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Abstract

H7N9 avian influenza virus (AIV) caused human infections in 2013 in China. Phylogenetic analyses

indicate that H7N9 AIV is a novel reassortant strain with pandemic potential. We conducted a

systemic review regarding virus-induced pathogenesis, vaccine development, and diagnosis of H7N9

AIV infection in humans. We followed PRISMA guidelines and searched PubMed, Web of Science,

and Google Scholar to identify relevant articles published between January 2013 and December

2018. Pathogenesis data indicated that H7N9 AIV belongs to low pathogenic avian influenza, which

is mostly asymptomatic in avian species; however, H7N9 induces high mortality in humans. Sporadic

human infections have recently been reported, caused by highly pathogenic avian influenza viruses

detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause severe human

infection by rapidly inducing progressive acute community-acquired pneumonia, multiorgan dys-

function, and cytokine dysregulation; however, mechanisms via which the virus induces severe

1Division of Infectious Disease, Department of Internal

Medicine, Kaohsiung Medical University Hospital,

Kaohsiung Medical University, Kaohsiung
2Center for Infectious Disease and Cancer Research,

Kaohsiung Medical University, Kaohsiung
3Department of Medical Laboratory Science and

Biotechnology, Kaohsiung Medical University, Kaohsiung
4Program in Tropical Medicine, College of Medicine,

Kaohsiung Medical University, Kaohsiung
5Department of Microbiology, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand

6Department of Microbiology, Faculty of Science, Mahidol

University, Bangkok, Thailand
7Department of Medical Research, Kaohsiung Medical

University Hospital, Kaohsiung

Corresponding author:

Sheng-Fan Wang, Department of Medical Laboratory

Science and Biotechnology, Kaohsiung Medical University,

Kaohsiung 80708.

Email: wasf1234@kmu.edu.tw

Journal of International Medical Research

48(1) 1–27

! The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0300060519845488

journals.sagepub.com/home/imr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative

Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which

permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is

attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-4183-3872
mailto:wasf1234@kmu.edu.tw
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0300060519845488
journals.sagepub.com/home/imr


syndromes remain unclear. An H7N9 AIV vaccine is lacking; designs under evaluation include

synthesized peptide, baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis

of H7N9 AIVs is suggested over conventional assays, for biosafety reasons. Several advanced or

modified diagnostic assays are under investigation and development. We summarized virus-induced

pathogenesis, vaccine development, and current diagnostic assays in H7N9 AIVs.

Keywords

H7N9, reassortment, pathogenesis, vaccine, review

Date received: 3 August 2018; accepted: 1 April 2019

Introduction

Influenza A is an enveloped virus belonging

to the family Orthomyxoviridae that com-
prises a negative-sense segmented RNA

genome. Influenza viruses are extremely
variable owing to a lack of proofreading

during genome replication; therefore, muta-
tions are continuously accumulated.1–3

Antigenic drift and antigenic shift are ongo-
ing processes that result in the existence of a

large amount of influenza viruses whose
natural reservoirs include wild waterfowl

and shorebirds.4 Reports indicate minimal
evolution and apparent signs of disease in

almost all natural reservoirs, but the occur-
rence of accumulated mutations in the

genome or in certain fragments might ben-
efit cross-species transmission.4–7 Influenza

A viruses have the capacity to evolve rapid-
ly and cause epidemics or even pandemics

in domestic poultry, lower mammals, and
humans. Avian influenza virus (AIV) trans-

mission has been reported in several coun-
tries, with sporadic human infections owing
to transfer of the virus from wild birds (e.g.,

migrating or wild aquatic birds) to domestic
poultry.6,8 The first reported AIV infection

in humans was caused by H5N1 virus and
occurred in Hong Kong in 1997.6,9

Subsequently, AIVs have been continuously
monitored and surveyed. Increasingly more

new subtypes of AIVs have emerged in
recent decades.6

In February of 2013, a new atypical
influenza virus, H7N9, was first reported
in an 87-year-old male in Shanghai, China
and the case was confirmed by the Chinese
Center for Disease Control and Prevention
on 29 March 2013.10–12 H7N9 is an emerg-
ing avian influenza A virus owing to genetic
reassortment.13 This virus was first identi-
fied as having low pathogenicity and was
associated with asymptomatic or mild dis-
ease in poultry, causing sporadic human
infections.12,14–17 A clinical survey of
human infections with H7N9 viruses
revealed characteristics of upper and lower
respiratory tract illnesses that varied from
mild to moderate (conjunctivitis or uncom-
plicated influenza-like illness) and could
result in hospitalization.18–20 These novel
H7N9 AIVs were reported to have gradual-
ly developed into highly pathogenic avian
influenza (HPAI) viruses,21,22 indicating
multiple increased polybasic amino acids
at the hemagglutinin (HA) cleavage site
(PEVPKRKRTAR/GL).22 High mortality
rates of about 50% are reported in human
cases.18,22 Phylogenetic analysis of HA
sequences in H7N9 isolates indicates that
two major lineages of H7N9 have been
established, including the Yangtze River
Delta lineage and the Pearl River Delta
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lineage.23 Reports indicate that the Yangtze
River Delta lineage is broadly dispersed and
was the original source of the H7N9 out-
breaks in humans.23,24 China is currently
facing its sixth epidemic of H7N9 human
infection since 2018, and there has been a
total of 1566 laboratory-confirmed human
cases reported since 2013.25 The World
Health Organization (WHO) reports that
three subtypes of AIVs are currently
known to cause human infection, namely,
H5, H7, and H9.26 Among them, H5N1
and H7N9 have caused the most human
infections.27 This implies a challenge for
global public health services in controlling
emerging influenza viruses, even though the
number of human infections with the H7N9
influenza virus has gradually decreased with
treatment.28 At present, there is no prophy-
lactic vaccine against H7N9 AIV infection
licensed for use in humans. The vaccine
candidates currently under investigation
include HA/NA peptide, plasmid-based,
baculovirus-insect and mammalian protein
expression system, and virus-like particle
(VLP) vaccines.29–35 Some developed candi-
date vaccines are moving on to clinical
trials. In addition, accurate and prompt
diagnostic methods that have high sensitiv-
ity and specificity are essential for H7N9
influenza disease control and prevention.
Several modified, advanced, conventional,
and molecular diagnostic assays have been
developed to enhance the capability of
detecting H7N9 antigen or antibody.36–40

