1)) and v (Equation (3)) as 

follows:

α = σ pc⊤ + vq⊤ , (9)

where σ() is the sigmoid function, c⊤ and q⊤ are learnable weight vectors. The intuition 

here is that the importance of UGP and IGP (i.e., α) would be learned from themselves (i.e., 

p and v). The method with personalized weights is referred to as mixed models with gated 

preferences and popularities, denoted as M2-gp2.

4.2.3 Recommendation Scores Using UGP, IGP and TPI—Considering all the 

three important factors, we propose a unified method with preferences, popularities and 

transitions, denoted as M2-gp2t. In M2-gp2t we calculate the recommendation scores 

vector, r ∈ ℝ1 × n using the representation p (Equation (1)) generated from UGP and the 

recommendation scores s (Equation (7)) from ed-Trans as follows:

r = (1 − α)p + αs, (10)

where, similarly with that in M2-gp2, α is calculated from p (Equation (1)) and h (Equation 

(6)) as following:
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α = σ pc⊤ + hq⊤ , (11)

where, as presented in Section 4.2.2, σ() is the sigmoid function, c⊤ and q⊤ are learnable 

weight vectors. Please note that as discussed in Section 4.1.3.2, the scores in s are generated 

using both items’ popularities and the transition patterns. Thus, M2-gp2t uses all the three 

factors to make recommendations. Also note that, as shown in Equation (7), the vector s is 

already normalized to be in the same range with p. Therefore, we do not need the softmax 

function for the normalization in Equation (10).

4.3 Network Training

We minimize the negative log likelihood that the ground-truth items in the next baskets have 

high recommendation scores. The optimization problem is formulated as follows,

min
Θ

∑
i = 1

m
− rilog r i

⊤ + λ ∥ Θ ∥2 , (12)

where m is the number of users to recommend baskets to, ri and r i are for the i -th user, Θ 
is the set of the parameters, and λ is the regularization parameter. Following previous work 

[1], [3], we calculate the training error on the last basket in training data. The vector ri is 

the vector representation of the items in the last basket bi(T), in which the dimension j is 1 

if item j is in bi(T) or 0 otherwise. Here, we do not consider the frequencies of individual 

items in the baskets (i.e, ri is binary), as we do not predict the frequencies of items in the 

next baskets. We optimize Problem 12 using the Adagrad optimization method [31]. The 

parameter tuning protocol and all the parameters for modeling are reported in Section S3.

5 Experimental Settings

5.1 Baseline Methods

We compare M2 with 5 state-of-the-art baseline methods on next-basket recommendations: 

1) POP [1] ranks items based on their popularity among all the users, and recommends 

the top-k most popular items. 2) POEP [1] ranks items based on their popularity on each 

user and recommends the personalized top-k most popular items. 3) Dream [3] uses RNNs 

to model users’ preferences over time. It uses the most recent hidden state of RNNs to 

generate recommendation scores and recommends the items with top-k scores. 4) FPMC [2] 

models users’ long-term preferences and the transition patterns of items using the first-order 

markov chain and matrix factorization. 5) Sets2Sets [1] adapts the encoder-decoder RNNs 

to model the short-term preferences and the recurrent behaviors of users. Please note that 

Sets2Sets achieves the state-of-the-art performance on the next-basket recommendation 

and outperforms other methods [2], [3], [32]. Therefore, we compare M2 with Sets2Sets 

but not the methods that Sets2Sets outperforms.

5.2 Datasets

We generate 4 datasets from 3 benchmark datasets TaFeng2, TMall3, and Gowalla4 to 

evaluate the different methods. TaFeng has grocery transactions in 4 months (i.e., 11/1/2020 
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to 02/28/2020) at a grocery store and each basket is a transaction of grocery items. TMall 

has online transactions in 5 months (i.e., 07/01/2015 to 11/31/2015) and each basket is a 

transaction of products. Gowalla [33] is a place-of-interests dataset and contains user-venue 

check-in records with timestamps. Similarly to Ying et al. [34], we view the check-in 

records in one day as a basket and focus on the records in 10 months (i.e., 01/01/2010 to 

10/31/2010).

Following previous work [34], we do the following filtering to generate the datasets we 

will use in the experiments: 1) filter out the infrequent users with fewer than 10, 20 and 

15 items from the original TaFeng, TMall and Gowalla dataset, respectively, 2) filter out 

infrequent items interacted by fewer than 10, 20 and 25 users from the TaFeng, TMall and 

Gowalla dataset, respectively, and 3) filter out users with fewer than 2 baskets. Out of the 

above three filtering steps, each of the 3 original datasets will have frequent users and items, 

and we denote the processed datasets still as TaFeng, TMall and Gowalla. In order to better 

evaluate the methods in real applications that have a large amount of users and items, from 

the original TMall dataset, we also apply a smaller threshold 10 on user frequency and 

item frequency to generate another dataset, denoted as sTMall, with more users and items 

retained. The statistics of the preprocessed datasets are presented in Table 2. We noticed 

that the Dunnhumby dataset5 and the Instacart dataset6 are also used in the literature [1], 

[8]. However, Dunnhumby is a simulated dataset and the Instacart dataset is not publicly 

available now. Therefore we do not use these datasets in our experiments. We discussed the 

limitations of these datasets in detail in Section S6.

5.3 Experimental Protocol

Similarly to Ying et al. [34], we split the 4 datasets based on cut-off times as shown in Fig. 

3. Specifically, on TaFeng, we use the transactions in the first 3 months as the training set, 

the transactions in the following 0.5 month as the validation set, and the transactions in the 

last 0.5 month as the testing set. Similarly, on Gowalla, we use the records in the first 8 

months as the training set, the records in the following 1 month as the validation set, and the 

records in the last 1 month as the testing set. On TMall and sTMall, we use the transactions 

in the first 3.5 months as the training set, the transactions in the following 0.5 month as the 

validation set, and the transactions in the last 1 month as the testing set. We split the datasets 

in this way to guarantee that all the interactions in the testing set occur after the interactions 

in the training and validation sets. Thus, the setting is close to real use scenarios. A detailed 

discussion about different experimental protocols is presented later in Section 7.1.

