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ABSTRACT
Acinetobacter baumannii has become a major healthcare threat that causes nosocomial infections, 
especially in critically ill patients. The spread of carbapenem-resistant A. baumannii (CRAB) strains 
has long been a clinical concern. It is important to study the epidemiology and virulence 
characteristics of different CRAB isolates in order to tailor infection prevention and antibiotic 
prescribing. In this study, a total of 71 CRAB isolates were collected in the hospital, and clinical 
characteristics of infections were analyzed. The genomic characteristics and phylogenetic relation-
ships were elucidated based on genome sequencing and analysis. The isolates were assigned to 
three sequence types (STs, Pasteur) and nine capsular polysaccharide (KL) types, among which 
ST2/KL22 was the most prevalent CRAB in the hospital. Even though all the ST2/KL22 isolates 
contained the same reported virulence genes, one specific clade of ST2/KL22 showed more 
pathogenic in mouse infection model. Complete genomic analysis revealed differences at the 
oprD locus between the low- and high-virulent isolates. More specifically, a premature stop codon 
in the low-virulence strains resulted in truncated OprD expression. By evaluating pathogenicity in 
C57BL/6 J mice, knock-out of oprD in high-virulent isolate resulted in virulence attenuation, and 
complementing the avirulent strain with full-length oprD from high-virulent isolate enhanced 
virulence of the former. The oprD gene may be associated with the enhanced virulence of the 
specific ST2/KL22 clone, which provides a potential molecular marker for screening the hyperviru-
lent A. baumannii strains.
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Introduction

Acinetobacter baumannii has become a major health 
threat, causing nosocomial infections such as ventila-
tor-associated pneumonia and bacteremia, especially in 
intensive care units (ICUs) [1] (https://www.who.int/ 
medicines/publications/global-priority-list-antibiotic- 
resistant-bacteria/en/). Genome analysis indicates that 
A. baumannii epidemics are caused by a limited num-
ber of strains that belong to the international clonal 
lineages (IC) I, II, or III. In particular, IC II strains 
represented by sequence type 2 (ST2, Pasteur scheme) 
are the predominant cause of outbreaks [2]. These 
infections have become exceedingly difficult to treat 
due to high levels of antibiotic resistance [3]. In 2019, 
the Centers for Disease Control and Prevention listed 
carbapenem-resistant A. baumannii (CRAB) as one of 

the top urgent threats (https://www.cdc.gov/drugresis 
tance/biggest-threats).More than 60% of A. baumannii 
pneumonia cases worldwide are caused by CRAB [4–6].

Beyond drug resistance, fundamental virulence 
mechanisms enable A. baumannii to successfully thrive 
in the host and health-care environment [7]. Surface- 
exposed structures play a crucial role in the survival, 
drug resistance, and pathogenicity of A. baumannii 
[8,9]. Csu pili and biofilm-associated proteins (BAPs) 
and BAP-like proteins (BLPs) greatly contribute to the 
formation and maintenance of biofilms, which enable 
the persistence of A. baumanii under environmental 
insult and contribute to intrinsic antibiotic resistance 
[10]. Other surface proteins like capsular polysacchar-
ides (CPS), lipopolysaccharides (LPS), and the type VI 
secretion system play major roles in the pathogenicity 
of CRAB through interactions with the host and 
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competitors [11,12]. However, strains of the same 
sequence types with the same virulence genes show 
different pathogenicity in Galleria mellonella models, 
which implies undiscovered virulence factors at play 
during the early stages of infection [5]. Therefore, 
tracking dominant strains of CRAB in the hospital 
environment and characterizing their specific virulence 
characteristics is crucial for the prevention and treat-
ment of nonsocial infections.

In this study, we performed whole-genome sequen-
cing of 71 CRAB isolates collected from a Chinese 
hospital to characterize the population structure and 
virulence characteristics of these isolates. Our results 
revealed a long-standing and enhanced virulence ST2/ 
KL22 clone in the hospital. OrpD is a novel virulence 
factor associated with the pathogenicity of ST2/KL22 
isolates.

