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Abstract
Background: Coronavirus disease 2019 (COVID-19), the far-
reaching pandemic, has infected approximately 185 million 
of the world’s population to date. After infection, certain 
groups, including older adults, men, and people of color, are 
more likely to have adverse medical outcomes. COVID-19 
can affect multiple organ systems, even among asymptom-
atic/mild severity individuals, with progressively worse dam-
age for those with higher severity infections. Summary: The 
COVID-19 virus, severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), primarily attaches to cells through the 
angiotensin-converting enzyme 2 (ACE2) receptor, a univer-
sal receptor present in most major organ systems. As SARS-
CoV-2 binds to the ACE2 receptor, its bioavailability becomes 
limited, thus disrupting homeostatic organ function and in-
ducing an injury cascade. Organ damage can then arise from 
multiple sources including direct cellular infection, overac-
tive detrimental systemic immune response, and ischemia/

hypoxia through thromboembolisms or disruption of perfu-
sion. In the brain, SARS-CoV-2 has neuroinvasive and neuro-
tropic characteristics with acute and chronic neurovirulent 
potential. In the cardiovascular system, COVID-19 can induce 
myocardial and systemic vascular damage along with throm-
bosis. Other organ systems such as the lungs, kidney, and 
liver are all at risk for infection damage. Key Messages: Our 
hypothesis is that each injury consequence has the indepen-
dent potential to contribute to long-term cognitive deficits 
with the possibility of progressing to or worsening pre-exist-
ing dementia. Already, reports from recovered COVID-19 pa-
tients indicate that cognitive alterations and long-term 
symptoms are prevalent. This critical review highlights the 
injury pathways possible through SARS-CoV-2 infection that 
have the potential to increase and contribute to cognitive 
impairment and dementia. © 2021 S. Karger AG, Basel

Introduction

The coronavirus disease 2019 (COVID-19) pandemic, 
caused by the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), has affected every aspect of global 
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society, including alarming alterations to public health, 
medical care access, and the global economy. To date, ap-
proximately 185 million of the global population has been 
infected with significant risk for more infections in the 
future [1]. Mutations to the SARS-CoV-2 virus have the 
potential to amplify the number of future COVID-19 cas-
es through higher infectivity rates and vaccine-resistant 
strains [2]. While recent vaccination efforts are effective 
and have the potential to curtail the widespread SARS-
CoV-2 infections as well as to decrease infection severity, 
those already affected and those with infections to come 
will experience the brunt of the long-term health conse-
quences. Our proposition is that the long-term health 
consequences of COVID-19 could manifest as cognitive 
decline in some people.

Below, we first outline the mechanism by which SARS-
CoV-2 infects cells, how infection utilization can com-
pound organ damage, and provide possible routes for the 
virus to infect the brain directly. Then, we review neuro-
logical symptoms and neuroimaging findings in CO-
VID-19 patients, neuropathology seen from autopsy 
studies, and subsequent cognitive alterations and long-
term symptoms exhibited in recovered COVID-19 pa-
tients. The processes by which COVID-19 affects the 
brain are interdependent and happen through multiple 
independent pathways. A critical subset of pathways to 
brain injury, covered next, include cardiovascular inter-
actions and organ damage to the lungs, kidney, and liver. 
Understanding the mechanism by which COVID-19 af-
fects the body then allows us to speculate why some 
groups of people, including those with cardiovascular risk 
factors, those of older age, people of color in the USA, and 
men, experience a disproportionate impact from SARS-
CoV-2 infection with poorer medical outcomes relative 
to other groups [3]. Notably, most of these groups are at 
particularly elevated risk for dementia [4], with COV-
ID-19 potentially acting additively or synergistically with 
pre-existing comorbidities to contribute to the onset or 
progression of cognitive impairment and dementia.

Overall, this critical review synthesis examines possi-
ble viral infection pathways to the brain, interactions be-
tween the SARS-CoV-2 virus infection and multiple crit-
ical organ systems, and the implications of COVID-19 for 
short-term neurological consequences and long-term de-
mentia risk. Our hypothesis is that SARS-CoV-2 infec-
tion, due to plausible COVID-19 cognitive decline path-
ways, evidence of prevalent neurological symptoms in pa-
tients, and relevant long-term symptoms in recovered 
individuals, promotes risk for cognitive decline and has 
the potential to exacerbate pre-existing dementia.

SARS-CoV-2 General Infection Characteristics

To understand why COVID-19 can increase demen-
tia risk, we must start with how SARS-CoV-2 is exposed 
to, enters, and damages the body. The primary mode of 
SARS-CoV-2 infection is through respiratory droplets 
that spread from an infected person. Infection occurs 
when these droplets are introduced directly to the 
lungs/mouth/nose of a noninfected individual through 
breathing inhalation and/or surface transfer (fomite 
transmission) [5]. After this introduction, the virus 
travels to organs throughout the body, where it directly 
or indirectly influences each organ’s respective func-
tions. According to biopsy and autopsy findings from 
SARS-CoV-2-positive individuals, direct SARS-CoV-2 
infections can be found in the lungs [6, 7], brain [8], 
heart [9], kidney [10], liver [11], cerebral spinal fluid 
(CSF) [12, 13], lymph nodes [7, 14], spleen [7, 14], in-
testines [7], and testes [7]. Additionally, widespread vi-
ral organ damage has been observed in the lungs, brain, 
heart, kidney, liver, and gut, highlighting the potential 
systemic influence of the virus throughout the body 
[15]. While more extensive autopsy findings are still 
needed to understand the full extent of the direct SARS-
CoV-2 infection, it is clear that organ damage also oc-
curs from indirect immune responses. This widespread 
propensity of SARS-CoV-2 is due to the mechanism of 
the viral pathway, specifically the cellular attachment 
points that are found in most organ systems and their 
relationship with cardiovascular and immune systems. 
This mechanism underlies the injury cascade from CO-
VID-19 and provides an important context for our con-
clusions regarding how COVID-19 can affect long-
term cognitive function.