We denote the baskets in the training, validation and testing sets as training, validation and 

testing baskets, respectively. The users which have interactions in the training, validation and 

testing sets are denoted as training, validation and testing users, respectively. Please note that 

a user can be both training and testing user if she/he has baskets in both training and testing 

sets. During training, we only use the interactions in the training baskets to estimate users’ 

2. https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset 
3. https://tianchi.aliyun.com/dataset/dataDetail?dataId=42 
4. https://snap.stanford.edu/data/loc-Gowalla.html 
5. https://www.dunnhumby.com/source-files/ 
6. https://www.instacart.com/datasets/grocery-shopping-2017 
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general preferences and to learn item transition patterns. There could be items in testing or 

validation baskets that never appeared in training baskets (i.e., cold-start items). In this case, 

we will retain the baskets with such items. Since M2 and all the baseline methods are not 

developed for the cold-start problem [35], the cold-start items will not get recommended but 

the baskets with such items can still be evaluated due to other items.

We tune the parameters using grid search and use the best parameters in terms of recall@5 

on the validation set during testing for the M2 and all the baseline methods. Following 

previous work [14], [15], [17], during testing, we use the interactions in both training and 

validation sets to train the model with the optimal parameters identified at the validation 

set. Similarly to Hu et al. [1], we evaluate M2 and baseline methods on three tasks: 

recommending the first next basket, the second next basket and the third next basket. Please 

note that in recommending the second next or third next basket, during evaluation, the first 

or second testing basket, respectively, of testing users will be used to update the user’s 

general preference representation p (Equation (1)) and item transitions in g (Equation (4)). 

Also note that the number of validation and testing users in these three tasks could be 

different. In recommending the second next basket, only users with at least two validation or 

testing baskets are used as validation or testing users, but users with only one validation or 

testing basket will not be used in evaluation.

5.4 Evaluation Metrics

We use recall@k, precision@k, and NDCG@k to evaluate the different methods. For each 

user, recall measures the proportion of all the ground-truth interacted items in a testing 

basket that are correctly recommended. We denote the set of k recommended items and 

the set of the items in the ground-truth basket as Rk and S, respectively. Given Rk and S, 

recall@k is calculated as follows:

recall@k = Rk ∩ S
S , (13)

where Rk ∩ S is the intersection between the two sets and |S| denotes the size of the 

set S. Precision measures the proportion of all the recommended items that are correctly 

recommended, and precision@k is calculated as follows:

precision@k = Rk ∩ S
k . (14)

We report in the experimental results the recall@k and precision@k values that are 

calculated as the average over all the testing users. Higher recall@k and precision@k 
indicate better performance. It is worth noting that although we use precision@k in our 

experiments, we argue that precision@k may not be a proper metric for evaluating next-

basket recommendation methods as we will discuss later in Section 7.2.

NDCG@k is the normalized discounted cumulative gain for the top-k ranking. In our 

experiments, the gain indicates whether a ground-truth item is recommended (i.e., gain is 1) 

or not (i.e., gain is 0). NDCG@k incorporates the positions of the correctly recommended 
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items among the top-k recommendations. Higher NDCG@k indicates the ground-truth items 

are recommended at very top, and thus better recommendation performance.

Besides these evaluation metrics, we also statistically test the significance of the 

performance difference among different methods via a standard t-test. Specifically, we 

conducted t-test over the paired recall, NDCG and precision values from different methods. 

If the p-values are smaller than a predefined threshold α (α = 0.05 in our experiments), the 

performance difference of two methods is considered statistically significant at 100(1-a)% 

confidence level.

6 Experimental Results

6.1 Overall Performance on the First Next Basket

Table 3 presents the overall performance at recall@k and NDCG@k in recommending the 

first next basket of all the methods on the 4 datasets. Due to the space limit, we report 

the performance at precision@k in Section S4.1. In Table 3, for each dataset, the best 

performance among M2 variants (i.e., M2-p2, M2-gp2 and M2-gp2t) is in bold, the best 

performance among baseline methods (e.g., POP, POEP, Sets2Sets) is underlined. and 

the overall best performance is indicated by a dagger (i.e., †). We report the parameters 

that achieve the reported performance also in Section S3. For Sets2Sets, we use the 

implementation provided by the authors. However, this implementation raises memory 

issues and cannot fit in 16GB GPU memory on the largest dataset sTMall. Therefore, we 

report out of memory (OOM) for Sets2Sets on sTMall.

Table 3 shows that overall, M2-gp2t is the best performing method on the task of 

recommending the first next basket. In terms of recall@5, recall@10 and recall@20, 

M2-gp2t achieves the best performance with significant improvement compared to the 

second best method on TaFeng and sTMall. On the TMall and Gowalla datasets, M2-gp2t 

also achieves the best or second best performance at recall@5, recall@10 and recall@20. 

Compared to the second best method, M2-gp2t achieves on average 6.8%, 2.9% and 2.5% 

improvement at recall@5, recall@10 and recall@20, respectively, over all the datasets. In 

terms of NDCG@5, NDCG@10 and NDCG@20, M2-gp2t achieves the best performance 

on TaFeng, sTMall and Gowalla, and the second best performance on the TMall dataset. 

In particular, on the largest dataset sTMall, M2-gp2t achieves substantial improvement of 

10.8% on average over all the metrics compared to the second best method. On the most 

widely used benchmark dataset TaFeng, M2-gp2t also achieves significant improvement 

of at least 2.3% over the second best method at all the metrics. On Gowalla where many 

baseline methods do not perform well, M2-gp2t is still slightly better than the second 

best method M2-gp2. It is also worth noting that, compared to the performance of the 

best baseline methods (underlined in Table 3), M2-gp2t achieves statistically significant 

improvement over most of the metrics on 3 out of 4 datasets. On the TMall dataset, M2-gp2t 

still achieves statistically significant improvement over the best baseline methods at both 

recall@5 and recall@10. These results demonstrate the strong performance of M2-gp2t. 

M2-gp2 is the second best performing method in our experiments. It achieves the second 

best or (near) the second best performance on all the four datasets. We notice that POP, 
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Dream and FPMC work poorly on the Gowalla dataset. This might be due to the fact that 

these methods do not really capture the personalized general preferences of users. Recall 

that the Gowalla dataset is a place-of-interests dataset, which contains user-venue check-in 

records of users. Different users live in different places and could interact with very different 

items. Thus, methods without explicitly model users’ personalized general preferences could 

not work well on this dataset.