Methods

Bacterial isolation and antimicrobial susceptibility 
testing

A total of 71 independent CRAB isolates were cultured 
from 70 patients and a stethoscope in different depart-
ments of Beijing Ditan Hospital from 2017 to 2019. The 
isolates were cultured on LB-Agar plates at 37°C for 
18 hours (Oxoid, USA). Bacterial identification and 
in vitro antimicrobial susceptibility testing were per-
formed using the BD Phoenix system (BD, USA) 
according to the 2017 Clinical and Laboratory 
Standards Institute (CLSI) Guidelines.

Total DNA extraction and whole genome 
sequencing

The bacteria were cultured at 37°C for 16 hours in LB 
broth media, then total DNA was extracted using the 
Genomic DNA Kit (Qiagen, USA) according to the 
manufacturer’s instructions. Sequencing libraries were 
generated using the NEBNext® Ultra™ DNA Library 
Prep Kit for Illumina (NEB, USA), and the whole 
genome of the 71 CRAB strains was sequenced using 
the Illumina NovaSeq platform. The clean read data 
were obtained using fastQC [13].

Four isolates were randomly selected from the high 
and low-virulence clades for further complete genome 
sequencing. Long-reads were obtained using the Oxford 
Nanopore Technologies MinION platform. Then the 
complete genome sequences were assembled by combin-
ing highly accurate short-reads and the long-reads using 
Unicycler [14]. The assembled genomes were annotated 
using Prokka [15]. The core and pan-genome of the 

genomes were analyzed using Roary [16]. Antimicrobial 
resistance genes were identified by performing searches 
against the ResFinder database, and virulence genes were 
identified by performing searches against the Virulence 
Factor Database (VFDB) [17]. The gene clusters and 
types of capsular polysaccharide (KL) and lipooligosac-
charide outer core (OCL) synthesis were identified using 
Kaptive software [18]. The subtypes of BAPs and BLPs 
were identified based on sequence alignment with the 
reference sequences from previous study [10]. The 
Illumina read data were deposited in the Sequencing 
Read Archive database SRP251775. The complete gen-
omes of the four selected strains were deposited in the 
GenBank database (DT-Ab003: CP050916-CP050918, 
DT-Ab020:CP050911-CP050913, DT-Ab022: CP050907- 
CP050910, DT-Ab057: CP050904-CP050906).

Phylogenetic analysis

The Illumina reads were first mapped to the complete 
genome sequence of A. baumannii strain 
KBN10P02143 (accession number: CP013924.1) using 
bowtie 2 software [19], and the results were filtered 
using Samtools [20]. Single nucleotide polymorphisms 
(SNPs) were identified using the iSNV-calling pipeline 
we constructed previously [21]. The variant sites con-
served in all strains (core genome SNPs, cgSNPs) were 
retained, and the sequences of these sites in each strain 
were concatenated and employed for phylogenetic ana-
lysis using FastTree v2.1.10 with the maximum like-
lihood method [22].

Multilocus sequence typing

Multilocus sequence typing (MLST) was performed 
based on both the Oxford and Pasteur schemes [23,24]. 
The genome sequences were compared with the nucleo-
tide sequences of the housekeeping genes (cpn60, gdhB, 
gltA, gpi, gdhB, recA, and rpoD for Oxford scheme, and 
cpn60, fusA, gltA, pyrG, recA, rplB, and rpoB for Pasteur 
scheme) in the MLST database (https://pubmlst.org/ 
organisms/acinetobacter-baumannii/), to determine the 
number of alleles and assign STs [25]. A clonal complex 
was defined as STs sharing alleles at five or six of seven 
loci [23,26] (http://eburst.mlst.net/).

Virulence phenotype detection

Male C57BL/6 J mice (6–8 weeks old) were obtained 
from the Institute of Laboratory Animal Sciences, 
Chinese Academy of Medical Sciences (Beijing, 
China). All research animals were used in compliance 
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with the guidelines of Institutional Animal Care and 
Use Committee of Capital Medical University.

For mouse infections, cultures of A. baumannii were 
adjusted to OD600 = 1.0 (1 × 109 c.f.u/mL), and 
approximately 2 × 108 c.f.u. were administered via 
intraperitoneal injection. The number of survival 
mouse was recorded once every two hours for 
40 hours, intraperitoneal injection of saline was run as 
a control. For every single strain, a total of 30 mice 
were used for three replicate experiments (10 mice 
every single experiment), log-rank (Mantel-Cox) test 
was applied to test the significates of the mouse survival 
rate [27].

