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Abstract

The Hsp90 chaperone is a central node of protein homeostasis activating a large number of diverse 

client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the 

binding and hydrolysis of ATP. Crystallographic studies define distinct conformational states of 

the mechanistic core implying structural changes that have not yet been observed in solution. 

Here, we engineered one-nanometer fluorescence probes based on photo-induced electron transfer 

into yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone 

was reflected in the kinetics of specific structural rearrangements at remote positions that acted 

cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that 

critical structural elements that undergo rearrangement are mobile on a sub-millisecond time scale. 

We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The 

activating co-chaperone Aha1 mobilizes the lid of apo Hsp90, suggesting an early role in the 

catalytic cycle.

The 90-kDa heat shock protein (Hsp90) is a highly abundant and evolutionary conserved 

molecular chaperone that acts at the late stages of folding where it stabilizes and activates a 

plethora of structurally and functionally diverse client proteins. Many of them are essential 

for signal-transduction such as steroid hormone receptors, kinases, transcription factors as 

well as viral proteins1–3. Hsp90 is implicated in malignant disease where its chaperone 
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activity is responsible for the stability of several key oncoproteins and is thus a current target 

of anti-cancer drug development4–6.

Hsp90 is a homo-dimer where each monomer consists of three distinct domains. The N-

terminal domain (NTD) contains the ATP-binding pocket7, which is also the binding site for 

the many Hsp90 inhibitors currently in clinical development8–10. The NTD is connected to 

the middle domain (MD), which is implicated in client protein binding11,12, via a long and 

flexible charged linker. Constitutive dimerization is provided by the C-terminal domain 

(CTD)13,14.

Hsp90 undergoes a conformational cycle coupled to a very slow inherent ATPase activity, 

with time constants of the order of minutes15, which drives transient association of the two 

NTDs in the dimer16. This ATPase-coupled mechanism is critical to the biological function 

of Hsp90, and mutational disruption or pharmacological inhibition abolishes its molecular 

chaperone activity in vivo15,17,18.

Comparison of Hsp90 crystal structures has defined the conformational differences between 

the relaxed apo or ADP-bound state of the chaperone, in which the NTDs are not 

constrained to interact with each other, and the closed ‘tense’ state engendered by binding of 

ATP7,14,19,20. Inter-subunit dimerization of the NTDs and their close juxtaposition to the 

MDs in the ATP-bound state is controlled by a set of localized conformational switches, 

driven by the behavior of a critical structural element in the NTD termed the ‘lid’. The lid 

closes over the nucleotide-binding pocket, trapping the bound ATP while simultaneously 

exposing a hydrophobic surface that facilitates N-terminal dimerization and exchange of the 

N-terminal β-strands between the interacting NTDs14,21. Full activation of the ATPase 

activity requires the additional docking of the MDs onto the NTDs and remodeling of a 

catalytic loop on the MD to allow a critical arginine (Arg 380 in yeast Hsp90) to project into 

the top of the nucleotide pocket and interact with the γ-phosphate of ATP11,21. The 

dramatic effects of mutations in the lid segment on ATPase activity16 suggests that it is 

restructuring and the connected conformational changes in other parts of the protein, rather 

than ATP hydrolysis itself, that limits the rate constant of the chaperone catalytic cycle20,21. 

This model is supported by a number of more recent biophysical studies22–24.

Hsp90 is regulated by a number of collaborating proteins21, so-called co-chaperones, 

including Hop/Sti1, Cdc37, and p23/Sba1, which all inhibit the ATPase cycle, and Aha1, 

which in contrast activates Hsp9025. Structural studies of co-chaperone complexes with 

Hsp9014,26,27 show that these proteins exert much of their regulatory effect by interacting 

with those segments of the NTD and MD that undergo local structural changes as part of the 

ATPase mechanism20–24.

To date, our understanding of the structural changes that accompany the ATPase mechanism 

of Hsp90 has been mainly deduced from crystal structures and biochemical studies. Direct 

observation of local conformational switching in solution has been hampered by the lack of 

suitable spectroscopic probes.

Quenching of extrinsic fluorophores by the amino acid tryptophan (Trp) through photo-

induced electron transfer (PET) can measure local conformational changes at a scale of ~1 
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nm28,29. The combination of PET with nanosecond single-molecule fluorescence 

fluctuation analysis can probe rapid protein folding dynamics30–32. The 1-nm resolution of 

PET complements the popular fluorescence resonance energy transfer (FRET) approach, 

which is active on a 2-10 nm scale, in the exploration of protein conformation33.

Here, we engineered PET-based reporter systems into yeast Hsp90 to site-specifically probe 

kinetics of local conformational changes. We found that the rate constant of ATP hydrolysis 

was reflected in the rate constants of lid closure, β-strand swap, and intra-subunit association 

of NTD and MD. These conformational changes, which form the catalytically active unit of 

Hsp90, appeared to cooperate. We identified a two-step mechanism for lid-closure and a 

previously unknown mode of action of the co-chaperone Aha1.

Results

Design of fluorescence probes for conformational changes

We developed reporter systems based on fluorescence quenching by PET to probe dynamics 

of local structural changes of Hsp90. PET requires van der Waals contact between an 

organic fluorophore and the indole side chain of Trp, which occurs at a distance of ≤1 nm34. 