6.1.1 Comparing M2-gp2t With Model-Based Methods—Table 3 also shows that 

among the 4 model-based methods Dream, FPMC, Sets2Sets and M2-gp2t, M2-gp2t 

consistently and significantly outperforms Dream and FPMC on all the datasets. The primary 

difference among M2-gp2t, Dream and FPMC is that M2-gp2t explicitly models users’ 

general preferences using the frequencies of the items that each user has interactions with, 

while Dream and FPMC implicitly model them using the hidden state of RNNs or user 

embeddings. Given the sparse nature of recommendation datasets (Table 2), it is possible 

that the learned hidden states or user embeddings cannot represent the user preferences well, 

as the signals of user preferences are smoothed out due to data sparsity during the recurrent 

updates, or by the pooling or weighting schemes used to learn user embeddings as some 

other work also noticed [18], [36], [37]. The superior performance of M2-gp2t over Dream 

and FPMC on all the datasets demonstrates the effect of explicitly modeling users’ general 

preferences.

Table 3 shows that M2-gp2t significantly outperforms Sets2Sets on all the datasets except 

TMall in terms of both recall@k and NDCG@k. The primary differences between M2-gp2t 

and Sets2Sets are 1) M2-gp2t explicitly models the transition patterns among items 

using encoder-decoder-based ed-Trans, while Sets2Sets implicitly models the transition 

patterns using RNNs, and 2) when calculating the recommendation scores, M2-gp2t learns 

a single weight on each user (i.e., α in Equation (10)), but Sets2Sets learns different 

weights for different items on each user. Given the sparse nature of the recommendation 

datasets, weights for different items on each user may not be well learned [18], [36]. 

Thus, such weights may not necessarily help better differentiate user general preferences 

over items. In addition, the learned weights over items may guide the model to learn 

inaccurate general preferences of users, and thus degrade the performance. We also notice 

that on TMall, M2-gp2t underperforms Sets2Sets in terms of NDCG but outperforms 

Sets2Sets in terms of recall. This indicates that on certain datasets, M2-gp2t could be 

more effective than Sets2Sets on ranking the items of users’ interest on top of the 

recommendation list, while less effective than Sets2Sets on raking these items on the very 

top. However, Sets2Sets is very memory consuming, demonstrated by out of memory 

(OOM) issues on the largest dataset sTMall, which substantially limits its use in real, 

large-scale recommendation problems.

6.1.2 Comparing M2-gp2t With Popularity-Based Methods—In Table 3, we 

also notice that M2-gp2t statistically significantly outperforms the best popularity-based 

method M2-gp2 on all the datasets. On average, it achieves 6.8%, 3.0%, 9.3% and 7.8% 

improvement over M2-gp2 in terms of recall@5, recall@10, NDCG@5 and NDCG@10, 

respectively, over all the datasets. Recall that the key difference between M2-gp2t and 
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M2-gp2 is that M2-gp2t models users’ general preferences, items’ global popularities 

and the transition patterns, whereas M2-gp2 only models users’ general preferences and 

items’ global popularities. These results demonstrate the importance of transition patterns in 

sequence-based next-basket recommendation.

6.1.3 Comparison Among Popularity-Based Methods—Among the four 

popularity-based methods POP, POEP, M2-p2 and M2-gp2, M2-gp2 achieves the best 

performance at most of the metrics on all the 4 datasets. Between M2-gp2 and M2-p2, 

M2-gp2 outperforms M2-p2 on the TaFeng and Gowalla datasets, and achieves similar 

performance with M2-p2 on the TMall and sTMall datasets. In terms of recall@5, M2-gp2 

outperforms M2-p2 on all the datasets. In terms of recall@10 and recall@20, M2-gp2 

outperforms M2-p2 on the TaFeng and sTMall datasets, and achieves similar performance 

with M2-p2 on the TMall and Gowalla datasets. We also found a similar trend on NDCG@k: 

for example, in terms of NDCG@5, M2-gp2 outperforms M2-p2 on all the datasets except 

sTMall. On sTMall, M2-gp2 achieves the same performance with M2-p2. The difference 

between M2-gp2 and M2-p2 is that M2-gp2 learns personalized weights to combine users’ 

general preferences and items’ global popularities, while M2-p2 only learns one such 

weight for all the users. The substantial performance improvement of M2-gp2 over M2-p2 

demonstrates the importance of learning personalized weights. We also notice that overall, 

M2-p2 consistently outperforms POP and POEP on all the datasets over all the metrics. 

In terms of recall@5, recall@10 and recall@20, M2-p2 consistently outperforms POP and 

POEP at all the 4 datasets. For example, on the widely used TaFeng dataset, in terms 

of recall@10, M2-p2 achieves significant improvement of 38.9% and 16.6% compared to 

POP and POEP, respectively. Recall that the difference between M2-p2, POP and POEP is 

that M2-p2 models both users’ general preferences and items’ global popularities, while 

POP and POEP only model one of them. The substantial improvement of M2-p2 over POP 

and POEP demonstrates that items’ global popularities and users’ general preferences are 

complementary. When learned together, they will enable better performance than each alone. 

It is also worth noting that M2-gp2 outperforms the state-of-the-art model-based method 

Sets2Sets at all the metrics on TaFeng and Gowalla. The superior performance of M2-gp2 

is a strong evidence that the simple popularity-based methods could still be very effective in 

next-basket recommendations.

6.2 Performance on the Second Next Basket

Table 4 presents the overall performance of different methods at recall@k and NDCG@k 
in recommending the second next basket (i.e., the second basket in the testing set) on the 

4 datasets. We also report the performance at precision@k in Section S4.2. The parameter 

tuning protocol in this task is the same as that in recommending the first next basket (Section 

6.1). As discussed in Section 5.3, when recommending the second next basket, the first 

testing basket of users will be used to update the models. In addition, in this task, only 

users with at least two testing baskets will be used as testing users. Thus, the number of 

testing users in this task could be different from that in recommending the first next basket. 

Specifically, as shown in Table 4, when recommending the second next basket, we have 
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2,801, 5,109, 29,741 and 10,032 testing users on TaFeng, TMall, sTMall and Gowalla, 

respectively.