In this study, we conducted a systemic lit-
erature review of the emergent H7N9 AIVs
in China, mainly focusing on pathogenesis,
vaccine development, and diagnosis of
human infection.

Methods

Literature retrieval and inclusion criteria

In this review, we summarized the latest
information the pathogenesis of H7N9

influenza virus in humans, vaccine develop-

ment, and current laboratory assays for the

diagnosis of infection with H7N9 AIV. This

review was conducted according to the

PRISMA guidelines, using systematic

methods to identify and select eligible

articles from PubMed, Web of Science,

and Google Scholar databases. We used

search strings containing a combination of

terms including H7N9 influenza virus, diag-

nosis, vaccine, and pathogenesis. The sys-

temic search covered publication dates

between January 2013 and December

2018. Search results were limited to articles

published in English language. Articles

related to pharmacodynamics, clinical

trials, and meta-analyses were excluded.

Full-text articles were reviewed to assess

their relevance and quality of the method-

ology. Articles with the following were

excluded: insufficiently detailed materials

and methods; small sample size (n � 20);

irrelevant or insufficient information relat-

ed to the review objectives; articles report-

ing H7N9 influenza and other microbes as a

combined outcome, use of bioinformatics

or mathematical models; and no quantita-

tive data could be retrieved. We also

searched gray literature such as WHO web-

sites and announcements, and local minis-

tries of health and centers for disease

control and prevention. A flow chart of

the systemic literature search and article

selection is shown in Figure 1.

Literature analysis

Two independent reviewers assessed the

level of data quality in the selected articles.

Disagreements were resolved by joint dis-

cussion and consensus

Ethics statement

In this study, we conducted a literature

review regarding the current status of

avian H7N9 influenza virus. Human clinical
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trials, case reports, and studies correlated to

human ethical issues were excluded from

this review. Ethics approval and informed

consent were not required for this study.

Results

Pathogenesis of H7N9 influenza infection

Emergence of a novel H7N9 virus in China.

H7N9 AIV first appeared in China in

2013 as a new atypical strain arising as a

result of either mutations or genetic reas-

sortment of whole genome segments,

including neuraminidase (NA) genes from

wild birds in Korea, HA genes from duck

H7 viruses, and internal genes derived from

two distinct lineages of H9N2 viruses.41,42

More specifically, the new H7N9 virus is

derived from multiple and sequential reas-

sortment among HxN9, H7N3, and H9N2

viruses where the H7 and N9 subtypes are

from H7N3 and HxN9 AIVs, respectively,

which were subsequently transmitted to and

began circulating in poultry.41,43 The H7N9

virus is known to evolve at a rapid rate.

Currently, several emerging genotypes of

H7N9 AIVs have been identified, including

cocirculating low pathogenic avian influen-

za (LPAI) and HPAI, causing infections in

poultry and humans. Previous reports have

indicated that in the first wave of the H7N9

influenza outbreak, a total of 27 genotypes

were observed and documented between

2013 and 2014.12,44 The G0 genotype is pre-

dominantly found in human H7N9 infec-

tion whereas the G2, G4, and G5

genotypes are mainly detected in poultry.

Figure 1. Flow chart of criteria and selection guidelines for literature included in this systemic review
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Most H7N9 genotypes were detected in the
Yangtze River Delta area in China. More
recent genotypic studies have identified
dynamic reassortment of some internal
genes among LPAI H7N9/H9N2/H6Ny
and HPAI H7N9, as well as surface genes
between the Yangtze River Delta and Pearl
River Delta lineages, resulting in at least 36
genotypes identified in 2017.45,46 Among
them, three main genotypes predominate,
including G1 (A/chicken/Jiangsu/SC537/
2013-like strain), G3 (A/chicken/
Zhongshan/ZS/2017-like strain), and G11
(A/Anhui/40094/2015-like strain).46

Most human cases of H7N9 AIV infec-
tion have been found in areas endemic for
the virus.18,19,42,47 Closure of live poultry
markets effectively controlled H7N9 epi-
demics in Shanghai, Nanjing, Hangzhou,
and Huzhou during the first wave of the
H7N9 outbreak in China,48 as well as in
Shenzhen, Guangzhou, Hangzhou,
Foshan, and Ningbo during the second out-
break wave.47 This suggests that cases of
human H7N9 AIV infection resulted from
direct contact with infected poultry.
Although animal-to-human transmission is
the main route of infection, some studies
have reported the possibility of human-to-
human transmission using clusters of
human cases and tracing data; however,
these studies found very low basic repro-
duction number (R) estimates.9,49–53

