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Abstract

Motivation: The identification of genetic variants influencing gene expression (known as expres-

sion quantitative trait loci or eQTLs) is important in unravelling the genetic basis of complex traits.

Detecting multiple eQTLs simultaneously in a population based on paired DNA-seq and RNA-seq

assays employs two competing types of models: models which rely on appropriate transform-

ations of RNA-seq data (and are powered by a mature mathematical theory), or count-based

models, which represent digital gene expression explicitly, thus rendering such transformations

unnecessary. The latter constitutes an immensely popular methodology, which is however plagued

by mathematical intractability.

Results: We develop tractable count-based models, which are amenable to efficient estimation

through the introduction of latent variables and the appropriate application of recent statistical the-

ory in a sparse Bayesian modelling framework. Furthermore, we examine several transformation

methods for RNA-seq read counts and we introduce arcsin, logit and Laplace smoothing as prepro-

cessing steps for transformation-based models. Using natural and carefully simulated data from

the 1000 Genomes and gEUVADIS projects, we benchmark both approaches under a variety of

scenarios, including the presence of noise and violation of basic model assumptions. We demon-

strate that an arcsin transformation of Laplace-smoothed data is at least as good as state-of-the-art

models, particularly at small samples. Furthermore, we show that an over-dispersed Poisson

model is comparable to the celebrated Negative Binomial, but much easier to estimate. These re-

sults provide strong support for transformation-based versus count-based (particularly Negative-

Binomial-based) models for eQTL mapping.

Availability and implementation: All methods are implemented in the free software eQTLseq:

https://github.com/dvav/eQTLseq
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1 Introduction

The identification of genetic variants affecting gene expression

(known as expression quantitative trait loci or eQTLs) is an import-

ant step in unravelling the genetic basis of complex traits, including

diseases (Albert and Kruglyak, 2015; Cookson et al., 2009;

Joehanes et al., 2017). Powered by next-generation sequencing

(NGS) and the simultaneous genome-wide profiling of genetic vari-

ation and gene expression, this task poses novel statistical challenges

due to the idiosyncratic nature of the data generated by these tech-

nologies. Count data produced by assays such as RNA-seq (Wang

et al., 2009), constitute a digital measure of gene expression, thus

making methodologies developed for continuous microarray data

not directly applicable.

A straightforward approach to eQTL mapping using RNA-seq

would be to transform digital expression data (Zwiener et al., 2014)

and then proceed using methodologies developed for micro-arrays,

which usually assume normally distributed data (Bottolo et al.,

2011; Cheng et al., 2014; Flutre et al., 2013; Shabalin, 2012; Yi and

Xu, 2008). The basic obstacle in directly applying such methods on

normalized RNA-seq data are the high degree of skewness, extreme

values and a non-trivial mean-variance relationship, which com-

monly characterize such data. A simple, albeit imperfect, approach

to ameliorate these effects is the application of a logarithmic trans-

formation, making sure that zero counts are appropriately handled

in order to avoid infinities. Two further options are power trans-

formations, such as the Box-Cox transformation (Box and Cox,

1964), and rank-based transformations, such as the Blom trans-

formation (Beasley et al., 2009), both of which aim to make the data

more normal-like. While the aforementioned transformations are

not specific to RNA-seq, variance-stabilizing approaches that expli-

citly model the mean-variance relationship in such data are provided

by specialized software, such as DESeq2 (functions rlog and vst)

(Love et al., 2014) and limma (function voom) (Law et al., 2014).

The practical advantage of using appropriate data transformations

is the immediate availability of analytical methods, which (being

built around the assumption of normally distributed data) are pow-

ered by a tractable mathematical theory.