6.2.1 Overall Performance—As shown in Table 4, overall, in recommending the 

second next basket, the performance of M2 and baseline methods has a similar trend as 

that in recommending the first next basket. In particular, M2-gp2t is still the best performing 

method in this task. In terms of recall@5, M2-gp2t achieves the best performance on 

all the 4 datasets. In terms of recall@10, M2-gp2t achieves the best performance on the 

sTMall and Gowalla datasets, and the second best performance on the TaFeng and TMall 

datasets. We also found a similar trend on NDCG@k: in terms of NDCG@5, M2-gp2t 

achieves the best performance on the sTMall and Gowalla datasets, and the second best 

or (near) the second best performance on the TaFeng and TMall datasets. M2-gp2 is still 

the second best performing method. In terms of recall@5 and recall@10, M2-gp2 achieves 

the best performance on the TaFeng dataset, and the second best performance or (near) the 

second best performance on the other 3 datasets (i.e., TMall, sTMall, Gowalla). In terms 

of NDCG@5 and NDCG@10, M2-gp2 also achieves the second best or (near) the second 

best performance on 3 out of 4 datasets (i.e., TaFeng, sTMall, Gowalla). It is also worth 

noting that on the widely used TaFeng dataset, M2-gp2 significantly outperforms M2-p2 

at 24.6%, 13.3%, 16.0% and 13.4% on recall@5, recall@10, NDCG@5 and NDCG@10, 

respectively. As discussed in Section 6.1.3, the difference between M2-gp2 and M2-p2 is that 

M2-gp2 learns personalized combine weights, while M2-p2 learns one combine weight for 

all the users. The significant improvement of M2-gp2 over M2-p2 further demonstrates the 

importance of learning personalized combine weights.

6.2.2 Comparing With the Performance on the Next Basket—We also notice that 

the performance of those methods that model users’ general preferences (e.g., POEP, M2-gp2 

and M2-gp2t) increases as we recommend the baskets in the later future (i.e., the second 

next basket). For example, on the largest sTMall dataset, POEP has recall@5 value 0.0936 

(Table 3) in recommending the first next basket, while this value increases to 0.1132 (Table 

4) in recommending the second next basket. This might be due to the fact that the testing 

users with more than one basket in the testing set are in general more active (i.e., have more 

baskets). Specifically, on sTMall, the testing users in the experiments of recommending the 

first next basket have 9.6 baskets on average used for training. However, the testing users in 

the experiments of recommending the second next basket have 10.6 baskets on average (i.e., 

10.4% increasing). Thus, more baskets used for model training enable methods which model 

users’ general preferences to more accurately estimate the general preferences of testing 

users, and thus achieve better performance for the second next basket recommendation.

It is worth noting that although M2-gp2 significantly underperforms M2-gp2t when 

recommending the first next basket, M2-gp2 could achieve similar or even better 

performance over M2-gp2t at some metrics when recommending the second next basket. 

For example, on TaFeng, when recommending the first next basket, M2-gp2t achieves 

significant improvement of 10.6%, 8.6% at recall@5 and recall@20 (Table 3) over M2-gp2. 

However, when recommending the second next basket, M2-gp2 is able to achieve the same 

performance with M2-gp2t at recall@5 (i.e., 0.1113 as in Table 4). As just discussed, 
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the testing users in recommending the second next basket are in general more active 

than those in recommending the first next basket. The similar performance of M2-gp2 

and M2-gp2t indicates that the interactions of active users are more dominated by their 

general preferences and the global popularities of items. Thus, for active users, the simple 

popularity-based methods could be very effective. However, since in real applications, most 

of the users are not active, it is still important to model the transition patterns in general 

recommendation applications.

6.3 Performance on the Third Next Basket

Table 5 presents the overall performance of methods at recall@k and NDCG@k on the 

task of recommending the third next basket. The performance at precision@k is reported in 

Section S4.3. Please note that as discussed in Sections 5.3 and 6.2, the number of testing 

users in this task could be different from that in recommending the first, and second next 

basket. Specifically, as shown in Table 5, when recommending the third next basket, we 

have 1,099, 1,461, 7,561 and 7,985 testing users on TaFeng, TMall, sTMall and Gowalla, 

respectively. Table 5 shows that overall, the performance of M2 and baseline methods still 

has similar trend as that in recommending the first and second next basket. M2-gp2t is still 

the best performing method. In terms of recall@5, M2-gp2t achieves the best performance 

at 3 out of 4 datasets (i.e., TaFeng, sTMall and Gowalla). On the TMall dataset, M2-gp2t 

also achieves the second best performance. We also found a similar trend on NDCG@k: in 

terms of NDCG@5, M2-gp2t also achieves the best performance on 3 out of 4 datasets, 

and the second best performance on the TMall dataset. M2-gp2 is still the second best 

performing method. In terms of recall@5, M2-gp2 achieves the best performance on the 

TMall dataset, and the second best performance on the TaFeng and sTMall dataset. The 

same trends as discussed in Section 6.2.1 could also be found here. It is also worth noting 

that as shown in Table 5, in terms of recall@k, the best M2 variant (i.e., M2-p2, M2-gp2 

or M2-gp2t), statistically significantly outperforms the best baseline methods on 3 out of 

4 datasets. On TMall, M2-gp2t still statistically significantly outperforms the best baseline 

method POEP at recall@5.

6.4 Performance Summary Among All the Tasks

Table 3, Table 4 and Table 5 together show that M2-gp2t is the best performing method over 

all the 3 tasks. It significantly outperforms the state-of-the-art baseline method Sets2Sets 

at all the metrics over all the 3 tasks. For example, in terms of recall@5, M2-gp2t 

achieves 15.5%, 25.4% and 26.6% improvement on average over all the datasets except 

sTMall in recommending the first, second and third next basket, respectively. These results 

demonstrate the strong ability of M2-gp2t in next-basket recommendation. Table 3, Table 4 

and Table 5 together also show that M2-gp2 achieves the second best performance over the 

3 tasks. It is worth noting that although M2-gp2 does not perform as well as M2-gp2t, it 

still consistently outperforms the state-of-the-art baseline method Sets2Sets over all the 3 

tasks. These results demonstrate the strong effectiveness of simple popularity-based methods 

in next-basket recommendation.
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6.5 Ablation Study

6.5.1 Comparing Different Factors in M2-gp2t—We conduct an ablation study to 

verify the effects of the different components (i.e., UGP, TPI) in M2-gp2t. We present the 

next basket recommendation results generated by UGP and TPI alone, and their combination 

M2-gp2t in Table 6. Note that UGP recommends the personalized most popular items to each 

user, and thus it is identical to POEP. When testing UGP, the final recommendation scores r
(Equation (10)) are identical to those based on users’ general preferences in p (Equation (1)) 

(i.e., α =0 in Equation (10)). When testing TPI, essentially it is to test ed-Trans and the 

final recommendation scores are in s (Equation (7)) (i.e., α =1 in Equation (10)).

Table 6 shows that UGP is a strong baseline for all the methods on all the datasets. This 

indicates the importance of users’ general preferences in the next-basket recommendation. 