However, Kucharski et al.43 reported find-
ing no evidence of reduced human-to-
human transmission in the two outbreak
waves associated with the closure of live
poultry markets, indicating that higher
basic R estimates were reported for the
human-to-human transmission component.
Despite the high susceptibility and occur-
rence of transmission among household or
family members, it has not been well dem-
onstrated that the H7N9 virus is capable of
human-to-human spread.54,55 Poultry expo-
sure remains the main risk factor for human
H7N9 infection.43,55,56 In addition,

travelers also represent a potential risk
factor in the dissemination of H7N9 AIVs
from epidemic regions to non-epidemic
areas.3,57–60 The WHO has suggested that
the health status of international travelers
returning from H7N9 epidemic areas
should be assessed on arrival, and these
individuals should be monitored or
observed by health care workers for any
apparent symptoms indicative of possible
infection .26 Although imported cases of
human H7N9 infection have been identi-
fied, the opportunity for spread at commu-
nity level is unlikely as the virus has not
adapted to humans.3,57–60 Furthermore,
health advisories and communications
should warn travelers to avoid exposure to
poultry and raw poultry products while vis-
iting affected areas. In people with a history
of travel to affected regions, screening
should begin within 2 weeks of departure,
prior to the onset of acute respiratory ill-
ness. Patients are encouraged to disclose
recent travel histories, and health care
workers should obtain information regard-
ing travel to affected areas.26,52,61 Public
health and laboratory partners are sug-
gested to notify suspected cases during the
diagnostic work-up so as to receive guid-
ance in a timely manner.61

Receptors and infection. The novel H7N9
influenza virus has been reported to be effi-
ciently transmitted from avian species to
humans.62–64 Previous studies isolated two
distinct human H7N9 viruses, A/Shanghai/
1/2013 and A/Anhui/1/2013, carrying Gln-
226 and Leu-226 on the HA proteins,
respectively,65 which present different
receptor-binding properties. The HA mole-
cule of the A/Anhui/1/2013 strain has dual-
receptor specificity, with the ability to bind
to human-type a2,6-linked sialic acid and
avian-type a2,3-linked sialic acid recep-
tors.65,66 HA receptor binding affinity
and specificity are required for efficient
virus transmission between individuals
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and between species.67,68 Reducing the
binding affinities of HA to avian receptors
is a critical factor in human-to-human
transmission.66

The receptor-binding tropism of H7N9
changing to human receptors is possibly
owing to the acquisition of two hydropho-
bic residues by substitution of Gln226Leu
and Gly186Val. These substitutions were
found in influenza pandemic viruses H2N2
and H3N2 in 1957 and 1968, respectively,
as well as aerosol-transmissible H5N1
mutants.68 The receptor binding properties
of the human H7N9 virus are diverse, com-
prising different lineages of avian H7N9
isolates, but the cleavage activity of its
NA is clearly low for human-type a2,6-
linked sialic acid receptors. Regarding the
pathogenicity of H7N9 viruses, disease
caused by virus infection is usually asymp-
tomatic and mortality is rare in chickens,
ducks, and other birds. Similarly, various
studies have demonstrated that H7N9
viruses replicate well in ferrets,69 pigs,70,71

and mice,71,72 but are rarely lethal. Since it
first emerged in China in 2013, there have
been five reported outbreak waves of H7N9
AIV, with the majority caused by H7N9
LPAI strains.3 More recently, HPAI
H7N9 viruses have been isolated from
humans in Guangdong, with high fatality
rates.22,73 These viruses contain an insertion
of basic amino acids at the HA proteolytic
cleavage site.46,74 Highly pathogenic H7N9
human isolates were found to possess HA
with a preference for human-type receptors
and NA with inhibitor resistance;22,75 fur-
thermore, these strains retained a series of
genetic features contributing to human
infection, such as 186V in the HA
protein, according to H3 numbering.22,75

Sequence analysis has indicated that
human HPAI H7N9 clinical isolates, such
as A/Guangdong/17SF006/2017 and
A/Taiwan/1/2017 possess mutations in the
627K domain of the PB2 subunit, confer-
ring efficient replication in mammals.22

In addition, amino acid substitutions asso-
ciated with drug-resistance have been
detected on NA in these HPAI
H7N9 isolates.75

Clinical symptoms. H7N9 AIV has jumped
the species barrier, causing sporadic
human infections since 2013. H7N9
human influenza virus A/Anhui/1/2013
has sporadically infected humans, with a
high mortality rate of about 40%.
However, earlier H7N9 isolates lack the
multiple basic amino acids at the HA cleav-
age site that are usually present on highly
pathogenic AIV strains.76,77 Clinical obser-
vations show that patients with confirmed
H7N9 avian influenza present with high
fever (�39�C), productive or nonproductive
cough, dyspnea, hypoxia, lower respiratory
tract inflammation, shortness of breath,
and infiltrates have also been noted on
chest imaging.3,78 Complications in human
cases of H7N9 AIV infection include respi-
ratory failure, acute respiratory distress
syndrome, septic shock, refractory hypox-
emia, rhabdomyolysis, encephalopathy,
acute renal dysfunction, multiple organ dys-
function, ventilator-associated pneumonia,
and bacteremia.3,78,79 These features differ
from those of previous human cases of
infection with H7 subtype AIV, which gen-
erally presents as mild flu-like illness or con-
junctivitis.6 The three first human H7N9
viruses (A/Shanghai/1/2013, A/Shanghai/
2/2013, and A/Anhui/1/2013) isolated
from patients were found to be identical in
all eight viral gene segments. However,
A/Shanghai/1/2013 has been found to be
phylogenetically distinct from the other
two strains mentioned above.80 Compared
with human cases of infection with HPAI
H7N9 (e.g., A/Guangdong/17SF003/2016
or A/Guangdong/17SF006/2017), most
patients infected with A/Shanghai/1/2013
have viral pneumonia and some patients
have displayed acute respiratory distress
syndrome (ARDS), especially elderly
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people, who also have high fatality
rates.22,81 Overall, the clinical presentation
of HAPI H7N9 infection is similar to that
of LPAI H7N9 infection;22 however, fewer
patients with HPAI than LPAI H7N9 infec-
tion have underlying conditions.82