An alternative approach is to develop statistical methods that

specifically address the discrete nature of digital expression data

(Kumasaka et al., 2016; Sun and Hu, 2013). Explicitly modeling

counts has been quite popular in the study of differential gene ex-

pression, and several methods have been developed for this purpose

based on Poisson, Binomial and, especially, Negative Binomial dis-

tributions (Kvam et al., 2012; Seyednasrollah et al., 2015; Soneson

and Delorenzi, 2013). These models directly address non-normality

(particularly at small count numbers) and non-linear mean-variance

trends, and they often adopt some form of information sharing be-

tween genes for shrinking dispersion estimates. A natural strategy to

achieve the latter is by imposing a prior distribution on the disper-

sion parameter within a Bayesian inference framework and ‘let the

data decide’ on an appropriate amount of shrinkage (Vavoulis et al.,

2015; Wu et al., 2013).

Regardless of which approach is used to model digital expression

data, the problem of finding associations with particular genetic

variants (i.e. eQTLs) can be expressed as a regression problem,

where gene expression is treated as the response variable and the

genotypes of the variants as the explanatory variables. The aim of

subsequent analysis is to estimate a set of coefficients that capture

the strength of all possible associations between variants and genes.

As such, the problem of eQTL mapping is intimately related to gen-

etic (possibly genome-wide) association studies and, indeed,

searching for eQTLs can be thought of as a genetic association task,

where gene expression plays the role of the phenotype. The simplest

approach is to examine each gene-variant pair independently by ex-

pressing their relationship as a simple, univariate regression problem

(Kumasaka et al., 2016; Shabalin, 2012; Sun and Hu, 2013). This is

perhaps the most computationally feasible choice, when a large

number of gene-variant pairs is examined, but it typically requires

some form of multiplicity correction in order to retain an acceptable

Type I error rate and it bears the risk of missing possible synergistic

effects of multiple variants on gene expression. If such a risk is not

acceptable and, especially, if a set of genes and variants has been

pre-selected (for example, on the basis of clinical criteria), an alter-

native would be to model the effect of multiple variants on the ex-

pression of multiple genes simultaneously, in which case a

multivariate/multiple regression framework becomes appropriate

(Bottolo et al., 2011; Cheng et al., 2014; Flutre et al., 2013; Yi and

Xu, 2008;).

In this paper, we develop two classes of statistical models for de-

tecting simultaneously multiple associations between gene expres-

sion and genomic polymorphisms in a population, as measured by

paired DNA-seq and RNA-seq assays. The first class involves

Poisson, Binomial and Negative Binomial models, which explicitly

model digital gene expression as a function of genetic variation. The

second class involves a Normal/Gaussian model, which relies on ap-

propriate transformations of gene expression data. All models are

embedded in a Bayesian multiple/multivariate regression and vari-

able selection framework, which permits for fair comparison be-

tween them. Traditionally, Bayesian inference in regression models

involving the Negative Binomial distribution has been discouraged

due to the intractable form of the likelihood function (Polson et al.,

2013). An important contribution of this paper is expressing the

posterior probability of multiple gene-variant associations in the

Negative Binomial and the other count-based models in a conveni-

ent mathematical form through the introduction of latent variables,

which facilitates sparse Bayesian learning. A second important con-

tribution, is the introduction of Laplace smoothing (Chen and

Goodman, 1999) and the arcsin transformation (Warton and Hui,

2011) for pre-processing digital gene expression data. Using care-

fully simulated RNA-seq and genotype data and natural data from

the 1000 Genomes (1000 Genomes Project Consortium et al., 2015)

and gEUVADIS projects (Lappalainen et al., 2013), we show that

this pre-processing step in combination with a Normal model dem-

onstrates top performance in a variety of scenarios, particularly at

small samples sizes. The over-dispersed Poisson and Negative

Binomial models also show excellent performance, when the sample

size is sufficiently large. We examine model behavior in a variety of

scenarios, including the presence of two different types of noise, vio-

lation of model assumptions, various association strengths and pat-

terns of eQTL distribution. All methods are implemented in the

freely available Python software eQTLseq (https://github.com/dvav/

eQTLseq).