TPI does not outperform UGP in terms of recall@k on all the datasets. We also found a 

similar trend on NDCG@k. In terms of NDCG@k, UGP significantly outperforms TPI on 

TaFeng and Gowalla and achieves similar performance with TPI on the TMall and sTMall 

datasets. When TPI is combined with UGP (i.e., M2-gp2t in Table 6), there is a notable 

increase compared to each individual TPI and UGP. This may be because that in M2-gp2t, 

as UGP captures the general preferences, TPI can learn the remaining, transition patterns and 

items’ global popularities that cannot be captured by UGP. In Table 6, M2-gp2t (i.e., UGP 

+TPI) achieves the best performance on all the 4 datasets. It also shows improvement from 

UGP and TPI. This indicates that when learned together, UGP and TPI are complementary 

and enable better performance than each alone.

6.5.2 Comparing ed-Trans and RNN-Based Methods—We also notice that as 

shown in Table 3 and Table 6, ed-Trans (i.e., the model to learn TPI), an encoder-decoder 

based approach (Section 4.1.3), on its own outperforms Dream (i.e., RNN-based method) on 

3 out of 4 datasets i.e., TMall, sTMall and Gowalla) at both recall@k and NDCG@k, and 

achieves comparable results with Dream on the TaFeng dataset at NDCG@k. For example, 

on TMall, ed-Trans achieves 0.0947 in terms of recall@5 (Table 6) compared to Dream 

with 0.0833 (Table 3), that is, ed-Trans is 13.7% better than Dream. Similarly, in terms 

of recall@10 and recall@20, ed-Trans achieves 0.1045 and 0.1162 (Table 6), respectively, 

compared to Dream with 0.0868 and 0.0927 (Table 3), respectively, that is, ed-Trans 

achieves 20.4% improvement at recall@10 and 25.4% improvement at recall@20 compared 

to Dream. We also found a similar trend on sTMall. In terms of recall@5, ed-Trans 

achieves 8.9% improvement over Dream (0.0928 versus 0.0852) on sTMall. These results 

are strong evidence to show that ed-Trans could outperform RNN-based methods on 

benchmark datasets. It is worth noting that as shown in Table 3 and Table 6, on Gowalla, 

ed-Trans achieves reasonable performance, while Dream fails. As discussed in Section 6.1, 

for doing good recommendations on Gowalla, models should be able to learn users’ general 

preferences from the interactions. The reasonable and poor performance of ed-Trans 

and Dream, respectively, indicates that ed-Trans could implicitly learn users’ general 

preferences, while RNN-based methods might not. We also notice that ed-Trans on its own 

does not work as well as Sets2Sets as shown in Table 3 and Table 6. However, this might 

be due to the reason that Sets2Sets models both the transition patterns and users’ general 
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preferences, while ed-Trans does not explicitly model users’ general preferences. When 

ed-Trans learned with UGP together (i.e, M2-gp2t), M2-gp2t outperforms Sets2Sets on 

all the datasets as shown in Table 3. These results indicate that ed-Trans could be more 

effective than the RNNs used in Sets2Sets on modeling transition patterns.

6.6 Analysis on Transition Patterns

We further analyze if M2-gp2t learns good weights α (Equation (10)) to differentiate the 

importance of UGP and TPI. Fig. 4 presents the distribution of the weights α from the best 

performing M2-gp2t models on the 4 datasets. Please note that as presented in Section 

4.1.1, only the items interacted by the user will get non-zero recommendation scores in 

UGP, while all the items could get non-zero recommendation scores in TPI. As a result, for 

items with non-zero scores, the scale of their scores might be different in UGP and TPI. 

and thus, the absolute value of the weights on different components may not necessarily 

represent the true importance of the corresponding factors in users’ behavior. For example, 

on TMall, users have higher weights on TPI than that on UGP. It does not necessarily 

indicate that the transition patterns are more important than users’ general preference for the 

recommendation on this dataset.

As shown in Fig. 4, on Gowalla, users’ weights on UGP are much higher than that on 

the other datasets. This is consistent with the observation that on Gowalla, users’ general 

preferences play a more important role for recommendation than that on the other datasets 

(shown in Table 3). This consistency demonstrates that M2-gp2t is able to learn good 

weights to differentiate the importance of UGP and TPI on different datasets and application 

scenarios.

6.7 Cluster Analysis

We further evaluate if M2-gp2t really learns the transition patterns among items. 

Specifically, we learn the weight matrix W (Equation (6)) in M2-gp2t using the training and 

validation baskets in the widely used TaFeng dataset on recommending the first next basket, 

and export the matrix for the analysis. Note that the weight matrix W could be viewed as 

an item embedding matrix, in which each row is the embedding of a single item. Given W, 

we evaluate if items with similar transition patterns will have similar embeddings. To get the 

ground-truth transition patterns among items, we construct a matrix T also from the training 

and validation baskets in TaFeng. In T, Tij is the number of times that item i in the previous 

baskets transits to item j in the next basket. That is, the i -th row of T contains the items that 

item i has transited to. Thus, T contains the ground-truth transition patterns among items. 

After constructing matrix T, we could get the items which have similar transition patterns by 

calculating the pairwise similarities.

Fig. 5, generated using t-SNE [38] method, presents the item embeddings generated from 

M2-gp2t on the TaFeng dataset. Specifically, we project the item embeddings in W to the 

two-dimensional (2d) space using t-SNE, and then plot the projected embeddings of items 

in this figure. In Fig. 5, there are many well-formed clusters (e.g., C1, C2). We find that 

generally, the items within the same cluster have similar transition patterns. For example, 

the average pairwise similarity of items in C1 and C2 is 25.7% and 11.4% higher than 
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that over all the itempairs, respectively. These results demonstrate that the encoder-decoder 

framework (ed-Trans) in M2-gp2t could effectively capture the transition patterns among 

items.

6.8 Analysis on Diversity of Recommendations

We also evaluate the diversity of the recommendations from different methods. Due to 

the space limit, we report the results in Section S5. Generally, we find that M2-gp2t 

could generate more diverse recommendations over all the baseline methods except POEP. 

Considering both the quality and diversity of the recommendations, M2-gp2t significantly 

outperforms all the baseline methods, and could achieve superior performance in real 

applications.