SARS-CoV-2 Viral Entry (Angiotensin-Converting 
Enzyme 2, Host Proteases, and NRP1)
To initiate viral replication, SARS-CoV-2 attaches to 

healthy cell membranes primarily through the angioten-
sin-converting enzyme 2 (ACE2) receptor present within 
many organs systems [16]. ACE2 receptors are found in 
the lungs [17, 18], brain [18, 19], kidneys [17, 18], intes-
tines [17, 18], female organs [20], male organs [17, 18], 
heart [17–19], colon [17], liver [17, 19], adipose tissue [16, 
19], vasculature [18, 19], stomach [19], central nervous 
system [16], thyroid [20], adrenal gland [20], muscle [20], 
bone marrow [20], blood [20], and nasal and oral mucosa 
[19]. The highest ACE2 expression is in the gastrointesti-
nal tract, male reproductive system, kidney, gallbladder, 
heart, and thyroid [20, 21].
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Notably, the presence of ACE2 alone is not sufficient 
for SARS-CoV-2 cellular infection. A host cell protease, 
such as transmembrane protease serine 2 (TMPRSS2), ca-
thepsin L, or furin, is also required for SARS-CoV-2 Spike 
(S) protein priming [22–24]. Other important host cell 
entry factors, such as the protein Neuropilin-1 (NRP1), 
can enhance the infectivity of SARS-CoV-2 after furin 
cleaves the viral S protein into the subsequent S1 and S2 
proteins [25, 26]. All of these proteases can be found 
throughout the body with TMPRSS2, for example, being 
found in the cardiovascular system, heart, kidney, and 
lungs with medium confidence, and found in the brain 
and central nervous system with low confidence [27]. For 
neurological considerations, both ACE2 and TMPRSS2 
receptors have been discovered in the head and neck re-
gions, specifically within sustentatorial, stem neuronal, 
epithelial, goblet, and oligodendrocytes cell types [28, 29]. 
Additionally, furin may play an important role in the cen-
tral nervous system due to its high protein prevalence in 
the cerebral cortex, hippocampus, and cerebellum [22]. 
NRP1 is expressed in endothelial cells, olfactory epithe-
lium, vascular smooth muscle cells, vascular macro-
phages, and neurons with evidence NRP1 could be impli-
cated in the neurological disruption of COVID-19 [30]. 
While the absolute amount of ACE2 receptors and vari-
ous proteases are related to a tissue’s direct infection risk 
[29] (dependent on the SARS-CoV-2 virus reaching that 
tissue), these factors do not fully represent the degree of 
subsequent injury risk.

Organ Injury through SARS-CoV-2-Induced ACE2 
Deficiencies
The importance and function of ACE2 should be high-

lighted to understand how organ injury is initiated after 
SARS-CoV-2 infection. ACE2 is a component of the re-
nin-angiotensin-aldosterone system, which partially reg-
ulates cardiovascular function such as arterial blood pres-
sure, total blood volume, and vascular remodeling [31, 
32]. In particular, ACE2 acts as a negative regulation 
component by promoting vasodilation and hypotension 
[33]. Thus, ACE2 is typically considered to be cardiopro-
tective, renoprotective, hepatoprotective, and protective 
against fibrosis [17, 34].

As SARS-CoV-2 infects healthy cells, it decreases the 
bioavailability of ACE2 receptors within the renin-angio-
tensin-aldosterone system. ACE2 deficiency can result in 
organ injury through uncontrolled nonspecific inflam-
mation (cytokine storm [35]) as well as increased coagu-
lation, increased fibrinolysis, myocardial injury [36], in-
creased vascular permeability [27], and acute lung injury 

[37]. For those with pre-existing ACE2 deficiencies be-
fore SARS-CoV-2 infection, such as individuals with hy-
pertension, diabetes mellitus, and those of older age, the 
risk of more severe symptoms is increased due to the lack 
of ACE2 bioavailability as the infection spreads [18, 38]. 
Additionally, the degree of induced inflammation and 
risk of detrimental cytokine storm, through ACE2 defi-
ciency due to SARS-CoV-2 infection, is dependent on sex 
and age [20, 39, 40].

In the brain, the loss of ACE2 bioavailability impairs 
blood pressure control and autoregulation ability in the 
form of altered baroreflex sensitivity and endothelial cell 
function [19, 41, 42]. Mechanistically, endothelial cells, 
smooth muscle cells, glial cells, and neurons all utilize 
ACE2 for proper function [41] in many brain regions 
[43]. Consequently, brain levels of ACE2 are relevant for 
the degree of ischemic injury and its subsequent potential 
impact on neurodegeneration, Alzheimer’s disease (AD), 
and dementia risk [43–45]. ACE2 levels are accordingly 
inversely correlated with parenchymal amyloid beta and 
tau in AD [46]. For cases of COVID-19, where cardiovas-
cular and cerebral ACE2 receptors are taken up by the 
SARS-CoV-2 virus, acute exasperation of these ACE2 
limited effects could contribute to neurological symp-
toms. Another potential contributor to neurological 
symptoms, and a pathway to cognitive decline, is the di-
rect cerebral infection risk posed by SARS-CoV-2. Below, 
we will discuss these direct pathways to the brain, the neu-
rological symptoms present in COVID-19 patients, the 
implications of direct brain infection, types of neuropa-
thology observed, and cognitive alterations and long-
term symptoms reported from recovered COVID-19 pa-
tients.

SARS-CoV-2 Neurological Infection Characteristics

Cerebral Viral Pathway – Neuroinvasive and 
Neurotropic
From a neurological perspective, it is important to un-

derstand how SARS-CoV-2 potentially infects the cere-
brum and the consequential clinical implications. The 
SARS-CoV-2 virus is classified as a human betacoronavi-
rus, joining the ranks of other epidemic-causing viruses 
such as SARS-CoV-1 and Middle East respiratory syn-
drome–related coronavirus (MERS-CoV) [47]. Human 
coronaviruses, including at least human coronavirus 
229E (HCoV-229E, common cold), human coronavirus 
OC43 (HCoV-OC43, common cold), and SARS-CoV-1 
(SARS), have both neuroinvasive and neurotropic prop-
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erties [47–49], which refer, respectively, to the ability to 
invade the central nervous system from the periphery and 
the ability to directly infect neurons and glial cells [48]. 
Potentially due to being structurally/genetically similar to 
SARS-CoV-1 [50], SARS-CoV-2 also appears to exhibit 
neuroinvasive [12] and neurotropic [8] properties.

There are multiple possibilities for SARS-CoV-2 neu-
roinvasive pathways, including neural and hematoge-
nous routes [49, 51, 52]. One possibility for the neural 
route is through the olfactory nerves, where SARS-CoV-2 
potentially utilizes axonal and transneuronal transport to 
enter the central nervous system [51]. This pathway is di-
rectly supported by findings of SARS-CoV-2 infection of 
neurons in the olfactory mucosa [53] and low levels of 
SARS-CoV-2 ribonucleic acid in the olfactory bulb [54]. 
This possibility was also demonstrated with the SARS-
CoV-1 virus in intranasally inoculated mice [51, 52]. Of 
note, NRP1 could play a role in the neural pathway by 
enhancing the infectivity of SARS-CoV-2 into olfactory 
neurons [30]. While the neural route is a slow transport 
mechanism, considering the proximity of the olfactory 
nerve to the brain, it could be a cause of early cerebral in-
fection as well as induce olfactory symptoms [52]. In 1 
patient with SARS-CoV-2 infection and anosmia, mag-
netic resonance imaging (MRI) revealed abnormalities 
within the right gyrus rectus and olfactory bulbs early in 
the infection timeline [55]. Overall, up to 64% of clinical 
COVID-19 patients have olfactory dysfunction, which 
could be partially caused by this infection route, though 
changes significant enough to be visualized in MRI may 
only occur in the earliest phase of the infection or in sub-
sets of the population [55, 56]. The axonal transport 
through the olfactory bulb could have specific conse-
quences for the hippocampus and entorhinal cortex. 
These brain regions are positioned in close proximity to 
the olfactory bulb and contain direct neuron projections 
connecting these territories [57]. Both the hippocampus 
and the entorhinal cortex are regions involved in early 
AD progression [58] and injury by SARS-CoV-2 could 
have implications for cognitive decline.