2 Materials and methods

2.1 Model overview
Below, we briefly describe the main elements of the proposed mod-

els. A detailed mathematical treatise and associated inference meth-

ods is given in the Supplementary Material. eQTLseq (Fig. 1a)

implements a number of hierarchical probabilistic models, which

represent gene expression as a function of genetic variation

[Fig. 1(b–d)]. Three of these models (Binomial or bin, Negative
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Binomial or nbin and Poisson or pois) take explicitly into account

the discrete nature of expression data measured in, for example,

RNA-seq assays, while a fourth model is based on the Normal distri-

bution and it relies on appropriate transformations of such expres-

sion data (see Data transformations). We assume that genotype data

and count data measuring transcript abundance for N samples is

summarized in an N�M matrix X and an N�K matrix Z, respect-

ively, where M is the number of genetic markers and K is the number

of transcripts. Under an additive genetic model, each element of X

takes values in the set {0, 1, 2} indicating the number of minor alleles

at a specific locus. eQTLseq takes matrices X and Z (or Y, a trans-

formed version of Z) as input and employs Gibbs sampling (Andrieu

et al., 2003) to estimate an M�K matrix of regression coefficients

B. The elements bjk of this matrix can be positive, negative or zero

indicating positive, negative or no effect of marker j on the expres-

sion of transcript k. We assume that B is sparse (i.e. most elements

bjk are zero), which implies that most markers in X have no influ-

ence on transcript abundance. In all models, sparsity is induced by

assuming the following prior for each bjk:

pðbjkÞ � Nð0; s�1
k f�1

jk g�1
j Þ

where Nð0; n�1Þ is the Normal distribution with mean 0 and vari-

ance n�1, and sk, fjk and gj are precision parameters each following

Jeffrey’s prior. Jeffrey’s prior was chosen because it is non-

informative, it is invariant under re-parametrization, it has strong

sparsity-inducing properties and, importantly, it is parameter-free,

thus yielding excellent performance without the need for parameter

adjustments (Figueiredo et al., 2002). Small values of the marker-

specific parameter gj imply that marker j is likely to influence a large

number of genes (indicating the presence of a hotspot). Similarly,

small values of the transcript-specific parameter sk imply a transcript

that is likely influenced by many markers (indicating a polygenic ef-

fect on transcript k). The synergistic effect of sk and gj is further

refined in a marker- and transcript-specific manner through param-

eter fjk.

We are particularly interested in the posterior distribution

pðbkj�Þ of the vector of regression coefficients bk, which captures

the effects of M genetic markers on the abundance of transcript k

(notice that the symbol – is a shorthand for all random variables the

posterior density of bk is conditioned on). A major contribution of

this work is that we apply recent statistical theory (Polson et al.,

2013) to express this posterior in closed form, which greatly facili-

tates Bayesian learning. Although this is trivial for the Normal

model, it is not obvious for the Binomial and Poisson models and

particularly difficult for the Negative Binomial, thus discouraging

the use of the latter in a Bayesian multivariate regression setting.

Here, we show that for all models, the above posterior is a multi-

variate Normal distribution, with mean vector mk and precision ma-

trix Ak. In the case of the Normal model, these are simply functions

of the genotypes X, the transformed expression data yk for

transcript k and the precision parameters sk, fk and g. In the case of

the Binomial and Poisson models, yk is an N-vector of normally

distributed pseudo-data (i.e. latent or unobserved variables).