7 Discussions

7.1 Experimental Protocols

A commonly used experimental protocol in the literature [1] is as follows. Users are 

randomly split into 5 or 10 folds to conduct 5 or 10-fold cross validation. For each user 

in the testing fold, her/his last basket in sequential order is used as the testing basket, the 

other baskets are used as the training baskets. For each user in the training folds, her/his 

last basket is used to measure training errors, the other baskets are used to train the model 

and generate recommendation scores for the last basket. When absolute time information is 

absent in the datasets, this experimental protocol enables full separation among the training 

and testing sets, and approximates real application scenario for each testing user. However, 

when the absolute time information is present, which is the case in most of the popular 

benchmark datasets including TaFeng, TMall and Gowalla, this protocol will create artificial 

use scenario that deviates from that in real applications. The issue is that following this 

protocol, a basket in the training set from one user may have a later timestamp than a 

basket in the testing set from another user, and therefore a later basket is used to train a 

model to recommend an earlier basket, which is not realistic. Our protocol splits the training, 

validation and testing sets based on an absolute cut-off time for all the users, and thus avoids 

the above issue and is closer to real application scenarios. Another widely used experimental 

protocol [2], [3], [14], [18], [39] is that for each user, her/his last and second last basket were 

used as the testing basket and validation basket, respectively; the other baskets are used as 

the training baskets. This protocol has the same issue as discussed above. Here, we refer this 

protocol as the order-based split protocol. We evaluate M2 and baseline methods using this 

widely used but questionable order-based split protocol, and report the results in Table S1. 

We found that, under the order-based split protocol, M2 still achieves superior performance 

over the best baseline methods on all the datasets over most of the evaluation metrics.

Another commonly used experimental setting [2], [3] is to evaluate different methods in 

recommending the first next basket. However, in real applications, the model is usually 

updated weekly or monthly, and thus would need to recommend multiple baskets for active 

users before model updates. In this case, the performance in recommending the first next 

basket may not accurately represent the models’ effectiveness in real applications. In our 
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experiments, we also evaluate methods in the task of recommending a few next baskets to 

more accurately and comprehensively evaluate the model performance in real applications.

7.2 Evaluation Metrics

In the experiments, we use recall@k and NDCG@k to evaluate different methods. These 

two metrics are important and widely used for top-N recommendation [40], and also popular 

in sequential recommendations [15], [18], [39] and next-basket recommendations [1], [2], 

[3]. Recall@k measures the proportion of all the ground-truth interacted items in a testing 

basket that are also among top-k recommended items. We believe this is a proper metric to 

use because in the end, the recommendation methods aim to identify all the items that the 

users will be interested in eventually, that is, to maximize recall. In addition, recall values at 

different top-k positions also indicate the ranking structures of recommended items, where 

we prefer the items that users are interested in are ranked on top. NDCG also measures the 

ranking positions of the items that users are interested in. Higher NDCG@k values indicate 

that more users’ interested items are ranked on top. Since in real applications, the users will 

look at a subset of the recommendations from the top of the recommendation list, we believe 

that evaluation metrics that consider ranking positions are more useful and applicable in real 

applications, and as discussed in Aggarwal [40] (Chapter 7.5.5), NDCG is more suitable 

than ROC measures or rank-correlation coefficients in distinguishing between higher-ranked 

and lower-ranked items.

The metric precision@k is also a popular metric in evaluating recommendations. This 

metric, however, may not be proper for next-basket recommendation evaluation. First of all, 

precision@k does not consider the ranking positions of the correctly recommended items. 

Second, the value of precision@k is “not necessarily monotonic in k because both the 

numerator and denominator may change with k differently”, as discussed in Aggarwal [40] 

(Chapter 7.5.4). In addition, precision@k could be strongly biased by basket sizes: for small 

baskets, precision@k could be small even if all the items are correctly recommended. For 

example, if all the items in a size-2 basket are correctly recommended, precision@10 is only 

0.2. However, for large baskets, precision@k can be large even only a small portion of the 

items are correctly recommended. For example, if 5 items of a size-20 basket are correctly 

recommended, that is, only 25% of the items are correctly recommended, precision@10 is 

0.5. When only considering precision@k, we may prefer the second recommendation, even 

thought it is half way to its best possible results (i.e., correctly recommend 10 among top-10 

recommended items, with precision@10=1.0), but the first recommendation has already 

achieved its best possible results. Recall@k alleviates such issues with a normalization 

using basket size. Therefore, precision and other precisionbased metrics (e.g., AUC, F1) 

may not be proper for evaluating next-basket recommendation methods. However, to be 

comprehensive, we still use this metric in our experiments and report the results in Section 

S4.

8 Conclusion

In this paper, we presented novel M2 models that conduct next-basket recommendation using 

three important factors: 1) users’ general preferences, 2) items’ global popularities and 3) 
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the transition patterns among items. Our experimental results in comparison with 5 state-of-

the-art next-basket recommendation methods on 4 public benchmark datasets demonstrate 

substantial performance improvement from M2 in both the next basket recommendation 

(improvement of up to 19.0% at recall@5) and the next a few baskets recommendation 

(improvement of up to 14.4% at recall@5). Our ablation study demonstrates the importance 

of users’ general preferences in next-basket recommendations, and the complementarity 

among all the factors in M2. Our ablation study also demonstrates that the simple encoder-

decoder based framework ed-Trans (Section 4.1.3) is more effective than RNNs on 

modeling the transition patterns in benchmark datasets (improvement as much as 20.4% 

at recall@5). Our analysis on the learned item embedding matrix further demonstrates that 

ed-Trans could effectively capture the ground-truth transition patterns among items.

One potential limitation of M2 and the other data-driven basket recommendation methods 

is that the recommended items may not form realistic baskets. For example, the method 

may recommend ten brands of milk as a basket to users. However, in practice, users 

rarely purchase together ten brands in one basket. To mitigate this potential limitation 

without sacrificing the recommendation performance, we may need to carefully balance the 

modeling of item complementarities (additional discussions in Section S7) and the other 

important factors. We leave the investigation of this problem in our future work. In addition 

to this limitation, another future direction could be to extend M2 for the cold-start problem. 