Total RNA extraction and PCR amplification

The low virulent strain DT-Ab022 (LV) and high- 
virulent strain DT-Ab057 (HV) were cultured at 37°C 
for 16 hours in LB broth media, then total RNA was 
extracted using RNA extraction kit (Qiagen, Germany) 
according to the manufacturer’s directions. The RNA 
was subsequently treated with RNase-free DNase 
I (Qiagen, Germany) to degrade all genomic DNA. 
Complementarity DNA synthesis was performed using 
the PrimeScript RT reagent kit (Takara, Japan) accord-
ing to the manufacturer’s directions. PCR was per-
formed using the following primers (F1: CATTAACAA 
CCGTGGCAATG;F2: CTATGACCGCTGGAAACCG; 
R: GTTAGTGCCGTGGTCTT), the PCR products 
were annealed at 55°C for 30 cycles using 
Thermocycler (Thermo Scientific, US).

Construction of orpD knock out and complement 
strains

Primers for construction of orpD knock out and com-
plement strains were designed based on the genome 
sequence of DT-Ab057 (HV), primers were listed in 
Table S1. Gene knockout was performed as previously 
described [28]. Briefly, primers oprD-UF/oprD-UR and 
oprD-DF/oprD-DR were used to amplify the upstream 
and downstream fragments of the orpD gene of DT- 
Ab057 (HV). Erythromycin resistance was used as the 
selective marker of the positive recombinant clones. 
Primers oprD EF/ER were used to amplify the erythro-
mycin resistance gene ermB. The upstream fragments 
of the orpD, ermB gene, and downstream fragments of 
the orpD were assembled using Gibson assembly 
method, the three fragments were assembled using 
NEBuilder HiFi DNA Assembly Master Mix (NEB, 
US), then the recombinant fragment orpD-upstream- 
ermB-orpD-downstream was transferred to the DT- 
Ab057 (HV) competence cells by elec-transformation. 

The knock out strain was screened according to ery-
thromycin resistance, and confirmed by PCR using the 
primers oprD-UF/oprD-DR.

Primers for orpD complement construction were 
designed based on the genome sequence of DT-Ab057 
(HV). Primers orpD CF and orpD CR were used to 
amplify the complete orpD gene from DT-Ab057 
(HV), and then the gene was cloned into the pMO13 
plasmid at NotI/HindIII restriction site. The two frag-
ments were assembled using NEBuilder HiFi DNA 
Assembly Master Mix to generate pMO13: orpD. The 
bases written in lowercase letters were the overlapping 
region with the pMO13 plasmid. The pMO13: orpD 
plasmid was transformed into E. coli TOP10 
(TIANGEN, CN). The transformed strain was selected 
on LB plates containing kanamycin (30ug/mL). The 
pMO13: orpD plasmid was transferred to the HV020 
using electricity strain and plated onto LB agar contain-
ing tellurite (30ug/mL). Complementation was con-
firmed by PCR using the primers described above 
based on product size and DNA sequencing.

Statistical analyses

Statistical analyses were performed using GraphPad 
Prism (version 8.0) (GraphPad Software, Inc.), applying 
the student’s t-test, one-way ANOVA, followed by the 
Bonferroni post-hoc test for multiple comparisons to 
compare the survival rates of patients and mice in 
different groups. In mouse kill-assay, log-rank (Mantel- 
Cox) test was applied. The p values <0.05 were consid-
ered significant.

Ethics statement

The mice were bred and maintained in specific patho-
gen-free animal facilities, and all procedures involving 
animals were approved by the Animal Ethics 
Committee.

Results

Isolation and characterization of 
carbapenem-resistant A. baumannii

A total of 70 inpatients from ICU, neurology depart-
ment, infectious department, etc. in Beijing Ditan hos-
pital were enrolled in this study, and 70 non-repetitive 
CRAB isolates were isolated from these patients. An 
environmental strain from a stethoscope was also col-
lected from the ICU. Most of the isolates from patients 
were obtained from the respiratory tract (n = 54, 
77.14%). Among the 70 patients, 56 (80%) were 
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admitted to the ICU, 66 (89.19%) had pulmonary infec-
tions, and 36 (51.43%) developed respiratory failure. All 
patients were treated with no fewer than two antibiotics 
within 30 days, and 32 (45.71%) were treated with 
carbapenems.