Host immune response against H7N9 influenza

virus. The pathogenesis of human H7N9
virus that leads to severe outcomes remains
unclear. Previous studies of HPAI H5N1
virus and pandemic (H1N1) 2009 virus
have suggested that poor prognosis
in human disease caused by these
influenza viruses might be attributed to a
cytokine storm or hypercytokinemia in the
body.83–85 Some studies of H7N9 AIV have
analyzed the cytokine and chemokine pro-
files in human serum samples from H7N9-
infected patients. Reports have showed the
presence of high levels of cytokines and che-
mokines, such as interleukin (IL)-6, IL-17,
IL-2, monocyte chemotactic protein (MIP)-
1, the monokine induced by gamma
interferon (MIG), and macrophage inflam-
matory protein (MIP)-1b, in the serum of
patients infected with H7N9 AIV.86,87

Moreover, in patients with severe H7N9
infection, the expressed levels of IL-6 and
IP-10 molecules are significantly higher
than in asymptomatic patients with H7N9
infection.86 However, a previous study
using BALB/c and C57BL/6 mouse
models assessed the pathogenicity of
H7N9 virus, to examine the association of
proinflammatory cytokines in lung injury
and viral clearance. The findings of that
study showed that TNF-a and IFN-c sup-
press viral gene expression and increase
viral clearance whereas IL-6 and MCP-1
contribute to lung injury in A/H7N9-
infected mice.88 In summary, H7N9 viruses
potently induce the expression of proin-
flammatory cytokines (IL-2, IL-6, and
IL-7) and chemokines (IP-10), which con-
tributes to the regulation of cellular
immune responses. Alternatively, H7N9

infection also induces strong inflammatory
responses, leading to tissue destruction.

Clinical observation indicates that
patients with severe H7N9 AIV infection
have high serum levels of IP-10 and IL-6,
which may reflect the severity of disease.86

In addition, the PB1-F2 protein of the influ-
enza virus has been implicated in the regu-
lation of polymerase activity,
immunopathology, susceptibility to second-
ary bacterial infection, and the induction of
apoptosis.89 Studies suggest that the PB1-
F2 protein may assist in NLRP3-
associated hyperinflammation in human
H7N9 influenza virus infections via the for-
mation of inflammasome in host cells. New
treatment strategies for H7N9 PB1-F2-
induced lung inflammation and cellular
influx specifically target NLRP3 inflamma-
some formation, which may provide effec-
tive therapy to reduce the disease severity
level and mortality rate in pathogenic
H7N9 infection.

Drug resistance. The newly emerged avian
H7N9 influenza virus is known to cause
human infection with high mortality.
Antiviral drugs are critical tools for the
control, treatment, and prevention of
H7N9 virus infection as humans lack
immunity against H7 subtype influenza
viruses. Both M2 ion channel blockers
(adamantanes, amantadine, and rimanta-
dine) and NA inhibitors (oseltamivir, zana-
mivir, peramivir, and laninamivir) are used
clinically as antiviral drugs for influenza
infection in humans.90–92 Owing to the
S31N mutation in the M2 protein, emerging
H7N9 viruses are reported to be resistant to
adamantine antiviral drugs,93 which are
therefore not recommended for clinical
therapy. Oseltamivir, generally used as
treatment for influenza infection, reduces
the viral load in the respiratory tract of
patients. Drug resistance to NA inhibitors
is unusual among influenza viruses.
However, some patients with H7N9 AIV
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infection have poor clinical outcome. The
arginine to lysine substitution at residue
R292K and E119V mutation in NA protein
are linked with resistance to NA inhibitors,
including oseltamivir and peramivir.90,94–97

Ribavirin is a well-characterized, broad-
spectrum nucleoside inhibitor, which is
used for the inhibition of viral RNA syn-
thesis and capping of mRNA. Ribavirin
also has antiviral activity against NA
inhibitor-resistant H7N9 virus infections.98

Human infections with avian H7N9 influen-
za virus mainly originate from contact
with infected poultry. An effective
strategy to minimize the risk of human
H7N9 infections would be to administer
aerosolized ribavirin to the nasal mucosa.
Regarding drug resistance of HPAI H7N9
isolates, A/Guangdong/17SF003/2016
(H7N9) strain has been reported to have
NA-292R residue, similar to A/Anhui/1/
2013 (H7N9), and sensitivity to all three
NA inhibitors.75 Baloxavir marboxil is a

novel inhibitor against influenza virus cap-

dependent endonuclease, which was

approved by the US Food and Drug

Administration in October 2018 to treat

influenza A and B viruses in Japan and

the United States.99 This new drug might

serve as a potential treatment for H7N9

AIV infections in the near future. We sum-

marize some characteristics and features of

H7N9 virus-induced pathogenesis in

Table 1.