We also leave the investigation of this problem as in our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
M2-p2 and M2-gp2 model architectures.
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Fig. 2. 
M2-gp2t model architecture.
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Fig. 3. 
M2-gp2t datasets splitting protocol.
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Fig. 4. 
Distributions of gating weights from M2-gp2t.
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Fig. 5. 
Item embeddings from M2-gp2t (TaFeng).
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TABLE 1

Notations

notations meanings

m/n number of users/items

d dimension of latent representation of next basket

Bi/bi(t) the basket sequence/the t-th basket of user i

Ti/ni(t) the number of baskets in Bi/of items in bi(t)

r i the vector representation of the basket bi(Ti)

r i the recommendation scores over all items for user i
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TABLE 2

Dataset Statistics

dataset #items #baskets #users #items/bskt #bskt/user

TaFeng 10,829 97,509 16,788 6.72 5.81

TMall 21,812 360,587 28,827 2.41 12.51

sTMall 104,266 2,052,959 214,105 2.01 9.59

Gowalla 26,529 902,505 26,822 1.77 33.65

The columns #items, #baskets, #users, #items/bskt and #bskt/user correspond to the number of items, the number of baskets over all users, the 
number of users, the average number of items per basket and the average number of baskets per user, respectively.
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TABLE 3

Performance Comparison on the Next Basket

method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

TaFeng (7,227)

POP 0.0866 0.0963 0.1151 0.1227 0.1161 0.1203

POEP 0.0817 0.1153 0.1563 0.1109 0.1127 0.1240

Dream 0.0839 0.0928 0.1086 0.0694 0.0655 0.0697

FPMC 0.0568 0.0672 0.0831 0.0691 0.0658 0.0698

Sets2Sets 0.0822 0.1230 0.1705 0.0952 0.1049 0.1200

M2-p2 0.0908 0.1338 0.1766 0.1192 0.1244 0.1367

M2-gp2 0.0916 0.1344 0.1782 0.1207 0.1257 0.1381

M2-gp2t †0.1013 †0.1375 †0.1936 †0.1280 †0.1306 †0.1469

improv 17.0%* 11.8%* 13.5%* 4.3% 12.5%* 18.5%*

TMall (14,051)

POP 0.0802 0.0828 0.0872 0.0777 0.0784 0.0800

POEP 0.1051 0.1264 0.1524 0.0793 0.0857 0.0927

Dream 0.0833 0.0868 0.0927 0.0752 0.0765 0.0781

FPMC 0.0802 0.0809 0.0867 0.0777 0.0778 0.0797

Sets2Sets 0.1092 0.1360 †0.1653 †0.0979 †0.1071 †0.1154

M2-p2 0.1118 0.1365 0.1584 0.0843 0.0919 0.0977

M2-gp2 0.1123 0.1360 0.1548 0.0846 0.0919 0.0971

M2-gp2t †0.1165 †0.1395 0.1648 0.0939 0.1010 0.1079

improv 6.7%* 2.6%* −0.3% −4.1%* −5.7%* −6.5%*

sTMall (94,337)

POP 0.0859 0.0880 0.0905 0.0834 0.0840 0.0846

POEP 0.0936 0.1091 0.1187 0.0761 0.0810 0.0836

Dream 0.0852 0.0873 0.0934 0.0826 0.0833 0.0848

FPMC 0.0845 0.0869 0.0902 0.0820 0.0828 0.0837

Sets2Sets OOM OOM OOM OOM OOM OOM

M2-p2 0.0991 0.1203 0.1388 0.0791 0.0857 0.0906

M2-gp2 0.0992 0.1204 0.1393 0.0791 0.0857 0.0907

M2-gp2t †0.1114 †0.1285 †0.1404 †0.0948 †0.1002 †0.1035

improv 19.0%* 17.8%* 18.3%* 13.7%* 19.3%* 22.1%*

Gowalla (12,975)

POP 0.0111 0.0240 0.0413 0.0064 0.0110 0.0158

POEP 0.4551 0.5179 0.5649 0.3793 0.4007 0.4136

Dream 0.0187 0.0307 0.0436 0.0127 0.0169 0.0206

FPMC 0.0107 0.0255 0.0536 0.0059 0.0111 0.0187

Sets2Sets 0.3941 0.4745 0.5443 0.3184 0.3462 0.3654

M2-p2 0.4574 0.5213 0.5664 0.3800 0.4019 0.4143

M2-gp2 0.4578 0.5194 0.5689 0.3802 0.4013 0.4148
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method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

M2-gp2t †0.4599 †0.5232 †0.5736 †0.3813 †0.4030 †0.4168

improv 1.1%* 1.0%* 1.5%* 0.5%* 0.6%* 0.8%*

For each dataset, the best performance among our proposed methods (i.e., M2-p2, M2-gp2 and M2-gp2t) is in bold, the best performance 

among the baseline methods is underlined, and the overall best performance is indicated by a dagger (i.e., †). The row “improv” presents the 

percentage improvement of the best performing methods among M2-p2, M2-gp2 and M2-gp2t (bold) over the best performing baseline 

methods (underlined) in each column. The numbers in the parentheses after the datasets represent the number of testing users in the datasets. The 
“OOM” represents the out of memory issue. The * indicates that the improvement is statistically significant at 95 percent confidence level.
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TABLE 4

Performance on the Second Next Basket

method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

TaFeng (2,801)

POP 0.1024 0.1352 0.1475 †0.1356 †0.1392 0.1422

POEP 0.0920 0.1313 0.1787 0.1056 0.1138 0.1293

Dream 0.0965 0.1054 0.1168 0.0629 0.0619 0.0651

FPMC 0.0461 0.0618 0.0805 0.0476 0.0500 0.0558

Sets2Sets 0.0734 0.1236 0.1882 0.0670 0.0856 0.1086

M2-p2 0.0893 0.1367 0.1927 0.1053 0.1161 0.1345

M2-gp2 †0.1113 †0.1549 0.2036 0.1222 0.1316 †1482

M2-gp2t †0.1113 0.1517 †0.2062 0.1198 0.1280 0.1461

improv 8.7% 14.6%* 9.6%* −9.9%* −5.5% 4.2%

TMall (5,109)

POP 0.0855 0.0872 0.0892 0.0827 0.0837 0.0844

POEP 0.1253 0.1556 0.1904 0.0959 0.1052 0.1144

Dream 0.0907 0.0940 0.0979 0.0844 0.0857 0.0868

FPMC 0.0860 0.0875 0.0915 0.0831 0.0837 0.0849

Sets2Sets 0.1345 0.1628 0.1972 †0.1175 †0.1275 †0.1373

M2-p2 0.1344 †0.1657 0.1940 0.1019 0.1117 0.1192

M2-gp2 0.1347 0.1645 †0.2018 0.1022 0.1112 0.1211

M2-gp2t †0.1374 0.1656 0.1999 0.1096 0.1183 0.1276

improv 2.2% 1.8% 2.3%* −6.7%* −7.2%* −7.1%*

sTMall (29,741)