We identified the sequence types of the isolates 
based on two widely used MLST schemes. According 
to the Pasteur scheme, the 71 isolates were assigned to 
ST2 (64 isolates), ST25 (6 isolates), and ST187 (1 iso-
late). Based on the Oxford scheme, the isolates were 
assigned to 10 STs, including ST540 (37 isolates), ST208 
(8 isolates), ST195 (6 isolates), ST191 (5 isolates), and 
ST229 (5 isolates), etc. The five ST229 isolates and an 
ST2187 isolate of Oxford scheme belonged to ST25 
(Pasteur), and isolates of other STs of Oxford scheme 
belonged to ST2 (Pasteur), except that strain DT-Ab080 
belonged to ST187 (Pasteur), which is single locus 
variant of ST2. The DT-Ab080 was clustered in the 
same clonal complex, CC2 (Pasteur) as the ST2 strains. 
In addition, based on the identification of capsular 
polysaccharide and lipooligosaccharide outer core 
synthesis genes, all of the ST540 (Oxford) isolates 
belonged to ST2 (Pasteur)/KL22/OCL1 and all non- 
ST540 (Oxford) isolates belonged to different KL 
types (Figure 1).

The long-standing ST2/KL22 is associated with 
severe outcomes

To illustrate the genomic characteristics and phyloge-
netic relationships of these CRAB strains, we per-
formed whole genome sequencing on the 71 strains 
and obtained 1.42 ± 0.22 Gb clear read data per strain 
on average. Based on the SNP analysis, we obtained 
32,769 cgSNPs. The phylogenetic tree based on these 
cgSNP sites revealed that the CRAB population con-
sisted of two dominant branches, in which the ST25 
(Pasteur) isolates separated from the other ST2/ST187 
isolates (Figure 1). Due to genetic differences in strains 
of the same ST, the ST2/KL22 isolates were divided into 
four clades. Clade 1 included two isolates with one 
SNP, which were collected from two patients in the 
ICU in September 2019. Clade 2 included eleven iso-
lates collected from patients in four departments within 
six months (September 2018 to April 2019), with an 
average of 6 ± 3.82 SNPs. Clade 3 had five isolates 
collected from patients between January 2018 and 
February 2018. The isolate DT-Ab003, obtained from 
a stethoscope in the ICU in March 2017, belonged to 
clade 3. The average number of SNPs in the clade 3 
strains was 2 ± 1.47. Clade 4 included 19 strains iso-
lated between April 2017 and July 2019 and caused five 
death events (Figure 1). The strains in clade 4 had an 

average of 15 ± 8.83 SNPs, indicating that they were 
derived from a long-standing clone in the hospital 
(Table S2).

In total, 37 of 71 isolates (52.11%) belonged to ST2/ 
KL22. The 14-day mortality of patients infected with 
ST2/KL22 was significantly higher than that of the 
patients infected with other isolates (Figure 2). We 
then analyzed the clinical characteristics of patients 
infected with A. baumannii in the ST2/KL22 group 
and compared them with patients infected with non- 
ST2/KL22 group strains. Procalcitonin levels were sig-
nificantly higher in patients infected with strains from 
the ST2/KL22 group (p = 0.04), indicating more severe 
inflammation and infection in these patients. There 
were no significant differences between the two groups 
in terms of number of surgeries, pulmonary infection, 
abdominal infection, co-morbidities, antibiotic selec-
tion, and laboratory results (C-reactive protein level 
and white blood cell count), but there was 
a significant difference in gender (p = 0.02) (Table 1).

Carriage of reported virulence genes in the 
carbapenem-resistant A. baumannii isolates