Vaccine development

To reduce the mortality and morbidity rates

of influenza virus infection, HA- and NA-

specific neutralizing antibodies can be effi-

ciently generated via vaccination. Early

detection of neutralizing antibodies

and rapid availability of the vaccine are

required to prevent H7N9 pandemics.

In the development of H7N9 vaccines,

the peptides of HA7 and NA9 molecules

Table 1. Summary of the characteristics of H7N9 avian influenza A virus in humans

Feature Details

Low pathogenicity avian influenza (LPAI) virus

H7N9

Displays low pathogenicity in poultry with

no illness; highly virulent in humans with

severe symptoms.3,42,62

Highly pathogenic avian influenza (HPAI) virus

H7N9

Displays high pathogenicity in both avian and

human infections.18,22,23,73

First reported human case (date and location) Case reported on February 2013 in Shanghai,

China and confirmed by Chinese CDC on

29 March 20133

Age range of confirmed human cases Age 2–91 years,3,9 with median age 62 years9

Ages with higher risk of further complications <5 years and >65 years3,9

Susceptibility by sex and area 67% of confirmed cases are males9,153,154

Increasing trend in rural areas156

Transmission exposures Being exposed to poultry in places such as live

poultry markets or incidentally via

contaminated surfaces.48,62

Transmission source Zoonotic: from poultry to humans.9,49–52,56,120,140,149,150

Human-to-human transmission53

Host immune response Proinflammatory cytokines (IL-2, IL-6 and IL-7)

and chemokines (IP-10) are predominant83–85

Anti-influenza drug resistance Resistance to adamantine,93 oseltamivir,90,94–96

peramivir,97 and zanamivir97,161
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of A/Shanghai/2/2013 or A/Anhui/1/2013
are considered the most promising candi-
dates. These peptide vaccines are currently
undergoing evaluation in clinical trials.

New technologies for vaccine produc-
tion, such as cell culture-based antigen vac-
cine, live attenuated influenza vaccine
(LAIV), DNA vaccine, phylogenetically
related seed strain vaccine, recombinant
baculovirus expression vaccine, and
adjuvant-containing H7-based vaccine
may be serve to increase vaccination capa-
bilities.100–108 These technologies would
speed up the production of H7N9 vaccines;
however, a long time is likely required to
produce large quantities of available vac-
cine. Work is ongoing in developing vac-
cines based on the HA and NA genes of
A/Anhui/1/2013-like H7N9 viruses reas-
sorted with the high-yield master virus A/
Puerto Rico/8/34 (PR8) to enhance H7N9
virus growth capability in eggs, with high
total viral and HA protein yields and atten-
uated pathogenesis, which has already
resulted in several vaccine candidates.29,109

LAIVs have been tested against a pandemic
influenza virus.110–112

Vaccination with a single dose of LAIV
is known to be sufficient to stimulate an
immune response against the homologous
wild-type strain. Several human clinical
trials are currently evaluating H7-based
LAIVs.110,112–114 Previous outbreaks of A/
mallard/Netherlands/12/2000 (H7N3) and
A/Netherlands/219/2003 (H7N7) were
owing to avian-derived H7 strains. These
strains have been found to be phylogeneti-
cally related to the HA of H7N9 viruses.
Several previous reports have shown
that serum from individuals vaccinated
with these vector-based or inactivated vac-
cines cross-reacted with H7N9.114–116

Baculovirus-insect cell expression vectors
used in the rapid production of insect cell
recombinant antigens is a practicable strat-
egy in the development of HA-based vac-
cines. Other viral vectors (e.g., adenovirus

and poxvirus) are also used to prepare vac-
cines.31 The modified vaccinia virus Ankara
and chimpanzee adenoviral ChAdOx1 vac-
cines are considered safe and immunogenic
in humans for inducing long-term cross-
reactive antibody against influenza A
virus. These vaccines can be developed in
a short time, to be used against emerging
influenza strains. Moreover, an H7 and
N9 molecule-containing vaccine, which is
VLP-based from the A/Anhui/1/13 strain,
has been reported to be producible by the
baculovirus system.107 A dose of this VLP
vaccine administered twice together with an
adjuvant significantly increases the neutral-
izing ability of HA- and NA-inhibiting anti-
body.32,107 The low-immunogenicity
characteristics of H7-based vaccines have
been reported in human117 and animal
models.118 Currently, several clinical
trials are investigating the effect of different
adjuvants, including MF59 (Novartis),
Matrix-M (Novavax), and AS03
(GlaxoSmithKline), to improve generation
of protective antibodies.119–121 Regarding
poultry vaccination against H7N9 AIVs, a
series of inactivated vaccines has been used
for the control and prevention of H7N9
outbreaks in poultry.100,122,123 For example,
an H5/H7 bivalent inactivated influenza
vaccine for chickens, ducks, and geese was
introduced in September 2017;124,125

cases of H7N9 infections in human and
poultry populations decreased after
vaccination.126,127

Current diagnosis of H7N9 influenza
virus infection

The first three human cases of infection with
influenza H7N9 virus were reported in
February and March 2013 in mainland
China.42,80 Respiratory specimens from
these patients were analyzed using real-time
reverse transcription polymerase chain reac-
tion (RT-PCR), viral culture, and sequenc-
ing analysis.128,129 Subsequently, cases were
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mostly confirmed using real time RT-PCR
and in certain cases, viral isolation and sero-
logic testing were also included.42 The
proper collection and handling of specimen
contributes to the quality of test results. The
most acceptable specimens for diagnosis or
identification of influenza A (H7N9) virus
are nasal wash, nasal aspirate, sputum, and
nasopharyngeal swab specimens.36,130

Throat swabs are not recommended owing
to the low viral load in these specimens;
higher viral loads are found in sputum and
tracheal samples.131 The best time for
sample collection is near symptom onset,
within the first 3 days as viral shedding
decreases after 4–5 days. However, shedding
lasts up to 5 days in children.