Based on crystal structures of the closed yeast Hsp90 conformation (pdb id 2CG9) and the 

isolated NTD (pdb id 1AM1), which was used as a model for the open-clamp NTD 

conformation, we engineered PET reporters at surface-exposed positions (Figure 1a). We 

placed Trp and the extrinsic oxazine fluorophore AttoOxa11 (Oxa) such that a change of 

conformation resulted in formation or disruption of the Oxa-Trp interaction, so that 

fluorescence was either off or on, respectively. To this end, Trp and cysteine (Cys, C) 

residues were introduced by site-directed mutagenesis. Cys provided the attachment site for 

the thiol-reactive derivative of Oxa. Yeast Hsp90 has no inherent Cys that would interfere 

with site-specific modification. We probed closure of the lid using two PET reporter 

systems, namely S51C-A110W and A110C-S51W, and intra-subunit association of N- and 

M-domains using the reporter E192C-N298W. Cross-subunit swap of the N-terminal β-

strands (β-strand swap) was monitored by placing Oxa on the N-terminus of one subunit 

(A2C) and Trp in a waiting-position on the other (E162W).

Kinetics of conformational switching of Hsp90

For measurement of intra-subunit conformational changes, i.e. lid-closure and N/M-domain 

association, we formed hetero-dimers consisting of one wild-type and one PET reporter-

containing subunit, thus avoiding complications in data interpretation that would arise from 

two fluorescence probes located on the same Hsp90 dimer. For measurement of β-strand 

swap, we formed hetero-dimers consisting of one subunit that contained fluorescently 

modified A2C and one subunit that contained the E162W mutation. We triggered closure of 

the molecular clamp by rapidly adding excess of the non-hydrolysable ATP-analogue 

adenosine 5′-[β,γ-imido]triphosphate (AMP-PNP) to reporter-containing Hsp90 samples 

and measured the time-dependence of fluorescence intensities in solution. Nucleotide binds 

to both subunits of Hsp90, which is the physiologically active state35.
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All three reporter-systems showed a strong decrease of fluorescence intensity after binding 

of AMP-PNP (Figure 1b-d). To confirm that the signal changes arose specifically from PET 

quenching we conducted control measurements with samples that lacked the engineered Trp. 

The controls showed no fluorescence decrease except for the lid-closure reporter S51C 

where we observed an increase of fluorescence intensity upon addition of AMP-PNP (Figure 

1c). Increase of fluorescence emission may be explained by a change of polarity of the 

micro-environment of the environmentally sensitive label at position 51 upon structural 

change. In the second reporter for lid-closure we swapped positions of Trp and Oxa: the 

label was placed on the rearranging lid segment (A110C) and Trp in waiting position on the 

opposite site of the nucleotide-binding pocket (S51W). Upon addition of AMP-PNP we 

observed a rapid drop of fluorescence emission that was faster than the dead time of manual 

mixing. This burst phase was followed by a slowly decaying signal that resulted from full 

closure of the lid over the ATP-binding pocket (Figure 1c, inset). The burst phase did not 

originate from PET quenching since we also observed it in the control sample without 

engineered Trp, which suggests a rapid change of polarity in the microenvironment of Oxa. 

Lid closure thus emerged as a two-step process in which binding of nucleotide triggered 

rapid remodeling of the lid to an intermediate conformation, followed by its slow folding 

over the binding pocket. Interestingly, some of the many crystal structures of Hsp90 in 

complex with drugs show partially ordered lid segments, which may be reflective of this 

intermediate state36. To investigate whether ADP would also induce conformational change 

in apo Hsp90 we replaced AMP-PNP with ADP in rapid-mixing experiments. ADP did not 

induce any detectable kinetics in all three reporter systems showing that only the 

triphosphate derivative was able to trigger switches. However, the burst phase was still 

present (Supplementary Results, Supplementary Figure 1). This suggested that the 

nucleotide phosphate group is not required for rapid remodeling of the lid. To gain further 

insights we resolved the burst phase of the lid using stopped-flow spectroscopy 

(Supplementary Figure 2). We found that initial remodeling was rate-limited by diffusion-

controlled binding of nucleotide. The bi-molecular rate constant, reported by conformational 

change of the lid, was 1.3±0.2 × 105 M-1 s-1, a value that was in excellent agreement with 

the one previously obtained from resonance energy transfer experiments using fluorescently 

modified ATP37.

The slowly decaying fluorescence signals observed for all three conformational switches 

required a sum of two or three single-exponential functions to describe the data accurately 

(Supplementary Table 1), which raised the question as to the origin of the observed 

heterogeneity in kinetics. Structural studies show that the apo-state of Hsp90 is a 

heterogeneous ensemble of open-clamp conformers38,39. Different conformational ground 

states each associated with a different free energy will give rise to different rate constants of 

conformational change along parallel pathways to the closed clamp conformation. If the 

change of brightness of the label upon transition of Hsp90 from an open-clamp to the 

closed-clamp conformation is similar for the different ground states, the relative amplitudes 

of kinetic phases reflect the relative populations of ground states from which the transitions 

originate. We found that the mean rate constant of each motion, calculated as the inverse of 

the sum of fitted time constants in a multi-exponential decay weighted by the respective 

amplitudes, was similar and in good agreement with the kcat for ATP-hydrolysis (~0.2 min-1; 

Schulze et al. Page 4

Nat Chem Biol. Author manuscript; available in PMC 2016 December 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1e). The mean rate constants of conformational switching thus accounted for the 

ATPase activity of the entire ensemble of Hsp90 molecules.

Cooperation of local motions in the chaperone

To investigate cooperation of and possible allosteric communication between conformational 

switches, we introduced single point mutations to alter functionality and speed of 

conformational changes. We looked for allosteric effects by introducing a mutation at one 

site and measuring its effect on remote sites.

Energetics of β-strand swap was modulated through stabilization of the β-strand on its own 

domain using a tryptophan-zipper (TrpZip) motif. TrpZip is a designed cross-strand 

interaction of two Trp side chains on neighboring β-strands, which substantially stabilizes 

the β-hairpin fold40. TrpZips are widely applied in fundamental studies on mechanisms of 

β-hairpin folding41. We engineered a TrpZip on the N-terminal β-strand of Hsp90 by 

mutating Ala2 and Leu160 to Trp (A2W-L160W) (Figure 2a).