Fig. 1. Workflow and statistical models. (a) A matrix of genotypes X and a matrix of untransformed (Z) or transformed (Y) expression data are used in the estima-

tion of a matrix of coefficients B, which captures the associations between M variants and K transcripts in a population of N samples. (b, c, d) Dependencies be-

tween random variables in Normal (b), over-dispersed Poisson (c), over-dispersed Binomial (c) and Negative Binomial (d) models. shaded rectangle and circles:

observed data (genotypes and gene expression); dash circle: latent (unobserved) data; thick circle: the matrix of association coefficients B
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These pseudo-data decouple the coefficients bk from the actually

observed non-Normal gene expression data, thus making the above

inference possible. Importantly, in the case of the Negative Binomial

model, we show that parameters mk and Ak are functions of the

genotypes X, the expression data zk for transcript k, the precision

parameters sk, fk and g and a vector xk of auxiliary parameters,

which follow a Polya-Gamma distribution.

2.2 Data transformations
eQTLseq requires appropriately transformed expression data as in-

put, when a Normal model is selected. In this paper, we examine

various data transformation methods, including a simple logarith-

mic transformation (log), a Box-Cox transformation (Box and Cox,

1964) (boxcox), a Blom transformation (Beasley et al., 2009)

(blom), the voom transformation (Law et al., 2014) provided by the

R package limma and a variance-stabilizing transformation (vst)

provided by the R package DESeq2 (Love et al., 2014). A regular-

ized log transformation provided also by DESeq2 was excluded, be-

cause it becomes prohibitively expensive when datasets with

hundreds of samples are used, as in the analyses presented in this

paper. For the log and Box-Cox transformations, a single pseudo-

count was added to the data in order to avoid infinities.

Furthermore, we introduce Laplace (also known as Lidstone or

additive) smoothing (Chen and Goodman, 1999) followed by arcsin

or logit transformations (Warton and Hui, 2011) as a preprocessing

step. Additive smoothing is commonly used by naive Bayes classi-

fiers and in natural language processing for smoothing categorical

data. The inspiration for applying this type of smoothing stems from

viewing an RNA-seq sample as the outcome of a multinomial ex-

periment, where a large number of reads (i.e. the raw size of the li-

brary) is ‘assigned’ (i.e. mapped) to a number of ‘categories’ (i.e.

transcripts). The smoothed mapping probability of each transcript

can be expressed as follows:

pij ¼
zik þ c

P
k zik þ cK

where zik is the number of reads for transcript k in sample i,
P

k zik

is the total number of reads in sample i and c is a positive number,

which equals 1 in this paper. zik may be normalized prior to Laplace

smoothing, if necessary. Notice that, similarly to voom, pik lies in

the interval (0, 1), but unlike voom,
P

k pik ¼ 1. Also, the above

probability lies between the empirical probability zik=
P

k zik and the

uniform probability 1=K. The smaller the library size and the larger

the number of genes, the closer the factor cK in the denominator

pulls pij towards 1=K. The probabilities pij are further processed

using the arcsin or logit transformations, which are natural choices

for proportions (Warton and Hui, 2011).

3 Results

3.1 Benchmarks based on simulated data
Benchmarks based on simulated data are essential, because they

allow control of the exact conditions under which data is generated.

At the same time, it is important that simulated data imitate faith-

fully the statistical characteristics of natural data. In this paper, we

simulate read counts and genotypes using data in the public domain

as templates (details are provided in the Supplementary Material).

Briefly, artificial pairs of read counts and genotype matrices were

generated according to the following protocol: (a) decide the num-

ber of samples N in the artificial dataset (assuming K¼1000 genes

and M¼100 genetic markers, throughout), (b) decide the strength,

directionality and pattern of associations between genes and genetic

variants and generate an M�K matrix of coefficients B using an

Exponential distribution, (c) generate an N�M matrix of genotypes

X from a Binomial distribution using data from the 1000 Genomes

project (1000 Genomes Project Consortium et al., 2015) as tem-

plate, (d) given X, B and RNA-seq data from 60 HapMap individ-

uals of European descent (Frazee et al., 2011; Montgomery et al.,

2010) as template, generate an N�K matrix of read counts Z from

a Negative Binomial distribution. Different triplets of X, Z and B

matrices were generated reflecting differences in: (i) the strength of

gene/variant associations (i.e. effect sizes), (ii) the pattern of associ-

ations (e.g. the number of hotspots and polygenic effects), (iii) the

type and level of random noise in the expression and genotype data,

(iv) the presence or absence of over-dispersion and (v) the sample

size. For each combination of the above factors, we generate three

random replicates resulting in 1512 artificial datasets (i.e. pairs of X

and Z matrices), which each model (nbin, bin, pois, log, arcsin,

logit, blom, boxcox, voom, and vst) is assessed on, in a total of

15 120 simulations ran on the Wellcome Trust Center for Human

Genetics local cluster.