Currently, several methods are used in
the diagnosis of H7N9 AIV. Routinely,
rapid influenza diagnostic tests (RIDTs)
are used along with other confirmatory
tests such as viral isolation, serologic tests,
and RT-PCR.130 RIDTs are widely used
owing to their ease of use and quick results.
RIDTs are based on antigen detection
methods via the use of monoclonal antibod-
ies, which attach to nucleoproteins on the
targeted virus.131 Compared with molecular
methods, RIDTs have low sensitivity.132 All
RIDTs lack the capability of identifying or
differentiating avian influenza subtypes.
Because there are several different AIV sub-
types, some more pathogenic than others,
RIDTs that can differentiate between sub-
types would greatly aid in screening, effi-
cient diagnosis, surveillance, and control
of HPAI.133,134 Such tests would also pre-
clude the need for trained professionals to
carry out testing. Although RIDTs only
provide qualitative measures, the impor-
tance of obtaining a positive or negative
result enhances efficient diagnosis, as posi-
tive samples can be sent for further
analysis.134

Viral isolation, considered the gold stan-
dard for influenza diagnosis, includes three
different techniques: viral isolation using

embryonated chicken eggs, viral culture,

and shell viral culture. Viral isolation

using embryonated eggs has some disad-

vantages, such as it is time consuming, has

high biosafety level (BSL) requirements,

and requires the use of eggs.128 These dis-

advantages are drawbacks for efficient diag-

nosis; hence, viral isolation is more useful

for subsequent viral analysis and, impor-

tantly, in the initial investigation of an out-

break. Molecular diagnostic tests such as

real-time RT-PCR provide more rapid

results for more efficient diagnosis.128

Viral culture uses cell lines, which are

infected, incubated, and monitored. Viral

detection in cells can be done using different

techniques, including specific antibody

staining, hemadsorption, or immunofluo-

rescence microscopy. In shell viral culture,

cells are grown in 1 dram shell vials

and stained with specific monoclonal

antibodies for influenza detection.

Serological tests include hemagglutination

inhibition (HAI),135–137 virus neutralization

(VN),136,138 complement fixation,139,140

single radial hemolysis tests

(SHR),136,137,141 and enzyme-linked immu-

nosorbent assay (ELISA).128,136,142–144

ELISA, one of the most commonly per-

formed laboratory assays, uses mono- and

polyclonal antibodies against nucleopro-

teins on the influenza virus. However, the

sensitivity of ELISA is lower than that of

molecular testing.128,132 HAI is a common

assay based on HA-specific antibody that

prevents influenza virus attachment to red

blood cells, but HA has low sensitivi-

ty.128,136,138,145 VN assays require the use

of infectious viruses, which are then neu-

tralized with virus-specific antibodies. VN

is more sensitive than HAI, but BSL2 or

BSL3 laboratory conditions are required.

The SHR assay measures complement-

mediated hemolysis via antigen–antibody

complex induction; this assay is more sen-

sitive than HAI.128,132

10 Journal of International Medical Research



Molecular PCR-based diagnostic tests
are commonly performed in the detection
and subtyping of H7N9 AIVs as these are
faster than viral isolation and more sensi-
tive than serologic tests. PCR-based diag-
nostic tests require RNA extraction using
reagents to inactivate the virus; hence, the
BSL requirements are lower than for viral
isolation techniques. The extracted RNA is
transcribed with reverse transcriptase to
complementary DNA (cDNA), then ampli-
fied using specific primers for each subtype.
With advanced technology, primers are
now able to detect avian influenza A even
if the virus is genetically varied.128 A recent
advance in PCR-based detection methods
for H7N9 AIV is the multiplex RT-PCR
assay, which uses the GenomeLab Gene
Expression Profiler (GeXP) analyzer, a
multiplex gene expression analysis platform
developed by Beckman Coulter.146,147 This
assay simultaneously detects four NA sero-
types of the H5 subtype. Both sensitivity
and specificity are reportedly high; hence,
this method can be useful in the detection,
surveillance, and control of HPAI virus-
es.148 Detection techniques such as immu-
nochromatographic RIDTs and PCR-based
techniques greatly contribute to rapid,
simple, and efficient screening and confir-
mation of cases of HPAI H7N9 infection.
PCR-based methods further aid in the sur-
veillance and control of HPAI H7N9 infec-
tion as this method has the advantages of
speed, sensitivity, and specificity. We sum-
marize the main tests performed in the diag-
nosis or confirmation of H7N9 virus in
Table 2.

Discussion

Herein, we conducted a systemic literature
review for the novel emerged H7N9 AIVs
with respect to pathogenesis, vaccine devel-
opment, and current diagnosis. Although
current major H7N9 epidemics are in
China, this reassorted virus has gradually

evolved from LPAI to HAPI. Currently,
HPAI H7N9 AIV has the capability of
causing severe syndromes and inducing
high mortality in both avians and humans.
The WHO has also pointed out that among
current AIVs, those that cause human
infection are H5N1 and H7N9, thereby
necessitating the continuous monitoring of
genetic and antigenic change and variation
in H7N9 AIVs.26 Understanding the path-
ogenesis of the virus, developing prophylac-
tic vaccines, and enhancing the sensitivity
and specificity of H7N9 AIV diagnostic
methods are urgently required.