To modulate the process of lid-closure we used previously characterized mutations A107N 

and T101I in the lid segment (Figure 1a). A107N increases ATPase activity about 5-fold 

through suggested stabilization of the closed-lid conformation14,16, while T101I has the 

opposite effect, substantially reducing ATPase activity16.

The crystal structure of the closed, N-terminally dimerized Hsp90 shows that Arg380 in the 

catalytic loop of the M-domain interacts with the γ-phosphate of ATP bound to the NTD 

and stabilizes an N/M-associated conformation14,42 (Figure 1a). Arg380 provides a 

connector between the N- and the M-domain and is thought to act as an ATP sensor. 

Mutation R380A causes severe decrease of ATPase activity in vitro and loss of viability in 
vivo11. To impair N/M-domain association, we applied mutation R380A.

We introduced each of the modifications described above in Hsp90 constructs containing 

reporter systems for local motions and measured their effects on AMP-PNP binding-induced 

kinetics. Fluorescence intensity time traces, data analysis, and ATPase activities are shown 

in Figure 2. To measure the effect of the TrpZip, we introduced mutation E162C on one 

subunit and A2W-L160W on the other, and formed hetero-dimers. For the T101I and R380A 

mutations, which were expected to abolish motion, we applied reporter S51W-A110C that is 

sensitive to the two-step process of lid closure, as indicated by the presence of a burst phase. 

Due to the inherently low ATPase activity of Hsp90 at 25 ºC, we conducted ATPase assays at 

37 ºC for all deactivating mutants thus increasing assay accuracy. Measured rate constants of 

ATP hydrolysis and conformational change are provided as Supplementary Tables 1 and 2. 

Figure 2e shows the relative change of mean rate constant of each motion compared with the 

relative change of ATPase activity for the corresponding mutation. The TrpZip motif slowed 

cross-subunit swap of β-strands by ~6-fold. This modification also altered kinetics of N/M-

domain association and lid-closure, although to a smaller extent, indicating weak coupling 

of motions. Mutation A107N, by contrast, accelerated closure of the lid and N/M-domain 

association by ~5-fold (Figure 2e, inset), in agreement with the predicted stabilizing effect 

of this mutation14,16. The effect of A107N on β-strand swap was moderate in comparison, 

in agreement with the weak coupling of β-strand swap with other motions found for the 
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TrpZip construct. Mutations T101I and R380A abolished lid closure, β-strand swap, and 

N/M-domain association altogether (Figure 2b-d). However, the lid segment still remodeled 

rapidly as observed by the presence of burst phases (Figure 2c). Burst phases of small 

amplitude observed for strand swap and N/M-domain association in mutants T101I and 

R380A may originate from minor sub-populations of rapidly rearranging apo-Hsp90 

conformers that are picked up by the environmentally sensitive label. But the amplitudes of 

these signals were too small to assign a conformational change with confidence or to 

investigate them further. Mutant R380A was not capable of hydrolyzing ATP, but mutant 

T101I still showed some residual ATPase activity (Figure 2e). The seemingly conflicting 

observation of stalled conformational change through mutation T101I but residual ATPase 

activity can be explained by the fact that Hsp90 molecules that fail to form an N-terminally 

dimerized state retain small but measurable activities16,43,44.

A more detailed comparison of rate constants and amplitudes of all mutants is provided as 

Supplementary Figure 3. Analysis showed that the pattern of kinetics was conserved across 

positions and mutations. An exception was β-strand swap that had an additional exponential 

phase on a fast time scale, which vanished in the decelerating TrpZip construct but 

reappeared in the accelerating mutant A107N.

Influence of Aha1 on local motions

We investigated the influence of the co-chaperone Aha1 on conformational motions in 

Hsp90. Reporter-containing Hsp90 samples were pre-incubated with Aha1 and motions 

were triggered by binding of AMP-PNP. Aha1 substantially accelerated conformational 

changes requiring the use of stopped-flow spectroscopy to measure kinetics on fast time 

scales. Fluorescence transients showed multi-exponential decays, similar to those observed 

without Aha1, but on a faster time scale (Figure 3a, Supplementary Table 3). Control 

measurements of constructs lacking the engineered Trp showed no decays, confirming that 

the signals of reporter-containing constructs arose specifically from PET fluorescence 

quenching. The mean rate constant of N/M-domain association was accelerated by ~40 fold, 

in good agreement with the enhanced ATPase activity, while the mean rate constant of lid-

closure and β-strand swap was accelerated by ~20-fold (Figure 3b). Stronger acceleration of 

N/M-domain association compared with other motions may be explained by pre-association 

of N- and M-domains induced by Aha123,45. Equilibrium fluorescence intensities of the 

N/M-domain association reporter showed a significant decrease after binding of Aha1 

(Figure 3c), indicating that this preorganization of the N/M-associated state was indeed 

promoted by Aha1.

Phenylalanine at position 349 (F349) forms the center of a highly conserved, surface-

exposed hydrophobic patch on the M-domain (Figure 1a). This patch is thought to be critical 

for N/M-association and for correct positioning of the catalytic loop on the M-

domain11,45,46. An F349A mutation deactivates Hsp90 and causes dramatic loss of ATPase 

activity, but activity can be recovered with Aha111,45. We found that Aha1 was indeed 

capable of stimulating the ATPase activity of F349A to the wild-type level, in agreement 

with previous observations45 (Figure 3b). Kinetics of N/M-association and β-strand swap of 

this mutant were similar (Figure 3b, Supplementary Table 3). However, lid reporter S51C-
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A110W showed fluorescence quenching upon addition of Aha1, both for wild-type and 

mutant F349A (Figure 3c), suggesting that binding of Aha1 to apo-Hsp90 influenced the lid. 