We analyzed the virulence factors in the isolates 
according to the comparison with A. baumannii viru-
lence genes recorded in VFDB. Genes encoding twelve 
groups of common virulence factors in A. baumannii 
were identified (Table S3). The septic shock-related 
gene lps (involved in lipid A biosynthesis) was identi-
fied in all CRAB isolates. The presence of biofilm 
formation-associated genes bap encoding BAPs, csu 
(Csu pili), and qsar (Quorum Sensing Autoinducer 
Receptor) were assessed, but there were no differences 
between the two groups. The ST2/KL22 isolates car-
ried a higher number of genes than non-ST2/KL22 
isolates related to bacterial survival in serum, includ-
ing the gene cluster encoding Acinetobactin (bas-bau- 
bar). The gene encoding Outer membrane protein 
A (omp A), associated with epithelial cell invasion 
and apoptosis, was not detected in all of the five 
ST229 isolates (Figure 3, Table S4). In addition to 
the carriage of these virulence genes, we also identified 
the subtypes of BAPs and BLPs which were associated 
with biofilm formation and adhesion to host cells. In 
total, 69 out of the 71 isolates encoded type 2 or type 3 
BAP, and only two isolates (DTAb044 and DTAb056) 
encoded both type 2 and type 3 BAPs. All ST2 
(Pasteur) isolates encoded both type 1 and type 2A 
BLPs, and ST25 isolates encoded type 2A BLP except 
DTAb044 that encoded type 1 BLP. Although the 
inflammatory status (procalcitonin level) and out-
comes were more severe in the patients infected with 
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the ST2/KL22 strains, we did not find any significant 
different carriages of known virulence genes compared 
to non-ST2/KL22 isolates.

A new OprD/Occ protein associated with the 
pathogenicity of ST2/KL22

We then deep analyzed the genomes of ST2/KL22 iso-
lates based on the core and pan-genome analysis to 
explore more factors associated with the pathogenicity. 
We identified six specific genes in long-standing clade 4 
clone (from December 2017 to July 2019), which are 
located within a ~ 10.8 kb fragment (Table S5). Among 

them, a gene encoding an OprD family protein was 
identified as a virulence associated by gene annotation 
and literature study. This gene family encodes outer- 
membrane porins involved in bacterial survival and 
virulence in the host [29]. Based on sequence compar-
ison and phylogenetic analysis, the OprD specific in the 
long-standing clade 4 clone was not clustered with 
those in Pseudomonas aeruginosa and occAB1, 
occAB2, occAB3 and occAB4 identified in 
A. baumannii previously, indicating a new OprD/Occ 
subgroup (Figure S1, red triangle).

The pathogenicity of two clade 4 strains (DT-Ab022 
and DT-Ab057) were evaluated by performing in vivo 

Figure 1. Phylogenetic relationships of 71 CRAB isolates based on core genome SNPs. The green, blue, orange and pink shading 
indicates the 4 ST2/KL22 clades respectively, the red characters denote the 10 deaths. Information about the strain ID, patient 
gender (g), patient age (AGE), date of isolation (DATE), specimen type (SPEC), inpatient ward (WARD), and sequence type of the 
strain (ST) are listed at the right of the phylogenetic tree. Pink markers show isolates from patients who died. Intensive Care Unit 
(ICU); Cardiovascular Department (CL); Integrated TCM & Western Medicine Department (IM); Respiration Department (RE); Disease 
Department (ID); Department of Gynecology (GL), Neurology (NL), Neurosurgery (NS). Sputum (SP); Ascites (AB); Urine (UP); Blood 
(BL); Bronchoalveolar lavage fluid (BALF); Environment (e). the sequence type, capsular polysaccharide (KL) and the lipooligosac-
charide outer core were listed in the figure.
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virulence experiments in intraperitoneal injection 
mouse model. The control strains (lacking oprD but 
carrying all other virulence genes), DT-Ab003, and DT- 
Ab020, were selected from clade 3, which is most clo-
sely related to clade 4. C57 mice were infected with the 
four isolates by intraperitoneal injection (2 × 108 c.f.u. 
each), and the survival rate at 40 h post-infection was 
calculated. The survival rates of C57 mice were 90% 
(DT-Ab003), 90% (DT-Ab020), 30% (DT-Ab022), and 
10% (DT-Ab057) at 40 h (Figure 4, Table S6). These 
results were in line with the clinical data, both of which 
revealed that clade 4 was a high-virulent clone.