The hematogenous route, shown to be possible in 
SARS-CoV-1-infected mice, would take the form of 
SARS-CoV-2 passing through the blood-brain barrier 
(BBB) and appears possible in humans [8, 52]. This he-
matogenous pathway, while not mutually exclusive from 
the neural pathway, could exploit increased BBB perme-
ability from systemic inflammation (from cytokine and/
or bradykinin storms) or could exploit direct endothelial 
cell infection to enter the brain [52, 59, 60]. If infectious 
SARS-CoV-2 virions were to pass through a leaky BBB, 

they would travel in blood unaided or could exploit trans-
port through an infected cell. While infectious SARS-
CoV-2 virions have not been confirmed in blood, nonin-
fectious SARS-CoV-2 ribonucleic acid has been con-
firmed, highlighting the potential for this pathway [61]. 
The exact mechanism for SARS-CoV-2 to infect blood is 
currently unknown, but one possibility is for SARS-
CoV-2 to infect lymphoid tissue directly, shown possible 
in humans [7, 14], and then transfer to blood via lymph 
fluid [52]. The direct infection through CSF appears to be 
rare with only 6% of patients with central nervous symp-
toms testing positive for SARS-CoV-2 in the CSF, sug-
gesting that indirect inflammatory damage may play a 
larger role in COVID-19 [62]. Alternatively, infected leu-
kocytes could act as a carrier of viral particles to aid viral 
entry across the BBB [59]. As this hematogenous pathway 
may be dependent on BBB permeability (driven from 
neuroinflammation or cerebral hypoxia [63]), it is possi-
bly a later stage neuroinfection route. Individuals with 
pre-existing BBB dysfunction, such as those with hyper-
tension, diabetes, older age, cerebrovascular disease [64], 
and neurodegenerative disease (AD, Parkinson’s disease, 
and multiple sclerosis [65]), could be particularly vulner-
able. It is worth noting that these same groups with pre-
existing BBB dysfunction, those with cardiovascular risk 
factors, those of older age [3], and those with neurode-
generative diseases [66, 67] are all at elevated risk for a 
more severe COVID-19 course, including death. While 
there may be multiple explanations for poorer outcomes 
among older adults and those with cardiovascular risk 
factors, detailed below, poorer outcomes among those 
with neurodegenerative diseases could be explained by 
ACE2 disruption, BBB dysfunction, or higher rates of 
NRP1 expression [68]. Additionally, elevated COVID-19 
severity and death risk are correlated with the presence of 
neurological symptoms [69], indicating a connection be-
tween neurological involvement and COVID-19 disease 
course.

SARS-CoV-2 Neurological Symptoms/Manifestations
Regardless of viral pathway, reports of COVID-19 

commonly show a diverse set of neurological symptoms 
that can be classified as central nervous system, periph-
eral nervous system, and skeletal muscular injury in-
volvement [70]. Neurological clinical symptoms, split 
into severe and non-severe COVID-19 cases along with 
unspecified or case studies, are represented in Table  1. 
Overall, at least 1 neurological symptom is present within 
46–93% of severe and 30–79% of non-severe COVID-19 
clinical patients [71–73]. Typically, patients will experi-
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ence between 1 and 3 neurological symptoms throughout 
the course of COVID-19 [71]. Of note, the major differ-
ences between severe and non-severe cases can include 
encephalopathy, altered state of consciousness, cerebral 
ischemic stroke, rhabdomyolysis, taste, and smell impair-
ment [71, 73]. The more rare symptoms include cerebral 
hemorrhage, encephalitis, meningitis/myelitis, ataxia, 
seizures, polyneuropathy, and Guillain-Barré syndrome 
[74]. Typically, more severe COVID-19 cases are associ-
ated with increased likelihood of neurological symptoms 
[51, 72], which have the potential to occur anytime over 
the duration of the infection [71]. While disentanglement 
of infection root causes of neurological symptoms is dif-
ficult, in any case there are potential long-term conse-
quences for the individual [70].

SARS-CoV-2 Neurovirulent Potential
With the establishment of neuroinvasive and neuro-

tropic characteristics for SARS-CoV-2 as well as clinical 
neurological symptoms, it remains to be seen if the virus 

has neurovirulence or will induce neurological diseases in 
humans. These possible neurological diseases range from 
acute forms such as encephalitis, to postinfectious en-
cephalomyelitis, to the induction of neurodegeneration 
[48, 91]. Viral acute encephalitis, direct neuroinflamma-
tion of gray matter, is typically characterized by neuronal 
death (either directly from viral replication or immune 
response), perivascular inflammation, and tissue necrosis 
[92]. Postinfectious encephalomyelitis is more typically 
associated with white matter damage through demyelin-
ation and perivascular inflammation and occurs days to 
weeks after the infection seemingly is cleared [91, 92]. The 
initiation of viral acute encephalitis has been documented 
in humans across multiple viruses including herpes sim-
plex virus (HSV), rabies virus, Japanese B encephalitis, 
measles, mumps, and rubella [48, 91]. For cases of chron-
ic viral-induced neurodegeneration, viruses such as her-
pes simplex virus type 1 (HSV-1) and human herpes virus 
6 (HHV-6) have been hypothesized to promote or exac-
erbate AD, while human immunodeficiency virus (HIV) 

Table 1. Rate estimations of neurological symptoms, loosely organized by frequency, are broken down into central nervous system, 
peripheral nervous system, and skeletal muscular injury categories, among clinical COVID-19 patients

Neurological manifestation Severe case Non-severe case Unspecified severity 
or case studies

Central nervous system Encephalopathy 65–84% [71, 75] 13% [71] 42% [76]
Dysexecutive syndrome 36% [75] – –
Dizziness 5–30% [71–73, 77] 7–30% [71–73, 77] –
Headache 8–32% [71–73, 77] 6–40% [71, 73, 77, 78] –
Altered state of consciousness 5–39% [71–73] 2–7% [71–73] 33% [76]
Delirium 11–33% [79–81] – –
Nausea/vomiting 8–11% [77] 2–10% [77, 78] –
Ischemic stroke 1.2–5.7% [71–73, 82] 0.5–1.4% [71–73, 82] 1.6–5.4% [76, 83]
Acute hemorrhage 0.7–0.9% [71, 73] 0% [71, 73] 4.5% [76]
Acute encephalitis 0% [71, 73] 0.2–0.3% [71, 73] – [12]
Meningitis/myelitis 0% [71] 0% [71] – [12, 84]
Ataxia 1.1% [72] 0% [72] –
Seizures 0–1.2% [71–73] 0–1% [71–73] –