As a consequence, the amplitude of AMP-PNP-triggered decay was too small to be fitted 

accurately.

Early events in the N-terminal domain of Hsp90

Early events occur in the NTD where binding of ATP initiates the chaperone cycle of Hsp90. 

Remodeling of the lid exposes the dimerization interface that facilitates productive cross-

subunit interaction of NTDs and swap of the terminal β-strands. To gain deeper insight into 

dynamics of lid and β-strand we combined PET with nanosecond single-molecule 

fluorescence fluctuation analysis, which probes sub-millisecond conformational fluctuations 

in proteins (PET-FCS)32. In contrast to non-equilibrium rapid-mixing techniques, PET-FCS 

measures thermally activated equilibrium motions. Fluorescence correlation spectroscopy 

(FCS) analyzes fluctuations of individual molecules passing through the detection volume of 

a confocal microscope setup by Brownian motion. Fluorescence time traces are recorded and 

processed to calculate the second order autocorrelation function (ACF). Besides kinetics of 

molecular diffusion, protein dynamics are detected from engineered PET reporters that 

transform conformational fluctuations into fluorescence fluctuations30,32.

We engineered PET-FCS reporters for dynamics of the N-terminal β-strand and the lid 

(Figure 4a). Reporter Q14C-A2W was designed to probe β-strand motion through 

engineering Oxa and Trp on positions that result in fluorescence quenching once the strand 

was released from the domain. In the folded strand, Oxa and Trp are in 3-nm distance 

separation such that PET fluorescence quenching cannot occur. Once the β-strand detaches, 

it forms a mobile coil that facilitates transient interaction of fluorophore and Trp. Reporter 

A112C-S25W was designed to probe the lid. In A112C-S25W, Oxa and Trp are in PET 

quenching-distance in the open-lid conformation (Figure 4a). Transient release of a mobile 

lid from the fully open position would lead to fluorescence fluctuations detected by FCS.

We first investigated the NTD in isolation to study local dynamics without interference from 

possible intra-subunit interactions in multi-domain assemblies. The isolated NTD cannot 

hydrolyze ATP at any detectable rate13,16, and we therefore applied the physiological 

nucleotide ATP instead of AMP-PNP. ACFs of reporter-containing NTDs recorded in 

absence and presence of ATP are shown in Figures 4b and 4c. ACFs of control samples 

lacking the engineered Trp showed a single decay on the ~2-ms time scale that resulted from 

translational diffusion of NTDs through the detection volume. Some residual fluctuations 

were observed in controls A112C and Q14C, which may arise from changes of polarity in 

the micro-environment of the label associated with conformational change. Reporters Q14C-

A2W and A112C-S25W showed additional decays of substantial amplitude, which required 

a bi-exponential function to describe them accurately. These decays resulted from 

conformational fluctuations that were transformed into fluorescence fluctuations by PET. 

The major kinetic phase was on the ~400-µs scale. A second decay was on the ~7-µs scale 

but of negligible amplitude in comparison (Supplementary Table 4). To test if the ~400-µs 

phase truly arose from motion of the terminal β-strand, we applied the TrpZip motif to 

stabilize the β-strand on the domain (Figure 2a). Application of the TrpZip eliminated PET 
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fluorescence fluctuations in the ACF, the decay of which was now well described by 

molecular diffusion only, showing that the β-strand was immobilized (Figure 4b). Results 

showed that N-terminal β-strand and lid are not rigid structures, despite their ordered 

appearance in crystallographic data, but are in fact highly mobile. We estimated the 

microscopic rate constants of unfolding of β-strand and lid from the observed amplitudes 

and time constants assuming a two-state equilibrium between fluorescent and fluorescence-

quenched conformations (see Online Methods). The obtained rate constants were 1000±150 

s-1 and 1500±70 s-1, respectively. Binding of ATP reduced the fluctuation amplitude of the 

lid significantly but had marginal effects on the β-strand (Figure 4b and 4c). Binding of ATP 

accelerated lid release to 2580±40 s-1, but the rate constant of β-strand release remained 

within error (810±100 s-1). We asked whether binding of ATP to the isolated NTD would 

induce full closure of the lid over the nucleotide-binding pocket. Fluorescence intensity time 

traces of reporter A110C-S51W showed that this was apparently not the case 

(Supplementary Figure 4a).

Next, we investigated the influence of the presence of the M-domain on dynamics of lid and 

β-strand in the NTD. We synthesized constructs that lacked the CTD (i.e. constructs 

consisting only of N- and M-domain separated by the charged linker; NM-domain), and that 

were therefore monomeric. NM-domains at low nM concentrations are not capable of 

hydrolyzing ATP13. ACFs of NM-domain constructs Q14C-A2W and A112C-S25W 

showed additional fluorescence fluctuations over those observed in control samples that 

lacked the engineered Trp, similar to the NTD, but the kinetics were more complex (Figure 

4d and 4e). The main PET decay was an exponential on the 300-900 µs time scale. There 

were additional fluctuations of lower amplitude on the fast ns-µs scale that most likely 

resulted from transient intra-subunit interactions of N- and M-domains separated by the long 

and flexible charged linker (Supplementary Table 4). We could assign with confidence the 

300-900 µs kinetic phases to motions of the β-strand and the lid because they were identified 

in the isolated NTD as single-exponential decays of similar time constants. Fits to the ACFs 

using a model that lacked an exponential phase on the 300-900 µs time scale did not describe 

the data well (Supplementary Figure 5). Such fits yielded artificially small diffusion time 

constants, which arose from an erroneous description of fluorescence fluctuations from 

diffusion and conformational changes on similar time scales, showing that conformational 

fluctuations on the 300-900 µs scale were truly present. From the observed amplitudes and 

time constants we estimated the rate constants of β-strand release and lid release to 540±130 

s-1 and 1800±200 s-1, respectively (Figure 4f). Binding of ATP had no significant effect on 

the β-strand but doubled the rate constant of lid release to 3600±200 s-1, similar as observed 

for the NTD.