Validation of the oprD gene contributing to the 
virulence of ST2/KL22 strains by genome 
comparison, gene knock out and complement

To confirm the contribution of the oprD gene in the 
pathogenicity of ST540 isolates, we first compared the 
complete genome sequences of high (or relatively high) 
virulence strain: DT-Ab022 (High Virulence Ab022, 
HV-Ab022), DT-Ab057 (High Virulence Ab057, HV- 
Ab057), and low-virulence strains DT-Ab003 (Low 
Virulence Ab003, LV-Ab003), DT-Ab020 (Low 
Virulence Ab020, LV-Ab020). A total of four different 
loci (A, B, C, and D) that differed between the HV and 
LV strains were identified (Figure 5a). Loci A and 
B were identified as intergenic regions that are pre-
dicted to have negligible effects on protein coding 
genes and bacterial virulence. In addition, sequence 
analysis revealed that two distinct prophage-like gene 
clusters were inserted in the loci D of two genomes. 
Gene function analysis showed no virulence-related 
genes in the two prophage-like gene clusters (Table 
S7). In the HV-Ab057, a 1,347 bp open reading frame 
(ORF) of orpD (DT-Ab057_02847) and its cis- 
regulatory element (P-orpD) were detected in loci 
C Figure 5b, c, Table S7). By contrast, in LV-Ab020 
two ORFs were predicted in the corresponding region. 
On the 243th amino acid of oprD, a SNP of G->A 
caused mutation of TGG (tryptophan) to TAG (stop 
codon), leading to a premature termination codon, and 
then the loci were separated into two ORFs (DT-Ab020 
_02900 and DT-Ab020_02901). In addition, P-orpD 
was lost by a point mutation, and another promoter 
was identified upstream of DT-Ab020_02901 
(Figure 5d).

Next, we detected the expression of the oprD gene in 
HV-Ab057 and LV-Ab020. Reverse-transcription PCR 
analysis of gene expression revealed that the 3ʹ part of 
the oprD transcript could be amplified from both HV- 

Figure 2. Survival rates of patients in the ST2/KL22 group and 
non- ST2/KL22 group over 14 days. The mortality rate of 
patients infected by the ST2/KL22 clone was higher than that 
of patients infected with other clones (p = 0.04).

Table 1. Demographic and Clinical Characteristics of 70 Patients 
with CRAB Infection Enrolled in this Study.

ST540 (n = 34)
Non-ST540 

(n = 36) P

Age (years), mean ± SD 53.56 ± 21.65 59.00 ± 19.48 0.48
Male gender 25 17 0.02*
Comorbid disease
Pulmonary infection 16 15 0.65
Abdominal infection 6 6 0.91
Chronic kidney disease 3 5 0.51
Chronic liver failure 4 3 0.63
Coronary disease 5 2 0.20
COPD 1 1 0.97
Diabetes mellitus 7 7 0.90
Neurological disease 12 10 0.50
Cancer 4 4 0.93
Organ failure
Respiratory failure 19 17 0.47
Shock 6 10 0.24
Laboratory finding
WBC count, mean ± SD 9.09 ± 3.82 10.79 ± 6.54 0.20
PCT, mean ± SD 4.87 ± 14.19 3.33 ± 5.50 0.04*
CRP level, mean ± SD 99.65 ± 127.60 72.98 ± 65.70 0.77
Infectious disease
HIV 6 3 0.24
Syphilis 0 2 0.16
Hepatitis B virus 0 1 0.33
Epstein-Barr virus infection 1 0 0.30
Invasive procedures
Mechanical ventilation 20 21 0.97
Central venous catheter 22 23 0.94
Foley catheter 31 32 0.75
Use of antibiotics within 30 days 

prior to bacteremia
Lactamase Inhibitors 12 17 0.31
Carbapenems 15 17 0.79
Quinolones 6 9 0.38
Cephalosporin 4 2 0.35
Aminoglycoside 3 5 0.51
Glycopeptide 6 12 0.13
Antifungal 9 11 0.71
7-day mortality 1 1 0.97
14-day mortality 6 1 0.04*
28-day mortality 7 2 0.06

Abbreviations: COPD, chronic obstructive pulmonary disease; WBC, white 
blood cell; PCT, procalcitonin; CRP, C-reactive protein; HIV, human immu-
nodeficiency virus continuous renal replacement therapy; In total, 70 
patients were included for the analysis of 7-day, 14-day and 28-day 
mortality. *P < 0.05: ST540 group vs non-ST540 group (14-day mortality; 
P = 0.04; pairwise analysis). 
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Ab057and LV-Ab020, when using the primer pair F1/R. 
By contrast, after amplification with the primers F2/R, 
which are designed to amplify the full-length oprD 
transcript, products were only obtained from HV- 
Ab057, indicating that the transcript was truncated in 
LV-Ab020 (Figure 5e, Figure S2). Finally, we validated 

the function of the oprD gene by constructing gene 
knock out and complement strains, and then perform-
ing in vivo virulence experiments. An HV-057 mutant 
knocking out oprD and an LV-020 containing 
a complete orpD gene on an expression plasmid 
(pMO13: orpD) were constructed. By the survival 
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experiment with C57 model, the virulence was reduced 
in the oprD knockout HV-057 mutant, with an 
increased survival rate from 10% to 50%. In contrast, 
the virulence was enhanced in the oprD complemented 
LV-020 mutant, such that the survival rate was reduced 
from 90% to 60% (Figure 4, table S6).