The overall performance of each model at different sample sizes

(while the remaining simulation parameters — noise, association

strengths, etc. — were left to vary freely, as opposed to being fixed

at specific values) is illustrated in Figure 2. We use simulated data

with sample sizes equal to 250, 500, 1000 and 2000 subjects and we

examine the ability of each model (a) to distinguish correctly be-

tween true and false positives and negatives and (b) to estimate cor-

rectly the strength of gene/variant associations in the simulated data.

For the former, we use Matthews correlation coefficient (Matthews,

1975) or MCC, which is generally regarded as a balanced measure

of performance for binary classifiers, even in cases where the two

different classes in the data have very different sizes. For assessing

how well each model estimates effect sizes, we calculate the root

mean square error (RMSE) between estimated and true effect sizes

(after these have been appropriately normalized; see Supplementary

Material) among the true positives for each model.

As expected, the performance of all models increases with

increasing sample size (Fig. 2a). At small sample sizes (N¼250), the

arcsin model clearly has the highest MCC value, while all other

models perform similarly. The exception is the Binomial model

(bin), which demonstrates the smallest MCC value at all sample

sizes. As the sample size increases, the performance of the Negative

Binomial (nbin) and Poisson (pois) models increases, slightly over-

taking arcsin at very large sample sizes (N¼2000). All other

Normal models perform similarly. At the same time, all count-based

models (bin, nbin and pois) are clearly more effective at estimating

correctly the strength of gene/variant associations, albeit their dis-

tance from Normal models decreases with increasing sample size

(Fig. 2b).

The observation that nbin and pois outperform arcsin only at

large samples (N¼2000) is at least partially explained by the rela-

tively low true positive rate (TPR) and positive predictive value

(PPV) of these two models (see Supplementary Fig. S1) and it should

be viewed in terms of model complexity: to fully define the count-

based models, we must estimate N�K more variables than the

Normal, which presumably requires larger samples. Interestingly,

pois performs similarly to or better than nbin, although the former

is significantly easier and faster to estimate. This is not surprising

given that nbin can be thought of as a Poisson-Gamma mixture:

read counts follow a Poisson distribution with a gamma-distributed

rate. pois in this study is actually a Poisson-LogNormal mixture: the

Poisson rate is log-normally distributed, instead of Gamma.
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The similar performance of nbin and pois implies that the latter pro-

vides a good approximation to the former. Further results are pro-

vided in Supplementary Figures S1–S6, S10 and S11.

3.2 Benchmarks based on gEUVADIS data
Next, we tested all models on data from the gEUVADIS project

(Lappalainen et al., 2013). This includes mRNA and small RNA

sequencing data on 465 lymphoblastoid cell line samples from the

1000 Genomes project, along with paired data on genomic vari-

ation. We kept only variants on bi-allelic loci with MAF larger than

5%, which overlapped any of 1672 human transcription factors

available from the FANTOM5 project website (Lizio et al., 2015).

These were subsequently annotated with the Variant Effect

Predictor (McLaren et al., 2016) (VEP; distributed with the Ensembl

Tools v84) and the genotypes of all variants predicted to have

HIGH impact were retained for further analysis. gEUVADIS expres-

sion data were filtered by removing all transcripts that had on aver-

age less than 10 reads across all samples, resulting in two count data

matrices with 408 miRNAs and 19 004 mRNAs, respectively.