POP 0.0835 0.0870 0.0912 0.0820 0.0832 0.0843

POEP 0.1132 0.1398 0.1563 0.0885 0.0968 0.1011

Dream 0.0866 0.0893 0.0946 0.0833 0.0842 0.0856

FPMC 0.0853 0.0874 0.0911 0.0828 0.0835 0.0844

Sets2Sets OOM OOM OOM OOM OOM OOM

M2-p2 0.1205 0.1482 0.1698 0.0926 0.1012 0.1069

M2-gp2 0.1203 0.1482 0.1699 0.0925 0.1012 0.1069

M2-gp2t †0.1258 †0.1528 †0.1718 †0.1023 †0.1109 †0.1159

improv 11.1%* 9.3%* 9.9%* 15.6%* 14.6%* 14.6%*

Gowalla (10,032)

POP 0.0124 0.0228 0.0399 0.0072 0.0110 0.0158

POEP 0.4765 0.5413 0.5872 0.3920 0.4142 0.4271

Dream 0.0200 0.0340 0.0507 0.0134 0.0182 0.0228

FPMC 0.0059 0.0158 0.0329 0.0033 0.0067 0.0112

Sets2Sets 0.3915 0.4804 0.5565 0.3128 0.3436 0.3646

M2-p2 0.4764 0.5426 0.5894 0.3916 0.4145 0.4275

M2-gp2 0.4767 0.5439 0.5904 0.3921 0.4152 0.4281
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method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

M2-gp2t †0.4787 †0.5456 †0.5979 †0.3932 †0.4163 †0.4307

improv 0.5% 0.8%* 1.8%* 0.3% 0.5% 0.8%*

The columns in this table have the same meanings as those in Table 3.
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TABLE 5

Performance on the Third Next Basket

method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

TaFeng (1,099)

POP 0.0725 0.1255 0.1519 0.0924 0.1063 0.1142

POEP 0.1037 0.1415 0.1907 0.1114 0.1207 0.1360

Dream 0.0632 0.0763 0.0866 0.0552 0.0569 0.0601

FPMC 0.0420 0.0593 0.0788 0.0451 0.0499 0.0562

Sets2Sets 0.0732 0.1158 0.1791 0.0650 0.0802 0.1025

M2-p2 0.1039 0.1482 0.1906 0.1109 0.1231 0.1367

M2-gp2 †0.1162 †0.1547 †0.2057 †0.1205 †0.1297 †0.1461

M2-gp2t 0.1141 0.1525 0.1969 0.1162 0.1273 0.1421

improv 12.1%* 9.3%* 7.9%* 8.2%* 7.5%* 7.4%*

TMall (1,461)

POP 0.0727 0.0741 0.0759 0.0675 0.0678 0.0682

POEP 0.1522 0.1925 0.2308 0.1096 0.1209 0.1306

Dream 0.0717 0.0744 0.0799 0.0655 0.0663 0.0677

FPMC 0.0736 0.0756 0.0791 0.0682 0.0684 0.0696

Sets2Sets 0.1512 0.1898 0.2368 †0.1256 †0.1387 †0.1517

M2-p2 0.1568 0.1942 0.2348 0.1135 0.1247 0.1348

M2-gp2 0.1586 †0.1965 0.2320 0.1150 0.1260 0.1349

M2-gp2t †0.1603 0.1909 †0.2390 0.1152 0.1238 0.1358

improv 5.3%* 2.1% 0.9% −8.3%* −9.2%* −10.5%*

sTMall (7,561)

POP 0.0802 0.0824 0.0854 0.0781 0.0788 0.0795

POEP 0.1267 0.1610 0.1872 0.0984 0.1087 0.1155

Dream 0.0838 0.0864 0.0903 0.0800 0.0808 0.0819

FPMC 0.0824 0.0846 0.0884 0.0792 0.0800 0.0808

Sets2Sets OOM OOM OOM OOM OOM OOM

M2-p2 0.1348 †0.1705 †0.1961 0.1029 0.1139 0.1205

M2-gp2 0.1352 0.1703 0.1960 0.1030 0.1137 0.1204

M2-gp2t †0.1373 0.1696 0.1954 †0.1088 †0.1187 †0.1254

improv 8.4%* 5.9%* 4.8%* 10.6%* 9.2%* 8.6%*

Gowalla (7,985)

POP 0.0108 0.0233 0.0402 0.0062 0.0107 0.0155

POEP 0.5092 0.5751 0.6251 0.4282 0.4509 0.4649

Dream 0.0187 0.0295 0.0442 0.0127 0.0166 0.0208

FPMC 0.0179 0.0404 0.0789 0.0094 0.0172 0.0274

Sets2Sets 0.4367 0.5230 0.5981 0.3496 0.3799 0.4009

M2-p2 0.5137 0.5779 0.6282 0.4299 0.4518 0.4657

M2-gp2 0.5133 †0.5802 0.6268 0.4296 0.4525 0.4654
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method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

M2-gp2t †0.5154 †0.5802 †0.6321 †0.4309 †0.4531 †0.4675

improv 1.2%* 0.9%* 1.1%* 0.6%* 0.5%* 0.6%*

The columns in this table have the same meanings as those in Table 3.
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TABLE 6

Ablation Study on the Next Basket

method
recall@k NDCG@k

k=5 k=10 k=20 k=5 k=10 k=20

TaFeng

UGP 0.0817 0.1153 0.1563 0.1109 0.1127 0.1240

TPI 0.0508 0.0774 0.1129 0.0660 0.0701 0.0807

M2-gp2t 0.1013 0.1375 0.1936 0.1280 0.1306 0.1469

TMall

UGP 0.1051 0.1264 0.1524 0.0793 0.0857 0.0927

TPI 0.0947 0.1045 0.1162 0.0851 0.0880 0.0915

M2-gp2t 0.1165 0.1395 0.1648 0.0939 0.1010 0.1079

sTMall

UGP 0.0936 0.1091 0.1187 0.0761 0.0810 0.0836

TPI 0.0928 0.0983 0.1052 0.0856 0.0873 0.0892

M2-gp2t 0.1114 0.1285 0.1404 0.0948 0.1002 0.1035

Gowalla

UGP 0.4551 0.5179 0.5649 0.3793 0.4007 0.4136

TPI 0.3105 0.3342 0.3567 0.2778 0.2856 0.2917

M2-gp2t 0.4599 0.5232 0.5736 0.3813 0.4030 0.4168

M2-gp2t is identical to UGP+TPI. The best and second best performance in each dataset is in bold and underlined, respectivley.
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