Finally, we investigated the influence of Aha1 on dynamics of β-strand and lid. Binding of 

Aha1 to the isolated NM-domain26,47 increased the diffusion time constant from 2.2 ms to 

2.6 ms, which was consistent with the expected increase of molecular weight. The co-

chaperone had weak effect on dynamics of the β-strand. However, it mobilized the lid 

significantly (Figure 4f). We found an increase of rate constant of lid release to 5800±800 s-1 

upon binding of Aha1. ATP was not able to fully close the lid over the ATP-binding pocket 

in the NM-domain construct in complex with Aha1, which was evident from fluorescence 

intensity time traces of reporter S51C-A110W (Supplementary Figure 4b).
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Discussion

A range of structural studies show that binding of ATP to Hsp90 drives a set of local 

conformational switches that coordinate to the global process of domain rearrangements, 

referred to as N-terminal dimerization or closure of the molecular clamp, forming the ‘tense’ 

catalytically active conformation of the chaperone14,19–21,45. Previous FRET 

spectroscopy, which probes global domain rearrangements, shows multi-exponential kinetics 

of clamp-closure triggered by nucleotide binding. Multi-exponential kinetics was interpreted 

as reporting on formation of discrete intermediates along the conformational pathway23,24. 

For example, a slow exponential phase was assigned to slow closure of the lid as a first 

intermediate state in the catalytic cycle23. Multi-exponential kinetics in protein 

conformation, however, can have various origins in general, such as heterogeneity of the 

ground-state conformational ensemble from which transitions originate, population of 

discrete intermediates along the pathway of conformational change, or the presence of 

multiple pathways over free energy barriers of different height (Figure 5). Distinguishing 

these scenarios is not straightforward. For example, identification of intermediates along a 

folding pathway requires complex analysis of kinetic phases and their coupling48. Structural 

studies show that the apo state of Hsp90 is a heterogeneous ensemble of conformers that 

resemble beads on a string38,39. This ground-state conformational heterogeneity is thought 

to be responsible for the remarkable capacity of Hsp90 to accommodate structurally diverse 

clients49. Assuming ground-state conformational heterogeneity as the origin of multi-

exponential kinetics in PET experiments, we calculated the mean rate constant of each 

conformational change from the sum of individual time constants weighted by the respective 

amplitudes. Obtained quantities were in good agreement with detected ATPase activities. It 

should be noted, however, that in vivo Hsp90 molecules progress repeatedly through the 

conformational cycle, which may change the relative populations of open-clamp 

conformations.

Similarity of rate constants measured from remote sites suggests that conformational 

switches cooperate in formation of the catalytically active conformation. The interpretation 

was supported by mutagenesis experiments that showed similar modulation of kinetics of 

point mutants. Mutations that affected lid closure or docking of M- and N-domains, which 

dramatically impair ATPase activity, were strongly interdependent. We found weak coupling 

of β-strand swap with the other motions, suggesting an auxiliary role, possibly stabilizing 

the closed conformation of the dimer under high workload.

The high, inherent mobility of N-terminal β-strand and lid, detected by PET-FCS, has 

implications in the mechanisms of β-strand swap and lid closure, which are difficult to 

rationalize from static structures alone. The loose and dynamic β-strand can sense the 

temporarily vacant site on the neighboring subunit once the N-domains associate and then 

fold onto it. Despite the weak coupling we found of strand-swap with other motions, the N-

terminus does play an important regulatory role in the chaperone. Metazoan Hsp90 

homologs contain an extension of the N-terminus of 10-50 residues. These organisms have a 

substantially lower ATPase activity than yeast Hsp90. Deletion of this ‘strap’ in TRAP1 

leads to acceleration of ATP hydrolysis, an effect that is also shown for a Δ8-mutant of yeast 

Hsp9037,50. N-terminal extensions in metazoan Hsp90s may have similar effects. The N-
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terminal β-strand might therefore provide a modulatory element where the energy barrier 

between open and closed states can be increased or reduced through addition or removal of 

stabilizing interactions on the parental subunit domain.

High mobility of the malleable lid primes the segment for rapid remodeling induced by 

binding of nucleotide, which was identified as the initial step of closure over the nucleotide-

binding pocket. This initial event might release the self-association interface of the NTD 

early and prepare the lid for slow closure in cooperation with other motions.

The co-chaperone Aha1 is known to stimulate ATPase activity by remodeling the catalytic 

loop in the M-domain and by promoting an N-terminally closed state26,51. Aha1 consists of 

two-domains: The N-terminal domain (N-Aha1), which binds to the M-domain of Hsp9026, 

and the C-terminal domain (C-Aha1), which is thought to bind the nucleotide-bound form of 

Hsp90 where it stabilizes the N-terminally dimerized state52. N-Aha1 in isolation can 

stimulate ATPase activity to some extent while C-Aha1 cannot. Maximal stimulation of 

ATPase-activity requires binding of both domains of full-length Aha121,25,26,52. The main 

interaction occurs between N-Aha1 and the Hsp90 M-domain26, and is essentially 

independent of nucleotide25. N-Aha1 mediates constitutive association of Aha1 with Hsp90 

and anchors C-Aha1 in close proximity to the Hsp90 N-domain. Here, we observed that 

Aha1 stabilized the N/M-associated state, in agreement with previous findings23,45, and 

accelerated all three local motions. It has been suggested that Aha1 helps “bypassing” a 

slowly formed closed-lid intermediate state of the NTD of Hsp9023. The proposal was 

amended recently by a new model suggesting that Aha1 initiates a partially closed lid and 

acts late on the nucleotide-bound N-terminally-dimerized conformation51. PET-FCS showed 

that Aha1 mobilizes the lid early in the apo-state of Hsp90. In support of this finding, NMR 

chemical shift perturbations show weak and transient interactions of C-Aha1 with the N-

domain of Hsp9052. Lid-mutation T101I is re-activated by Aha145. Lid mobilization 

therefore emerges as an early mode of action of this co-chaperone.