Ideally, all models should be benchmarked against an objective

truth, i.e. the true gene/variant associations in the data. However, as it

is usually the case with natural datasets, this truth is not known.

Under these circumstances, it is an established practice to adopt a

cross-validation approach, which aims to evaluate the predictive value

of a particular statistical model or models on independent datasets,

i.e. datasets not previously utilized in estimating model parameters or

structure. Here, we employ a Monte Carlo cross-validation method-

ology to objectively compare different models. Briefly, this consists of

splitting the paired genotype and gene expression data randomly in

two sets, training and validation, with ratio 3:1. Each model is esti-

mated on the training set and its predictive performance is calculated

on the validation set. This process is repeated 10 times and an average

predictive performance is calculated for each model. As a measure of

predictive performance we use the concordance correlation coefficient

(CCC) (Lin, 1989), which measures the agreement between two sets

of values in a scale-independent manner and, thus, ensures fair com-

parison between different models.

All models demonstrate very high CCC values (>0.95) in both

mRNAs and miRNAs (Fig. 3a). arcsin and vst show top perform-

ance, with arcsin performing slightly better than vst for mRNAs.

In the same group, blom and boxcox have average or above aver-

age performance, while bin, pois, log and logit perform similarly,

just below average. The worst performance is demonstrated by

voom and, particularly, by the Negative Binomial model. For

miRNAs, the situation is the opposite for blom and boxcox, which

now perform worse than all other models. The Binomial, Negative

Binomial, Poisson, log, logit, and voom models all perform above

average. It is interesting to observe that, in the case of mRNAs,

arcsin gives the most sparse solutions (i.e. the smallest number of

gene/variant associations) among all models, while vst gives the

least sparse ones followed by voom and the Negative Binomial

model (Fig. 3b). The Binomial and Poisson models are also quite

conservative regarding the number of gene/variant associations

they identify. In the case of miRNAs, boxcox gives on average the

most sparse solutions, followed by voom and logit, while the

Negative Binomial model is clearly the least conservative. We con-

clude that all models demonstrate excellent predictive perform-

ance, with arcsin and vst being the best among them. At the same

time, the arcsin, boxcox, Poisson and Binomial models are the

most conservative, depending on whether they are applied on

mRNA or miRNA datasets. Analysis of all gEUVADIS samples, re-

vealed 28 variants, which have been identified as eQTLs by at least

one model (Fig. 3c). Among them, 5 have been consistently se-

lected by more than half of the models (ID: 3, 4, 5, 22, 23; also, see

Table 1).

(a)

(b)

Fig. 2. Model performance on simulated data. (a) Model comparison using Matthews correlation coefficient (MCC) as performance metric. (b) Model comparison

using the root mean square error (RMSE) among true positives as performance metric. For each model at each sample size, we performed 252 simulations (grey

dots). The black dots and whiskers indicate the mean and three standard errors on either side of the mean over these simulations

3062 D.V.Vavoulis et al.
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4 Discussion

Identifying gene/variant associations in a population, based on

paired RNA-seq and DNA-seq assays, can be formulated in terms of

multiple/multivariate regression, where digital gene expression and

genotype data play the role of response and explanatory variables,

respectively. We compare two competing approaches for modeling

digital gene expression in this context: the first approach employs

count-based (Binomial, Negative Binomial and Poisson) models; the

second applies a Normal model on appropriately transformed data.

Both approaches are embedded in a sparse Bayesian learning frame-

work for regression and variable selection through shrinkage, which

simplifies their implementation in software and permits fair com-

parison between different models. The methodological novelty of

our approach is expressing the posterior probability density of gene/

variant associations in the form of a multivariate Normal distribu-

tion in all models. This is achieved in the case of count-based models

through the introduction of latent variables, thus lifting one of the

basic reasons discouraging the use of such models (particularly the

Negative Binomial one) in a Bayesian learning framework, i.e. math-

ematical intractability.