Peripheral nervous 
system

Taste impairment (ageusia/dysgeusia) 3–4% [72, 73] 7–55% [72, 73, 78] –
Smell impairment (anosmia/dysosmia) 3–13% [71–73] 6–86% [71–73, 85] –
Nerve pain (neuralgia) 4.5% [72] 0.8% [72] –
Vision impairment 2.3% [72] 0.8% [72] –
Polyneuropathy 0–1.5% [71, 73] 0–0.2% [71, 73] –
Guillain-Barré syndrome + variants 0% [71] 0% [71] 0.004–0.005% [86–89]

Skeletal muscular injury Myalgias 42–65% [71, 73] 10–53% [71, 73, 90] –
Rhabdomyolysis 2.2–13% [71, 73] 0.3–0.4% [71, 73] –

Overall 46–93% [71–73] 30–79% [71–73] –

COVID-19, coronavirus disease 2019. Severe versus non-severe COVID-19 cases were distinguished based on respiratory/pneumonia 
metrics with severe cases passing the criterion for mechanical ventilation [71, 76].
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has been causally linked to neurodegeneration [48]. Con-
gruent with the neurological impact of HSV-1, HHV-6, 
and HIV, a proposed underlying theory for neuroviru-
lence states that neuroinflammation consequences from 
any viruses, bacteria, and/or fungal infection source could 
contribute to AD pathogenesis [93]. For neurotropic and 
neuroinvasive human coronaviruses, the connection 
with chronic neurovirulent properties is not yet estab-
lished. That said, in animal models, several respiratory 
coronaviruses have neurovirulent properties including 
the mouse hepatitis virus, porcine hemagglutinating en-
cephalomyelitis virus, and feline coronavirus [48]. There-
fore, it is important to investigate the neurovirulence po-
tential of SARS-CoV-2 in both acute and chronic possi-
bilities.

The most extreme forms of SARS-CoV-2 acute neuro-
virulence would include meningitis or encephalitis. While 
there have been reported cases of meningitis/encephalitis 
in human patients with SARS-CoV-2 [12, 13, 94], the to-
tal extent and chronic hazard are less clear. To explore the 
source of this encephalitis/neuroinflammation, neurovir-
ulent viruses can directly produce proinflammatory sig-
naling in the brain [95]. The primary cells responsible for 
immune system signaling in the brain, astrocytes and mi-
croglia, produce higher signaling levels specifically with 
neurotropic viral infection [95]. Patients with moderate 
and severe COVID-19 have evidence of astrocytic activa-
tion and injury [96], suggesting neurotropic properties of 
SARS-CoV-2 that possibly induces this proinflammatory 
signaling. Additionally, there are increased concentra-
tions of plasma neurofilament light protein in severe CO-
VID-19 patients, suggesting neuronal injury as the dis-
ease progresses [96]. In murine models, SARS-CoV-2 in-
fection causes direct astrocytes, microglia, and neuronal 
infection [97]. These observations have implications for 
neurotropic viruses, as the activation of neuroinflamma-
tion presents a potential pathway to acute neurovirulence 
and/or chronic neurodegeneration [98, 99]. While these 
human and animal findings provide evidence that part of 
the neuroinflammation could be directly occurring from 
SARS-CoV-2 neurotropism, systemic inflammation may 
also influence the immune signaling of astrocytes and mi-
croglia. In particular, mere exposure to proinflammatory 
cytokines, expressed from the periphery, could increase 
the permeability of the BBB (increasing likelihood of di-
rect viral infection) as well as influence astrocytes in such 
a way to induce neurodegeneration and further neuroin-
flammation [100]. Therefore, the generation, quantity, 
and type of periphery proinflammatory cytokines play an 
important role in neurodegeneration [98]. Regardless of 

whether SARS-CoV-2 directly uses astrocytes as viral 
hosts or influences them from indirect periphery signals, 
there are multiple pathways to acute neurovirulence that 
need to be further researched to understand exactly how 
the brain is affected [100].

Establishing the chronic neurovirulence potential of 
SARS-CoV-2 is difficult early in the timeline of the CO-
VID-19 pandemic, especially among individuals with 
mild COVID-19 symptoms, but certain essential traits 
such as persistence of virus within the central nervous 
system can establish the risk potential for chronic patho-
genesis. Similar to how HSV-1 can persist in human 
brains throughout a lifetime [101], some human corona-
viruses could have this capability. For example, HCoV-
229E and HCoV-OC43 have the ability to infect neural 
cells persistently (for at least 130 days) as well as to pro-
duce infectious virions throughout the infection duration 
[102, 103]. These particular human coronaviruses are not 
known to express any chronic neurovirulent properties, 
but other neurovirulent viruses such as HSV-1, HHV-6, 
and HIV can act as a template for determining the warn-
ing signs of potential long-term SARS-CoV-2 risk [48]. 
Additionally, chronic neuroinflammation is present 
across many neurodegenerative diseases and plays a role 
in the disease progression for Parkinson’s disease and AD 
as well as psychiatric diseases such as schizophrenia, bi-
polar disorders, and substance abuse [104, 105]. Chronic 
neuroinflammation has the potential to initiate or worsen 
pre-existing neurodegeneration; understanding the role 
of SARS-CoV-2 infection on chronic neuroinflammation 
will be critical for long-term treatment [104, 106]. Espe-
cially important for younger individuals and those with 
mild/asymptomatic cases of COVID-19 will be determin-
ing if chronic neuroinflammation is present and if so, the 
extent [105]. While neurovirulent characteristics can be 
difficult to substantiate, neuropathology and neuroimag-
ing can provide insight into potential risk.

Neuropathology and Neuroimaging
Damage to the central nervous system from viral infec-