As an atypical strain with mutations and
genetic reassortment, emergence of the
novel H7N9 AIVs in China raises concerns
regarding new vaccine development and
drug resistance. The influence of animal
infections on human disease propagation
places a large burden on health systems
and animal trade controls to prevent the
virus spreading via travelers and animal
movement. Although AIVs usually do not
infect people, rare cases of human infection
with these viruses have been reported.53

Regarding the transmission route, H7N9
AIVs have been found to cause human
infection, mainly from poultry to humans.
Infected birds can shed H7N9 AIVs in
secretions like saliva, mucous, and feces,
which can lead to human infection via
mucosal surfaces of the eyes, nose, and
mouth or through inhalation of droplets
and dust containing the virus.
Unprotected exposure to H7N9 AIVs
from infected birds is currently considered
the main risk factor and transmission route.
The role of poultry farms, live animal mar-
kets, and retailers might be key in the
spread of disease, as well as inadequate bio-
safety measures and poor handling of sick
or dead animals. However, some
laboratory-confirmed human cases lack evi-
dence of a history of direct contact with
animals, indicating the possibility
of human-to-human transmission.53,149
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To date, several studies have predicted and
compared the route of poultry-to-human or
human-to-human transmitted efficiency of
H7N9 AIVs using the reproduction
number (R);43,56,120,140,150 The R is a key
indicator of transmission intensity estimat-
ed by fitting the number of poultry-to-
human and from human-to-human
infections into mathematical models. The
data of these studies showed that the esti-
mated R value for an H7N9 outbreak was
below the epidemic threshold required for
sustained human-to-human transmission,
indicating that an H7N9 human-to-human
pandemic is unlikely to occur and most
cases of H7N9 AIV infection are owing to
poultry-to-human transmission. Virlogeux
et al.149 recently used an ecological model
to evaluate animal-to-human and human-
to-human transmission of H7N9 during
the first three epidemic waves in China;
the authors indicated that there was a sig-
nificant decrease in the incidence of H7N9
cases after live poultry market closures in
several major cities of China. Accordingly,
it can be concluded that although H7N9
human-to-human transmission might be
possible, the major transmission route of
H7N9 AIVs remains via poultry-to-human.

Regarding virus-induced pathogenesis
and pathology, H7N9 AIV infection
causes mild to severe syndromes to
humans owing to either LPAI or HPAI
strains, as compared with infections in
poultry, which are often asymptomatic
when infection is with LPAI H7N9 strains.
The major element for distinguishing HPAI
and LPAI is determination of the amino
acid profiles at the HA cleavage site.
Increased basic amino acids have been
proven to enhance the capability of matu-
ration and replication of AIVs. The mech-
anism through which LPAI H7N9 viruses
induce different pathogenesis in birds and
humans is still not fully understood, sug-
gesting that to determine the virulence of
influenza A virus, it is critical to check the

occurrence of variations or mutations in
other viral proteins that are involved in
virus replication and dissemination.
Reports have indicated that H7N9 Asian
lineage and H5N1 HPAI Asian lineage
strains are mainly responsible for most
cases of human illness worldwide to date,
and these also result in the most serious ill-
nesses and highest mortality. Clinical obser-
vation reports indicate that severe
symptoms including viral pneumonia,
hypercytokinemia, and even ARDS in
cases of death owing to H7N9 AIV infec-
tion, which mainly occur in older people, as
compared with H5N1 infection in which
severe symptoms generally occur in younger
patients.9,81,151,152

In addition, comparative cohort studies
have indicated that the sex ratio is much
higher in urban than rural areas in infec-
tions with both H7N9 and H5N1 virus-
es.9,153,154 The reason might be correlated
with sex-based differences in exposure to
AIVs rather than to differences in immuni-
ty.9,153 For instance, higher numbers of
cases of H7N9 infection have been reported
among men in Shanghai city, where men
have a greater tendency than women to
have more frequent retail exposure to live
poultry. Other possible reasons for this dif-
ference have been reported, including worse
prognosis for infected men than infected
women, and differences in health-seeking
behaviors.153 However, some reports indi-
cate that differences in immunity between
men and women remain a consideration.155

Recently, Chen et al.156 reported that an
increasing trend of H7N9 human infections
in rural areas of Zhejiang Province in China
during 2013–2017 was the result of rural
live poultry markets that remained open
despite the epidemic; this suggests that clos-
ing live poultry markets is an effective way
to control H7N9 human infections.

In this study, we report that human
patients with H7N9 AIV infection develop
severe illness, dysregulation of the cytokine
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and chemokine response, late viral clear-