Figure 6 integrates our findings into the conformational cycle of Hsp90. At the beginning, 

Hsp90 is unconstrained and can adopt a plethora of flexible open-clamp conformations. Sub-

populations of different free energy within a heterogeneous ensemble of conformers give 

rise to parallel pathways to the N-terminally dimerized, closed-clamp conformation, 

encountering different activation barriers. The lid in apo Hsp90 is not a static structure but 

dynamically populates an ensemble of conformers. Binding of ATP rapidly reconfigures the 

lid to an intermediate state, and this process likely releases the dimerization interface. Full 

closure of the lid over the nucleotide-binding pocket occurs slowly and in cooperation with 

inter- and intra-subunit association of N- and M-domains. The N-terminal β-strand of apo 

Hsp90 is highly mobile, which facilitates subunit swap upon association of N-domains. The 

co-chaperone Aha1 releases the lid early in the catalytic cycle, adding to the established 

modes of action, that is, modulation of the catalytic loop in the M-domain and stabilization 

of N/M-domain interactions26,52. Swap of the terminal β-strands, closure of the lid, and 

association of N- and M-domains cooperatively coordinate formation of the catalytically 

active conformation that hydrolyses ATP. Opening of the molecular clamp reconstitutes 

Hsp90 for the next catalytic cycle.
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Online Methods

Protein synthesis, mutagenesis, and fluorescence modification

Engineered constructs for bacterial expression contained the genes of yeast Aha1, yeast 

Hsp82 in full-length, NTD (1-220) or NM-Domain (1-551) versions, with N-terminal His6-

tag, cloned into a pRSET A vector (Invitrogen). Single-point mutants were generated using 

the QuikChange mutagenesis protocol (Stratagene). All constructs and mutants thereof were 

overexpressed in E. coli C41 (DE3) cells. His6-tagged proteins were isolated from bacterial 

cell lysate using Nickel-nitriloacetic acid chromatography. The eluate was loaded on an ion-

exchange POROS® HQ column (Applied Biosystems) using 20 mM Tris-HCl, pH 8.0, as 

running buffer. Elution was performed applying a gradient from 0-1 M NaCl in 20 mM Tris-

HCl, pH 8.0. In case of Cys mutants, 10 mM DTT was added to the protein solution prior to 

loading, and 1 mM DTT was added to running and elution buffer. Pooled fractions 

containing the protein were purified to homogeneity using size exclusion chromatography 

(SEC) on a Superdex 75 column (GE Healthcare), or, in case of full-length yeast Hsp90, on 

a Sephacryl™ S-400 column (GE Healthcare) equilibrated with buffer A (40 mM HEPES, 

pH 7.5, with the ionic strength adjusted to 200 mM using potassium chloride). In case of 

Cys mutants, SEC was performed using degassed buffer A. 10 mM DTT was added to the 

protein solution prior to SEC. Pooled fractions containing protein were concentrated using 

10-kDa MWCO centrifugal concentrators (Vivaspin 20, Sartorius). Purity of synthesized 

proteins was confirmed by SDS-PAGE.

Single-point Cys mutants were fluorescently modified using the thiol-reactive maleimide 

derivative of the fluorophore AttoOxa11 (AttoTec). Labelling was carried out in buffer A 

that contained a 10-fold molar excess of tris(2-carboxyethyl)phosphine (TCEP) to prevent 

thiol oxidation. A 5-fold molar excess of dye and an incubating time of 2.5 hours at 25°C 

was applied. Labeled protein was isolated from excess dye using Sephadex G-25 resin (GE 

Healthcare) SEC.

ATPase assays

ATPase activities of Hsp90 constructs were measured using an enzyme-coupled ATPase 

assay as previously described15. A regenerating pyruvate kinase/lactate dehydrogenase (PK/

LDH) linked assay, which is coupled to the oxidation of NADH to NAD+, was applied. 

Activity was measured as decrease of the NADH absorbance maximum at 340 nm in direct 

stoichiometry to ADP release. Assays were carried out at 25 ºC or 37 ºC in reaction buffer 

containing 0.2 mM NADH, 2 mM phosphoenol pyruvate, 50 U/ml pyruvate kinase, 50 U/ml 

lactate dehydrogenase, 2 mM ATP, 5 mM DTT, and 10 mM MgCl2 in buffer A. For co-

chaperone experiments 20 µM Aha1 was added. Reactions were started by addition of 

Hsp90 at concentrations between 5-20 µM. The decrease in absorbance over time was 

detected using a V-650 spectrophotometer (Jasco). Background ATPase activity was 

recorded by inhibition of Hsp90 using geldanamycin (Cayman Chemical). The reaction 

buffer was prepared using 150 µM geldanamycin and 5-20 µM Hsp90. The reaction was 

started by addition of 2 mM ATP.
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Time-resolved fluorescence experiments

Time-dependent fluorescence intensities were measured from Hsp90 samples in a quartz 

glass cuvette using a FP-6500 spectrofluorimeter (Jasco). Fluorescence was excited at 620 

nm and emission intensities were recorded at a wavelength of 678 nm. Sample temperature 

was adjusted to 25 ºC using a peltier thermocouple. Hsp90 samples were prepared in buffer 

A containing 10 mM MgCl2 and 150 nM of AttoOxa11-labeled Hsp90 constructs. 5 µM 

non-labelled wild-type or mutant Hsp90 protein was added to ensure that only one subunit in 

hetero-dimeric constructs carried the fluorophore. Reactions were started by addition of 2 

mM AMP-PNP or 4 mM ADP. Stock solutions of nucleotide were prepared by dissolving 

dry powder (≥93% purity; Sigma) in water to a concentration of 40 mM and stored at -80 ºC.