Using artificial data modeled closely after data from the 1000

Genomes project, we demonstrate that a Normal model applied on

Laplace-smoothed and arcsin-transformed data shows excellent per-

formance particularly at small samples. Negative Binomial and

Poisson models are also top performers, with the latter being at least

as good as the former, but with smaller computational cost and des-

pite the fact that simulated data assume a Negative Binomial distri-

bution. Further benchmarks on natural data from the gEUVADIS

project confirm the top performance of arcsin, but also show that

the more computationally expensive vst is equally good. More gen-

erally, the predictive performance of all models is quite high, al-

though not all are equally parsimonious.

Based on these results, we conclude that when mapping eQTLs in

a population using NGS data, a Negative Binomial model is not the

only or even the best option. This is important because the assump-

tion of a Negative Binomial distribution has been extremely popular

in modeling RNA-seq data, particularly in the context of differential

gene expression. Instead, researchers can use a Poisson-LogNormal

(a)

(b)

(c)

Fig. 3. Model performance on gEUVADIS data. (a) Model comparison on mRNA and miRNA datasets using the concordance correlation coefficient (CCC) as per-

formance metric. (b) Model comparison with respect to the number of gene/variant associations they identify. In (a) and (b), a Monte Carlo cross-validation proto-

col with 10 repetitions (grey points) was followed for each model and each group (mRNAs or miRNAs). (c) Candidate eQTLs and number of supporting models

based on all gEUVADIS samples (also, see Table 1). There are 5 eQTLs identified by more than half of the models (dashed line)

Table 1. Variants identified as eQTLs in the gEUVADIS data

ID dbSNP CHROM POS REF ALT MAF Consequence

3 rs4639011 3 32 030 998 C T 0.081 stop gained

4 rs6535531 4 76 474 866 T C 0.496 stop lost

5 rs3217313 5 121 488 635 AT A 0.186 frameshift

22 rs35575803 19 20 807 177 G GA 0.730 frameshift

23 rs35999740 19 22 116 015 A T 0.135 stop gained

Hierarchical probabilistic models for multiple gene/variant associations 3063



mixture, or a Normal model after appropriately transforming the

expression data. The type of transformation that should be used is

case-dependent, but our simulations indicate that transforming the

RNA-seq data to multinomial probabilities and applying an arcsin or

even a logit (as in the gEUVADIS data) transformation is a good start.

In this respect, our conclusions are in agreement with previous work,

which highlights the value of Normal models in modeling RNA-seq

data (Law et al., 2014; Soneson and Delorenzi, 2013).

The sparsity-inducing priors we use for the regression coefficients B

are related to the automatic relevance determination concept (Tipping,

2001), but other strategies are also possible, including the Bayesian

lasso (Park and Casella, 2008), the spike-and-slab prior (Ishwaran and

Rao, 2005) and others (O’Hara and Sillanpaa, 2009). The advantage

of our choice of sparse priors is achieving excellent sparsity perform-

ance without the need to adjust any parameters. Applying the above

statistical framework to possibly thousands of genomic variants in-

volves splitting these variants in groups of several hundreds each, which

can be viewed as a compromise between testing each variant independ-

ently or all of them simultaneously as a single group (see

Supplementary Material for computational considerations).

Alternatively, we can employ a dimensionality reduction method, e.g.

in the form of sparse latent factor models (Knowles and Ghahramani,

2011; West et al., 2003), thus increasing the scale of model applicabil-

ity, but at the same time introducing the issue of biological interpret-

ability of the latent factors. Further work would also involve modifying

the above models to account for strand- and isoform-specific expres-

sion data made uniquely available through RNA-seq. Previous work

(Kumasaka et al., 2016; Sun and Hu, 2013), which however does not

take into account the joint distribution of multiple transcripts and vari-

ants, as we do here, should be the logical starting point.
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