ance, and impaired immunity.157 Induction

of pro-inflammatory cytokines by H7N9 is

the predominant factor leading to hypercy-

tokinemia, an important risk factor trigger-

ing multiple organ damage, thereby

increasing the mortality rate in human

cases of infection with H7N9 AIV.81,152

Reports have indicated that peripheral

blood mononuclear cells have greater sus-

ceptibility to H7N9 than H5N1 virus, and

H7N9 could more efficiently infect B and T

lymphocytes than H5N1 (p<0.01).158

Another study indicated that hypercytoki-

nemia is associated with interferon-induced

transmembrane protein-3 dysfunction,

which could be useful in the prediction of

H7N9-induced mortality.159 In addition,

H7N9 AIVs show greater tropism for the

respiratory epithelium as well as

nasopharynx-associated lymphoid tissues

than H5N1 viruses.152 Similar results have

been found in H7N9 virus-challenged mice

and ferret models.152,160 Since the end of

2017, a new H7N9 AIV (A/Guangdong/

17SF006/2017) has been identified as an

HPAI strain in China. This HPAI H7N9

virus was generated from its LPAI counter-

part22,46,74 and has high affinity for both

human-type a2-6-linked sialic acid and

avian-type a2-3-linked sialic acid recep-

tors.65,66 These characteristics demonstrate

the capability of H7N9 viruses for adapta-

tion and binding, thus opening the door for

the virus to develop drug resistance, thereby

presenting a challenge for drug and vaccine

development as the clinical symptoms of

these mutants differ from the original

H7N9 virus, including respiratory distress

syndrome, septic shock, acute renal dys-

function, and multiple organ dysfunc-

tion.3,78,79 These symptoms may be related

to the presence of IP-10 and IL-6 in patients

with severe H7N9-induced disease, as these

induce an acute inflammatory response and

extensive tissue destruction.86

Regarding drug use and design, targeting

NLRP3 inflammosome formation may be

effective in reducing the severity and mor-

tality of H7N9 AIV infection, as humans

lack immunity against H7 subtype influenza

viruses. Some patients with H7N9 infection

have shown poor outcomes with therapies

such as M2 ion channel or NA blockers.94

In addition, some reports have indicated

that H7N9 viruses acquire drug resistance

against NA inhibitors via substitutions,

which is correlated with amino acid substi-

tutions; R292K confers the highest increase

in oseltamivir half-maximal inhibitory con-

centration (IC50), E119D confers the high-

est IC50 of zanamivir, and H274Y confers

highly reduced inhibition by oseltamivir.161

The need for new anti-influenza viral drugs

is urgent. Testing some alternatives in

H7N9 treatment is advisable, such as intra-

nasal administration of ribavirin and balox-

avir marboxil, as these have demonstrated

effectiveness with other influenza

viruses.98,99

In prevention and prophylaxis of H7N9

AIVs, it is necessary to develop vaccines

that can easily induce neutralizing antibody

and generate CD8þ cytotoxic T cells for

virus neutralization and clearance, respec-

tively. LAIV, H7 and N9 molecule-

containing vaccine, and recombinant VLP

vaccines based on A/Anhui/1/13 strain have

shown effective stimulation of the specific

immune response and no cross-reaction

with other virus strains.100,162 Clinical

trials and animal studies have revealed

that much remains to be accomplished in

the development of new vaccines, and

their efficacy relies on targeting different

phylogenetically related genotypic strains

of H7N9 AIV.108 Human contact with

infected poultry and global travel is unlikely

to diminish, and the pathogenesis of H7N9

AIVs will likely persist. Therefore, strate-

gies should be focused on understanding

more about the impact of new therapies
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and prophylaxis to control circulat-

ing viruses.
Diagnostic tools or platforms with high

sensitivity and specificity for detection of

viral antigens or antibodies of H7N9 AIVs

have been widely developed. Although viral

culture is conventionally viewed as the gold

standard in virological assays, real-time

RT-PCR is currently suggested as an alter-

native gold standard as the former method

requires specific BSL laboratory conditions

and experienced staff. However, RIDTs are

quick and easy to perform, so these tests

have become essential at sites where real-

time RT-PCR is unavailable. Current

RIDTs have the capability of detecting

strains of both influenza A and B.

However, they have low sensitivity with

new strains and are unable to differentiate

between subtypes; therefore, the rate of

false negatives is higher.131RIDTs provide

rapid detection of the presence or absence

of viral analytes in patient samples; a major

advantage of RIDTs is that results can be

obtained within 15–30 minutes.131 As men-

tioned, there are several different subtypes

of H7N9 AIVs circulating in China, some

more pathogenic than others. With the

advantage of speedy results, RIDTs that

can differentiate between subtypes would

provide a breakthrough for rapid screening

and diagnosis, especially of HPAI H7N9

and AIVs such as H5N1.134 RIDTs can be

performed at points-of-care for first-line

influenza virus screening.134 This would

help in patient diagnosis as well as the

detection of asymptomatic cases or mild

symptom cases, thus preventing further

spread.163 In addition, several advanced or

modified assays and platforms for detecting

H7N9 AIVs are under investigation, such

as modified surface plasmon resonance,39

enzyme-induced metallization,164 reverse

transcription-loop-mediated isothermal

amplification assay,165 and chip-based

biosensors.166

This study has some limitations. We

selected articles written in English only; in

addition, we excluded small cohort studies

and clinical trials and focused mainly on

study results in human cases of AIV infec-

tion. These selection criteria might have

resulted in the loss of certain important

information and experimental results pub-

lished in Chinese or other non-English lan-

guages, as well as some important

observations from small cohorts and

animal studies.

Conclusion

Currently, H7N9 influenza virus is dissem-

inated among aquatic birds and poultry,

increasing their adaption and virulence in

humans. Although this virus primarily

exists in mainland China, increasingly

more imported cases have been reported

in other countries. Clinical H7N9 AIV iso-

lates have been proven to have resistant to

adamantine and oseltamivir, which are

commonly used in influenza therapy. This

highlights that new antiviral drugs, contin-

uous genotype identification, and new vac-

cines against H7N9 influenza viruses are

urgently needed. In addition, the develop-

ment of accurate and rapid testing methods

is necessary for the surveillance and control

of H7N9 virus infections.
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