Stopped-flow fluorescence spectroscopy

Stopped-flow experiments were carried out on a SFM-300 machine (BioLogic Instruments) 

using a 639 nm diode laser as excitation source. The fluorescence signal was filtered using a 

long-pass optical filter (RazorEdge® 647RU, Semrock). 200 nM Oxa-labeled Hsp90 

constructs were measured in solutions containing 5 µM wild-type Hsp90 or E162W and 20 

µM Aha1 in buffer A containing 10 mM MgCl2. 4 mM AMP-PNP solution was added in a 

1:1 mixing ratio such that the final concentration was 2 mM AMP-PNP. For measurement of 

rapid lid dynamics, samples contained 400 nM Oxa-labeled Hsp90 mutant S51W-A110C 

and 5 µM wild-type Hsp90. ADP was added in varying concentrations using stopped-flow 

syringes. Sample temperature was adjusted to 25 ºC using a circulating water bath.

PET-FCS experiments

PET-FCS was performed using a custom-built confocal fluorescence microscope setup 

described elsewhere53. Fluorescently modified Hsp90 constructs were diluted to 1 nM 

concentration in 50 mM phosphate buffer pH 7.5 containing 10 mM MgCl2 (with the 

solution ionic strength adjusted to 200 mM using potassium chloride). 0.3 mg/ml Protease-

free bovine serum albumin and 0.05% Tween-20 were used as solution additives to suppress 

sample/glass-surface interactions. To study the influence of effector molecules, Hsp90 

constructs were incubated with 20 µM Aha1 or 2 mM ATP prior to measurement. Samples 

were filtered through a 0.2 µm syringe filter, transferred onto a microscope slide, and 

covered by a cover slip. A 1-nM sample yielded an average of ~20 molecules in the 

detection focus of the microscope setup. Sample temperature was adjusted to 25 ºC using a 

custom-built objective heater. For each sample, three individual ACFs were recorded of 10 

min measurement time each.

PET-FCS data analysis

ACFs were analyzed by fitting a model for globule diffusion in two dimensions and a sum of 

single-exponential relaxations:

(1)
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τ is the lag time, N is the average number of molecules in the detection volume, τD is the 

experimental diffusion time constant, an and τn are the observed amplitude and time constant 

of the nth relaxation.

Rate constants of release of the lid and the N-terminal β-strand were calculated from kinetic 

quantities of the main PET decays in the ACFs (a1 and τ1; Supplementary Table 4) assuming 

a two-state transition between fluorescent and non-fluorescent conformational states. 

Validity of the assumption is supported by previous work on loop closure kinetics of 

unstructured model peptides measured using the same technique and analysis54, and by the 

fact that Oxa and Trp in aqueous solution form virtually non-fluorescent, π-π stacking 

complexes34. Microscopic rate constants of transitions to fluorescent and fluorescence-

quenched states, kon and koff, respectively, were calculated from a1 and τ1:

(2)

(3)

In lid reporter A112C-S25W, the fully open-lid conformation is fluorescence-quenched 

(Figure 4a) and release of the lid leads to fluorescent conformation. The rate constant of lid 

release is thus kon. In β-strand reporter Q14C-A2W, the label is fluorescent as long as the β-

strand is folded on the domain (Figure 4a) and gets fluorescence-quenched once it detaches. 

The rate constant of strand release is thus koff.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Observation of conformational motions in Hsp90 by PET fluorescence quenching.
(a) PET reporter design. Left: Structural model of apo Hsp90 based on crystallographic data 

of the NTD (pdb id 1AM1) and the MC-domain (pdb id 2CGE). NTD (N), charged linker 

(CL), M-domain (M), and C-domain (C) are indicated. The nucleotide-binding pocket is 

indicated by an orange arrow. Right: Crystal structure of full-length Hsp90 in closed-clamp 

conformation with bound AMP-PNP (pdb id 2CG9). N-terminal β-strand and lid are colored 

magenta and green, respectively. Engineered Oxa and Trp are shown as red spheres and blue 

sticks, respectively. Amino acid side chains that were mutated to alter function are 
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highlighted in cyan. (b) Fluorescence intensity time traces of reporter A2C-E162W for β-

strand swap (magenta) and the corresponding control A2C (gray). AMP-PNP was added at t 

= 0 min. The black line is a three-exponential fit to the data. (c) Fluorescence intensity time 

traces of reporter S51C-A110W for lid closure (green) fitted using a bi-exponential function, 

and of variant S51W-A110C (inset, green). Controls S51C and A110C are shown in gray. 