tion can occur through three separate pathways. The first 
pathway is direct damage to cells through viral replica-
tion, termed virus-induced neuropathology [48]. The 
second pathway is indirect cell damage originating from 
an overactive immune response, designated virus-in-
duced neuroimmunopathology [48]. The third pathway 
is through systemic/cerebrovascular disorder that in-
cludes cellular hypoxia (driven by hypoperfusion, arterial 
thromboembolism, and/or acute respiratory distress), 
sepsis, hyperpyrexia, and hypercoagulability [107]. To-
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gether, these pathways comprise the neuropathological 
possibilities of COVID-19 and can exist independently of 
each other. Seemingly consistent with the neurovirulence 
hypothesis of SARS-CoV-2, autopsy and MRI studies 
confirm aspects of expected acute damage. Since catego-
rizing the root causes of downstream cerebral damage is 
not always possible without more in-depth analysis, along 
with the challenge of untangling pathology from pre-ex-
isting comorbidities, all the following MRI and neuropa-
thology findings will not be binned into pathways except 
for some specific cases. Observed neuropathology in-
cludes focal hemorrhagic white matter lesions [107, 108], 
discrete foci of acute axonal injury (with myelin loss) 
[108], florid leukocytoclastic reaction within infarcts, 
lymphohistiocytic inflammation [109], and neuronal cell 
loss [110]. Overall, neuropathology of these types is more 
consistent with immune-mediated damage or hypoxia 
than direct virus-induced neuropathology [54, 108], es-
pecially since SARS-CoV-2 virus is not always found in 
the injured brain [111] or is found at very low levels [54]. 
For example, demyelination is consistent with immune-
mediated damage such as in cases of Guillain-Barré syn-
drome or acute disseminated encephalomyelitis [107], 
though demyelination may not be a common feature of 
COVID-19 [54]. The leukocytoclastic and lymphohistio-
cytic reactions are interesting because they could hint at 
neuroimmunopathological roots or may be a typical reac-
tion to reperfusion injury within infarct regions [109]. 
Other neuropathology, potentially indicative of systemic/
cerebrovascular disorder, has cerebral manifestations of 
neocortical infarcts [54, 108], scattered shrunken/necrot-
ic neurons [54, 108, 110], microhemorrhage [107], and 
acute hypoxic ischemic damage [54, 112]. The degree of 
stroke, clot, and hypoxic/ischemic damage seen across 
clinical COVID-19 cases means that a portion of this 
damage can be attributed to thrombotic origins. While 
this establishes the neuropathological possibilities within 
patients who have died from fatal COVID-19 complica-
tions, the neurological implications for moderate, mild, 
and asymptomatic COVID-19 patients are less clear.

To explore the domain of COVID-19 patients who 
survive the initial infection, clinical brain imaging can of-
fer insights into potential damage. In general, clinical im-
aging supports neuropathological findings with acute/
chronic infarcts [76, 113–115], white matter microhem-
orrhages [113–115], microangiopathy [76], parenchymal 
hematomas [114], olfactory bulb abnormalities [114], 
and lymphohistiocytic inflammation [109]. Insights from 
imaging showcases perfusion abnormalities in cases of 
posterior reversible encephalopathy syndrome (PRES) 

will be discussed in more detail within the cardiovascular 
interactions section. Additionally, cerebrospinal fluid 
and plasma biomarker evidence support potential astro-
cytic injury and neuronal injury from COVID-19, but 
this evidence is nonspecific and only highlights that dam-
age is indeed occurring [96]. Of those with neurological 
symptoms and subsequent cerebrospinal fluid testing, 
40% had hyperproteinorrachia supporting inflammation 
or axonal injury [62]. Of clinical COVID-19 patients who 
received an MRI from altered mental status or focal weak-
ness, neuroimaging studies showed that 22% of these pa-
tients have microbleeds and 26% have leukoencephalopa-
thy [116]. Most of the microbleeds were found in subcor-
tical white matter and the corpus callosum [116, 117] 
consistent with microbleed patterns observed in cases of 
hypoxemia and critical illness [118, 119]. However, endo-
theliitis, kidney failure (through uremic toxins increasing 
BBB permeability), and thrombosis have also been theo-
rized to be independent or compounding factors in CO-
VID-19 microbleed formation [117, 118, 120]. In a group 
of 3-month recovered COVID-19 patients, neuroimag-
ing demonstrated changes in both gray and white matter 
with few differences dependent on the severity level other 
than a decrease in global gray matter volume correlated 
with inflammation (lactate dehydrogenase levels) [121]. 
Gray matter increases across multiple regions occurred in 
these recovered COVID-19 patients including the olfac-
tory cortices and hippocampus [121]. White matter 
changes, in general, were characterized by lower diffusiv-
ity and higher fractional anisotropy (with no differences 
in total white matter volume), indicating a potential re-
myelination [121]. Additionally, resting-state fMRI find-
ings in individuals recovered from mild COVID-19 
showed states of hyperconnectivity [122]. These neuro-
imaging findings demonstrate that structural brain 
changes are possible, even spanning across non-severe 
cases, but regardless, more imaging studies are necessary, 
including in recovered COVID-19 patients, to better 
quantify risk and potential long-term consequences.

Cognitive Alterations and Long-Term Symptoms from 
Clinical COVID-19 Survivors
Ultimately, one of the major concerns with a neuro-

logical viral influence is its subsequent impact on cogni-
tion. Overall, plausible cerebral injury from SARS-CoV-2 
may induce or worsen cognitive impairment and demen-
tia [46]. In particular, damage from hypoxia/ischemia, 
thromboemboli/stroke, and neuroinflammation, all pos-
sible from SARS-CoV-2 infection, are associated with 
cognitive decline and dementia [46]. While existing stud-
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ies are currently limited, immediate cognitive alterations 
were observed in patients recovered from COVID-19. Of 
note, the reported long-term cognitive decline spans sev-
eral domains, including concentration, memory, execu-
tive function, psychomotor coordination, information 
processing, and language [123–128]. During the recovery 
phase of COVID-19, a middle-aged population, of vari-
ous severity levels, experienced loss of sustained attention 
[129]. The degree of sustained attention alterations cor-
relates with post-infection blood-based inflammatory 
levels [129]. Even within asymptomatic COVID-19 pa-
tients, cognitive deficits were observed in language and 
visuoperception, though there was no difference in over-
all cognitive ability from the control group [130]. The se-
verity of COVID-19 disease state, from asymptomatic to 
requiring hospitalization, correlates with degree of cogni-
tive changes [131]. The degree of cognitive changes can 
be consequential with hospitalized patients having be-
tween 0.45-0.57 standard deviations of global cognitive 
performance loss compared with control populations 
[131]. Mostly relevant for higher severity COVID-19 pa-
tients, other aspects of COVID-19 such as development/
duration of delirium and ventilator treatment due to hy-
poxia can all contribute to long-term cognitive risk. Of 

clinical COVID-19 patients, 11–33% develop delirium 
[79–81]. Of those admitted to the intensive care unit 
(ICU) from COVID-19 infection, up to 80% develop de-
lirium at least once during their treatment [132]. Estab-
lishment of delirium and systemic inflammation, both 
present in severe and critically ill COVID-19 patients, is 
associated with future risk of dementia [99, 133, 134]. As 
supported in a recent meta-analysis, delirium develop-
ment in clinical patients is an independent risk factor for 
long-term cognitive decline (up to 2.3× higher risk) [135]. 
Shown in populations initially free of cognitive impair-
ment and across age, a longer duration of delirium can 
induce novel cognitive impairment at levels comparable 
to mild AD [136]. Patients who require ventilator treat-
ment still often experience hypoxia; persistent dysfunc-
tion in attention, memory, language, processing speed, 
and executive functioning can occur in these patients for 
years after recovery [49]. Additionally, for those with pre-
-existing cognitive impairment, there is a greater risk for 
precipitous cognitive decline due to interactions between 
delirium and dementia [133, 137].