Discussion

The emerging and spread of multi-drug resistant 
A. baumannii in hospitals worldwide has become 
a serious public health threat [30]. Few antibiotics are 
effective for treating infections caused by this pathogen. 
To date, several major epidemic lineages, or interna-
tional clones, have been reported globally and caused 
a broad range of severe nosocomial infections. To over-
come this problem, knowledge of the epidemic charac-
teristics, pathogenesis, and antibiotic resistance 
mechanisms of A. baumannii is important [31]. Large 
amount of studies had been performed to uncover the 
molecular characteristics, resistance profiles, and 
mechanisms of this pathogen. In this study, ST2/KL22 
was found as the dominant ST in the hospital, which 
was also reported as one of the dominant lineages 
worldwide. Moreover, ST2/KL22 was found to cause 
higher mortality rates. Based on whole-genome sequen-
cing and virulence experiments, we confirmed a long- 
standing and virulence-enhanced ST2/KL22 clone in 
our hospital.

We identified a novel porin gene, oprD, that contributed 
to the high virulence of ST2/KL22 clone by genomic com-
parison between high-virulent and low virulent isolates 
firstly. Porins are outer membrane proteins associated with 
modulating cellular permeability. In many gram-negative 
bacteria, OrpD porin is involved in carbapenem resistance, 
but the antibiotic effect of several antibiotics (chlorampheni-
col, aztreonam, and nalidixic acid) in the isolates with or 
without the complete orpD gene was not affected [32]. In 
several gram-negative bacteria like P. aeruginosa, OrpD also 
contributes to adaptation to specific environments including 
the maintenance of P. aeruginosa biofilms [33]. Furthermore, 
OprD had functions in adhesion, signaling, the diffusion of 
nutrients and the uptake of gluconate [34]. However, to our 
knowledge, there were few studies identified or explored its 
role in the virulence of A. baumannii.

OmpA was the porin that proved to enhance the 
survival and persistence of A. baumannii by facilitat-
ing surface motility and biofilm formation in vivo 
[35]. OprD was a new porin defined in 
A. baumannii, which showed low with the reported 
oprD gene in P.aeruginosa and A. baumannii. The 
expression of OprD was in HV and LV CRAB iso-
lates was analyzed through quantitative RT-PCR, and 

mechanism responsible for increase of virulence need 
to be further analyzed [36]. The complement of oprD 
strain did enhance the virulence of the LV-020, but 
the pathogenicity of mutant strain was not as strong 
as the HV-057 strain. A similar result was observed 
in the gene knock HV-057 strain, which indicates the 
explicit mechanism of OprD in the A. baumannii 
virulence remains to be determined by in-depth 
in vivo and in vivo analysis.

In addition to the oprD gene, there are other three genes 
specifically in Clade 4 within the ~10.8 kb fragment includ-
ing oprD, which might also encode membrane proteins 
(Table S5). These proteins might be associated with the 
function of OprD and need further studies. Our results 
also revealed that the OprD porin can become novel treat-
ment targets to deal with the multi-drug resistant 
A. baumannii due to its cell-member distribution character-
istics. The molecules which could block OprD, such as the 
antibody, or the gene editing therapy like CRISPR system 
targeting oprD, might reduce the virulence of A. baumannii 
specifically with few effects on the normal flora. The new 
therapy alternative to antibiotics can meet the challenge of 
highly virulence-multidrug-resistant infections.

In conclusion, we have validated a new virulence-associate 
porin: OprD in A. baumannii, a superbug in hospital and 
particularly in ICU. The pathogenic mechanism of OprD 
might be different from OmpA, which needs further study. 
This gene and the OprD protein might also be specific treating 
targets of multidrug-resistant A. baumannii, which could be 
meaningful in the critical care medicine.
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