(d) Fluorescence intensity time traces of reporter E192C-N298W for N/M-association (cyan) 

fitted using a bi-exponential function. Control E192C is shown in gray. (e) ATPase activity 

of wild-type Hsp90 and mean rate constants of β-strand swap, lid closure, and N/M-domain 

association obtained from PET fluorescence experiments. Data represent mean values ± s.d. 

of three measurements.
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Figure 2. Modulation of conformational motions by mutagenesis.
(a) Crystal structure of the NTD (pdb id 1AM1) showing the engineered TrpZip motif 

introduced through double mutation A2W-L160W (blue sticks). N-terminal β-strand and lid 

segment are highlighted magenta and green. (b) Time-dependent fluorescence intensities of 

reporter A2C-E162W (β-strand swap) and mutants thereof. Fluorescence time traces of 

wild-type (gray), TrpZip (red), mutants T101I (orange), R380A (blue), and A107N (green) 

are shown. Black lines are exponential fits to the data. AMP-PNP was added at t = 0 min. (c) 

Time-dependent fluorescence intensities of reporter S51C-A110W (lid) and mutants thereof. 

The color code of panel (b) applies. (d) Time-dependent fluorescence intensities of reporter 

E192C-N298W (N/M-domain association) and mutants thereof. The color code of panel (b) 

applies. (e) Effects of mutation on the rate constant of ATP hydrolysis by Hsp90 (gray) and 

on the mean rate constants of β-strand swap (magenta), lid closure (green), and N/M-domain 

association (cyan). ATPase activities of de-activating mutants (TrpZip, T101I, and R380A) 

were measured at 37° C and plotted as relative rate constants. Data represent mean values ± 

s.d. of three measurements. X = no kinetics detectable.
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Figure 3. Influence of Aha1 on kinetics of local motions.
(a) AMP-PNP-triggered fluorescence intensity time traces of β-strand swap (A2C+E162W, 

magenta), lid closure (S51C-A110W, green), and N/M-domain association (E192C-N298W, 

cyan). Samples were incubated with Aha1 before measurement and time traces were 

recorded using stopped-flow spectroscopy. Data in shaded color are control samples that 

lacked the engineered Trp. Fluorescence transients were fitted using a bi-exponential model 

including a linear baseline drift of minor amplitude (black line). (b) Rate constants of ATP 

hydrolysis (gray) by wild-type Hsp90 (wt) and mutant F349A together with the 

corresponding mean rate constants of β-strand swap (magenta), lid closure (green), and 

N/M-domain association (cyan) measured in absence and presence of Aha1 (X = no kinetics 

detectable). Data represent mean values ± s.d. of three measurements. (c) Equilibrium 

fluorescence intensities measured from reporters of N/M-domain association and of the lid 

on wild-type Hsp90 and mutant F349A after incubation with Aha1.
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Figure 4. Equilibrium dynamics of lid and β-strand probed by PET-FCS.
(a) Reporter design. N-terminal β-strand and lid of the NTD (pdb id 1AM1) are highlighted 

magenta and green. Engineered pairs of Oxa (red sphere) and Trp (blue sticks) probing β-

strand (Q14C-A2W) and lid (A112C-S25W) are indicated. (b) and (c), ACFs (G(τ)) 

recorded from Q14C-A2W (magenta) and A112C-S25W (green), respectively, on the 

isolated NTD. Data recorded after binding of ATP are shown in orange. Control samples 

lacking the engineered Trp are shown in gray. Black lines are fits to the data using a model 

for molecular diffusion containing two single-exponential relaxations. The ACF of the 
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TrpZip construct (Q14C-A2W-L60W) is shown in blue in panel (b), and was described by a 

molecular diffusion model without additional relaxations. All ACFs were normalized to the 

average number of molecules in the detection focus for clarity. Broken lines indicate the 

amplitudes of the diffusion decays. (d) and (e) ACFs of same reporters engineered on the 

NM-domain. Same color code as in panels (b) and (c) applies. Black lines are fits to the data 

using a model for molecular diffusion containing three single-exponential relaxations. ACFs 

recorded in the presence of Aha1 are shown in cyan. (f) Rate constants of β-strand release 

(magenta) and lid release (green) in NTD and NM-domain. Effects of binding of ATP and 

Aha1 are shown. Data represent mean values ± s.d. of three measurements.
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Figure 5. Possible origins of multi-exponential kinetics in protein dynamics.
Two-dimensional projection of a conformational free energy surfaces along an arbitrary 

reaction coordinate. (a) Ground-state heterogeneity. Multiple open-clamp conformations 

(o1-o3) of different free energy give rise to energy barriers of different height (broken 

arrows) along parallel pathways to the closed-clamp conformation (c). (b) On-pathway 

intermediates. Conformational change along a pathway containing a series of discrete 

intermediates (i1-i3) of different free energy. (c) Pathway heterogeneity. Open-clamp 

conformers of same free energy traverse to the closed-clamp conformation along different 

pathways that are characterized by different energy barrier heights.
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Figure 6. Integration of results into the chaperone catalytic cycle.
(1) At the beginning of the catalytic cycle, apo Hsp90 populates a heterogeneous ensemble 

of open-clamp conformers. Lid (green) and N-terminal β-strand (magenta) are highly mobile 

structural elements with sub-millisecond reconfiguration times. (2) Binding of ATP to the 

NTD leads to rapid release of the lid to an intermediate conformational state. The co-

chaperone Aha1 pre-associates N- and M-domains but also remodels the lid segment for 

accelerated closure. (3) Closure of the molecular clamp involves cooperative action of 

conformational switches. Closure of the lid over the ATP-binding pocket, cross-subunit swap 

of β-strands, and association of the N- and M-domains are slow and interdependent. Swap of 

the terminal β-strands is weakly coupled with the other motions. (4) Hydrolysis of ATP 

leads to a compact, ADP-bound conformation, which relaxes to an open state with 

concomitant release of ADP and inorganic phosphate. Opening of the molecular clamp 

reconstitutes Hsp90 for the next catalytic cycle.
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