Other long-term effects of COVID-19, such as in-
somnia [138], chronic fatigue [139], social isolation 
[140], and development of psychological disorders such 

Table 2. Rate estimations of long-term symptoms, loosely organized by frequency, from clinical patients recovered from acute features of 
COVID-19

Clinical COVID-19 survivor Comparison population

≥1 symptom 50%† [123], 76%‡ [152] –
Chest CT abnormalities 71%† [153], 53%‡ [152] –
Fatigue 53%** [124], 28–53%† [123, 125], 63%‡ [152] 9–22% [123, 154]
Myocardial inflammation 30–60%† [155, 156] –
Psychomotor coordination impairment 57%† [128] –
Executive function impairment 50%† [128] –
PTSD 28%** [127] 3–17% [90, 157]
Loss of concentration 26%** [126], 33%† [128] –
Verbal fluency loss 32%† [128] –
Insomnia/sleep disturbance 8–40%** [126, 127], 18%† [123], 26%‡ [152] 5–32% [90, 123]
Depression 21–31%** [126, 127], 4.3%† [123], 23%‡ [152] 1–28% [90, 123, 157]
Memory loss 18%** [126], 24%† [128] –
Pulmonary function abnormalities 21–58%† [123, 158], 22–56%‡ [152] 5% [123]
Resting heart rate increase 11%† [123] 0% [123]
Hematuria (kidney) 57%* [159] –
Proteinuria (kidney) 31%* [159] –
Liver ALT, AST/ALT, GGT, and ALP levels *[160] –

COVID-19, coronavirus disease 2019; CT, computed tomography; PTSD, posttraumatic stress disorder; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; GGT, γ-glutamyltransferase; ALP, alkaline phosphatase; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2. A similar reference population is compared to disentangle the effects of the COVID-19 pandemic from SARS-CoV-2 infection. 
Only symptoms that could have a primary or a secondary effect on cognition are included. * Measurements at hospital discharge. 
** Measurements at 1 month. † Measurements at 3 months. ‡ Measurement at 6 months.
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as posttraumatic stress disorder (PTSD) [141] and de-
pression [142], can contribute to cognitive decline. As 
seen in Table 2, clinical COVID-19 survivors can experi-
ence long-term symptoms that may have primary or sec-
ondary effects on cognitive function. Long-term symp-
toms such as fatigue, cognitive alterations, myocardial 
inflammation, PTSD, insomnia, depression, pulmonary 
function abnormalities, resting heart rate increase, he-
maturia, proteinuria, and abnormal liver enzyme levels 
have all been reported in COVID-19 survivors. Of note, 
when compared with influenza or other respiratory tract 
infections, diagnosis rates of psychiatric illnesses, mood 
disorders, or anxiety disorders are higher after CO-
VID-19 [143]. Often, recovered COVID-19 patients can 
have several of these long-term symptoms lasting at least 
70 days with an unknown final duration [124, 125]. Ad-
ditionally, as is the case for symptoms of fatigue, CO-
VID-19 severity does not always correspond with likeli-
hood of developing long-term symptoms [125]. This ob-
servation is inconsistent with other post-viral fatigue 
syndromes, such as those attributed to brucellosis, glan-
dular fever, and lyme disease, where disease severity cor-
relates with the extent to which patients experience fa-
tigue [144]. Even among ambulatory care COVID-19 
patients, 35% have post-acute symptoms 16 days after 
COVID-19 testing, suggesting prolonged symptoms in 
non-severe cases [145]. In a sample of health care pro-
fessionals with mild COVID-19 severity and seroposi-
tive testing, 26% reported ≥1 long-term symptom after 
2 months of recovery and 15% reported ≥1 long-term 
symptom after 8 months of recovery [146]. For those 
with persistent long-term COVID-19 symptoms, termed 
“long-COVID,” 13.3% of these individuals experience 
symptoms >28 days, 4.5% >56 days, and 2.3% >84 days 
[147] with neurological manifestations and fatigue be-
ing the most prominent in non-hospitalized individuals 
[148]. In general though, findings from other similar vi-
ral diseases suggest that cognitive alterations, psycho-
logical disorders, and long-term symptoms are all pos-
sible in COVID-19 patients. For example, recovered 
SARS patients reported long-term depression, insom-
nia, memory impairment, fatigue, and PTSD [149–151]. 
Other conditions such as sepsis, pneumonia, and acute 
respiratory distress syndrome can similarly increase risk 
for cognitive impairment and dementia in survivors [74, 
150]. These conditions speak to the overall contribution 
of the body’s organs in maintaining brain health, and, in 
the context of COVID-19, the health of the cardiovascu-
lar system likewise has implications for cognitive de-
cline.

Cardiovascular Interactions with COVID-19

The cardiovascular system is intimately intertwined 
with neurological function and dementia risk. For exam-
ple, heart disease, diabetes mellitus, hypertension/hypo-
tension, hypercholesterolemia, obesity, lack of aerobic 
exercise, smoking [161, 162], stroke [163], and vascular 
damage [164] are well-documented risk factors for de-
mentia. Of particular relevance to SARS-CoV-2, heart 
disease, risk for stroke, and vascular damage worsen in 
patients with moderate to severe cases of COVID-19. Ad-
ditionally, SARS-CoV-2 disproportionately targets those 
with pre-existing cardiovascular risk factors, typically 
making cases more severe, and has the potential to com-
pound pre-existing cardiovascular damage [165, 166]. In-
jury to the cardiovascular system, from COVID-19, in-
cluding myocardial, thromboemboli, and vascular dam-
age could synergistically increase future dementia risk or 
exacerbate existing dementia.

In the case of heart disease, clinical COVID-19 can in-
duce myocardial injury (7–25% [77, 167]), myocardial in-
farction/shock (7–14% [77, 82]), and arrhythmias (17% 
[77]). Fifty-five percent of clinical patients, both with and 
without pre-existing cardiac disease, have an abnormal 
echocardiography feature in the left, right, or both ven-
tricles to varying degrees of severity [168]. Even in as-
ymptomatic and symptomatic college athletes, CO-
VID-19 can induce subclinical pericardial (27%), myo-
cardial (17%), and myopericardial (13%) abnormalities, 
though appropriate control groups are needed to rule out 
athletic cardiac adaptation [169]. Similar to the viral 
pathway in the brain, the heart can have direct myocar-
dial infection [9, 170], indirect damage from immune re-
sponse, and/or ischemic damage [171]. Clinically, these 
pathways are difficult to disentangle, but non-specific 
cardiac biomarkers such as elevated troponin levels and 
ECG abnormalities are used to demonstrate cardiac dam-
age [167, 171]. Damage to the heart can take many forms 
including myocardial infarction, microinfarcts, ventricu-
lar fibrosis, and/or atrial fibrosis [171]. This damage can 
progress to cardiomyopathy, systolic/diastolic abnormal-
ities, ventricular tachycardia, and atrial fibrillation [171]. 
Transthoracic echocardiography findings demonstrate 
that 35% of clinical COVID-19 patients have abnormal 
left ventricle wall motion and reduced ejection fraction 
(≤50%), 15% have increased right ventricle size, and 40% 
have decreased right ventricle systolic function [172]. In 
seemingly recovered COVID-19 patients, independent of 
infection severity level and comorbidities, 30–60% still 
have myocardial inflammation around 3 months after di-
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agnosis [155, 156]. In total, heart damage induced by CO-
VID-19, both acute and chronic, can impair blood flow to 
the rest of the body including the flow-sensitive brain and 
in general is associated with risk for future cognitive im-
pairment [161, 162].

In the case of stroke, clinical COVID-19 can induce 
macro/micro arterial/venous thromboemboli (4–7% 
non-severe, 8–31% severe [82, 173–176]) with acute cere-
brovascular attack (0.5–1.4% non-severe, 1.2–5.7% se-
vere [71–73, 82]) occurring as a subset. Additionally, in 
autopsy studies, it appears that deep vein thrombosis and 
pulmonary emboli can occur silently in clinical CO-
VID-19 patients [177, 178], indicating that rates of throm-
bosis may be under-reported [173]. Importantly, abnor-
mal coagulation parameters associated with thrombosis 
are highly linked with mortality in COVID-19 [179]. Co-
agulopathy manifests in a hypercoagulability/prothrom-
botic state to generate thrombi [176]. Typically, coagu-
lopathy is defined as lower levels of platelets and increased 
D-dimer levels, prothrombin time, fibrinogen, factor 
VIII, and von Willebrand factor with D-dimer levels often 
used for disease prediction [176]. States of coagulopathy 
are documented in 19% of clinical COVID-19 patients 
[180] and elevated rates of D-dimer are documented in 
46% of patients [181]. From a causal standpoint, coagu-
lopathy could be the result of infected cells generating 
proinflammatory cytokines or hypoxic conditions [177, 
182]. While the dangers of macro-thromboemboli are 
clear and present, the rates of micro-thromboemboli 
would be more difficult to detect clinically and may have 
long-term consequences. In further autopsy studies, mi-
croscopic thrombi are found in 80–100% of lungs [182], 
opening the possibility that micro-thromboemboli are 
traveling to other organs, including the brain, in severe 
COVID-19 patients. From MRI scans of COVID-19 pa-
tients, non-confluent multifocal white matter hyperin-
tensities on fluid-attenuated inversion recovery and dif-
fusion-weighted imaging have been found [115]. Similar 
patterns were observed following transcatheter aortic 
valve implantation that may result in long-term subopti-
mal cognitive outcomes [183]. Additionally, if present, 
micro-thromboemboli may contribute to coronary dys-
function [171] as well as damage to other organs. More 
studies are needed to determine if micro-thromboembo-
li or subclinical thromboemboli are present in milder cas-
es of COVID-19.

In the case of vascular damage, the potential for CO-
VID-19 to do lasting damage derives from endothelial cell 
injury after direct viral infection (shown systemically in 
SARS-CoV-2-infected organs [184]) or immune-mediat-

ed inflammation. Endothelial cell injury can contribute to 
the dysregulation of the renin-angiotensin-aldosterone 
system, which partially controls arterial blood pressure 
fluctuations and cerebral blood flow. With impaired en-
dothelial cells, the regulation of vascular tone (autoregu-
lation) is disrupted and thus higher fluctuations of blood 
pressure and cerebral blood flow occur. With SARS-
CoV-2 decreasing the bioavailability of ACE2 receptors, 
vasoconstriction and hypertension tend to increase. PRES 
is a possible consequence of endothelial cell dysfunction 
and/or hypertension where autoregulation compensa-
tion abilities cannot control cerebral blood flow ade-
quately [185]. Thus, symptoms of PRES can manifest as 
either cerebral hypoperfusion or hyperperfusion [185]. 
The reason why these seemingly opposite flow manifesta-
tions can occur is potentially explained by the timeline of 
disease progression [186]. As uncontrolled hypertension 
increases, possible in COVID-19 as the renin-angioten-
sin-aldosterone system is disrupted, autoregulatory 
mechanisms compensate with vasoconstriction that re-
sults in cerebral hypoperfusion. Then, as endothelial cell 
dysfunction continuously weakens autoregulation abili-
ties and hypertension increases, autoregulatory mecha-
nisms eventually reach their maximum vasoconstriction 
abilities, resulting in cerebral hyperperfusion. In a pre-
print publication, PRES is listed as a possible COVID-19 
manifestation shown by 25 patients clinically presenting 
with PRES in both the hypoperfusion and hyperperfusion 
progression stages [187]. PRES has also been observed in 
other COVID-19 patient populations to varying degrees 
[113, 188]. Hypoperfusion and flow disruptions are espe-
cially damaging to cerebral white matter; notably, a ma-
jority of AD patients manifest with white matter hyperin-
tensities, suggestive of similar ischemic damage [46]. Per-
fusion abnormalities within small cerebral blood vessels, 
in the context of COVID-19, are primarily attributed to a 
decrease in endothelial cells due to a loss of vascular wall 
adhesion [189]. Endothelial cell dysfunction, similar to 
the effects of hypoperfusion, could lead to decreased 
clearance of cerebral metabolites such as amyloid beta 
and has been implicated in tau formation [46]. Disrup-
tions to endothelial cells, in the form of endotheliitis, 
could also be implicated in the origins of cerebral micro-
bleeds, especially in COVID-19 patients diagnosed with 
encephalopathy [190]. In addition to endothelial dys-
function, vascular damage could take the form of im-
paired baroreflex that would risk the ability of the body 
to respond to dynamic blood pressure needs [191] as well 
as chronic atherosclerosis [192]. Evidence from young 
adults 3–4 weeks after mild COVID-19 recovery indicate 
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systemic vascular alterations in the form of increased vas-
cular stiffness, measured through pulse wave velocity, 
and decreased flow-mediated dilation in the arm [193]. 
This vascular evidence across mild to severe COVID-19 
patients indicates that perfusion abnormalities and endo-
thelial/vascular dysfunction can occur in both the sys-
temic and cerebral cardiovascular system with risk for 
cognitive decline.

Pulmonary, Renal, and Liver Interactions with 
COVID-19

In addition to the cardiovascular system, damage to 
other organ systems by COVID-19 can potentially in-
crease risk for future cognitive decline. For example, 
damage to the pulmonary system, renal dysfunction [162, 
194], and liver dysfunction [195, 196] can increase de-
mentia risk or affect dementia progression. For the pul-
monary, renal, and hepatic systems, SARS-CoV-2 can di-
rectly infect these organs, indirectly damage them from 
systemic inflammatory response, and/or induce throm-
boembolic damage [197, 198]. Analogous to the brain and 
cardiovascular system, downregulation of ACE2 due to 
the SARS-CoV-2 attachment plays a critical role in CO-
VID-19 pathogenesis. ACE2 levels are a critically impor-
tant aspect of pulmonary protection against damage [17, 
199]. This also holds true for the kidneys, where decreas-
es in ACE2 expression can compound renal damage 
[200]. Across COVID-19 severity, damage to these organ 
systems has been observed to varying degrees ultimately 
presenting as increased risk for future cognitive decline.

One of the most consistent clinical signs of COVID-19 
includes a cough that could be indicative of pneumonia, 
diagnosed through chest computed tomography (CT) 
evaluation. Ground glass opacity areas can be seen broad-
ly in the lungs, from CT imaging, in up to 98% of patients 
throughout infection [201]. Many other virus-associated 
changes are commonly observed in the lungs, including 
consolidation, reticulation, air bronchogram, and vascu-
lar enlargement [201]. Physical pulmonary abnormalities 
occur even in patients presenting with asymptomatic and 
mild COVID-19 cases, including young children [202, 
203]. While asymptomatic cases have a lower presenta-
tion of pulmonary abnormalities than symptomatic CO-
VID-19 patients, the percentage is still high at 49% [202]. 
At the extreme, one of the most serious forms of pulmo-
nary dysfunction is acute respiratory distress syndrome 
(ARDS). This syndrome is diagnosed when arterial blood 
oxygen levels are low enough to induce hypoxia. About 

33% of hospitalized COVID-19 patients experience 
ARDS, with many needing ICU or ventilator treatment 
[204]. Additionally, 30% of clinical patients experience 
COVID-19-induced acute pulmonary embolism [205]. 
In autopsy results, the type of pulmonary damage present 
primarily takes the form of diffuse alveolar damage across 
a large majority of cases [206, 207]. Additionally, macro-
vascular (42%), but especially microvascular (84%), 
thromboemboli were present in autopsied lungs [206]. 
This type of damage to the lungs is consistent with sys-
temic hypoxia, known to be associated with a wide range 
of outcomes such as an increase in inflammatory factors 
as well as increased blood coagulation [208, 209]. For the 
brain, hypoxia can induce neuronal injury/loss through 
disruption of cerebral homeostasis. As oxygen levels de-
crease in the brain, rising carbon dioxide levels results in 
an acidosis that, at extreme levels, will induce vasospasm 
and vascular permeability. Ultimately, this cascade could 
result in neuronal and astroglial injury/death that will 
present as cognitive decline [208]. As worsening pulmo-
nary health is correlated with neurological symptoms in 
COVID-19 patients, the hypoxia cascade is a plausible 
component of detrimental neurological alterations [210]. 
Fibrosis is a possible long-term pulmonary consequence 
from COVID-19, especially after long-duration severe 
disease, which can reduce overall lung capacity and re-
duce the efficiency of gas exchange [211]. In recovered 
clinical COVID-19 patients with no pre-existing pulmo-
nary comorbidities, long-term pulmonary alterations 
have been observed after 3 months [153]. Of the recov-
ered patients, who mostly comprised of moderate COV-
ID-19 severity, 71% had abnormalities on chest CT scans 
with 31% of those with CT abnormalities manifesting as 
noticeable pulmonary abnormalities [153]. Even within 
the group without CT abnormalities, some individuals 
experienced pulmonary abnormalities, suggesting that 
sub-imaging damage can occur [153]. In cases of similar 
pulmonary damage from SARS-CoV-1 and influenza A, 
full recovery could take years [212]. Ultimately, chronic 
pulmonary damage from COVID-19 may increase risk of 
future cognitive impairment as similar to chronic hypox-
emia, chronic obstructive pulmonary disease, and ob-
structive sleep apnea [213]. In severe COVID-19 cases, 
the possibility of future cognitive impairment is even 
higher based on reports of patients with ARDS who de-
velop cerebral atrophy, ventricular enlargement, and cog-
nitive alterations [49, 214].

Kidney damage is also common in COVID-19 and 
pre-existing kidney damage represents a mortality risk 
factor. Across the broad spectrum of clinical COVID-19 
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patients, 44–75% presented with abnormal kidney func-
tion [215], which could be signs of kidney damage, both 
in the form of blood in urine (hematuria: 42%) and high 
levels of protein in urine (proteinuria: 66%) [159]. Of 
note, these COVID-19 rates of hematuria and proteinuria 
are similar to rates present from other critical illness 
[159]. In non-severe patients, acute kidney injury (AKI) 
was observed in about 2% of clinical patients, but severe 
patients had much higher rates at 19–37% [215, 216]. For 
those with more serious AKI, about 20% of the severe pa-
tients, renal replacement therapy such as dialysis is re-
quired [217]. Autopsy studies showed kidney damage, 
with the primary form being acute tubular injury/necro-
sis [159, 197, 218]. While long-term data regarding kid-
ney damage are still necessary, information from hospital 
discharge can give some insight into expected recovery 
rates. For example, of the discharged clinical COVID-19 
patients who experienced renal dysfunction, 69% had 
proteinuria recovery and 43% had hematuria recovery 
[159]. Of patients with AKI, only 18% fully recovered by 
hospital discharge [159]. For those who required renal 
replacement therapy (associated with severe AKI) and 
survived COVID-19, 33% remain dependent on renal re-
placement therapy at discharge with 17% remaining de-
pendent after 60 days [217]. As in other diseases cases of 
AKI, the progression to chronic kidney disease could be 
as high as 25%, demonstrating long-term damage poten-
tial [219]. Renal damage, beyond the direct dysfunctional 
effect, could interact synergistically with cardiovascular 
abnormalities resulting in further myocardial dysfunc-
tion [191]. AKI has the potential to accumulate nitroge-
nous waste in the brain, disrupt cerebral osmolality, and 
promote cerebral inflammation [220]. These alterations 
can disrupt the permeability of the BBB [220]. The renal 
injury effects can influence multiple brain regions, but the 
hippocampus appears to be particularly susceptible [220]. 
Ultimately, the culmination of long-term renal damage, 
due to COVID-19, presents a cognitive impairment risk 
to survivors [162, 194].

For COVID-19, liver abnormalities in the form of el-
evated enzyme levels occur across the spectrum of disease 
severity. For example, 18–21% and 21–22% of clinical 
COVID-19 patients have elevated alanine aminotransfer-
ase (ALT) and aspartate aminotransferase, respectively 
[181, 221]. Other potential markers of injury include 
γ-glutamyltransferase (11–21%), total bilirubin (6–35%), 
and alkaline phosphatase (4–6%) with 16–53% of total 
hospitalized COVID-19 patients experiencing abnormal 
liver function [181, 221–223]. Overall, worse COVID-19 
severity correlates with higher levels of liver abnormali-

ties [224, 225]. With severe COVID-19 cases, liver abnor-
malities can progress to acute liver injury in 5–6% of clin-
ical COVID-19 patients [224, 225]. In terms of patholog-
ical damage, injury can take the form of micro- and 
macrovesicular steatosis as well as dysfunction of intra-
hepatic portal vein branches, mild lobular and portal in-
flammation, ductular proliferation, and cellular necrosis 
[222]. As mentioned, organ damage can have a number 
of plausible origins, but for the liver specifically, hepato-
toxic drug-induced injury from various treatment op-
tions is an additional possibility [197]. Within 14 days of 
hospital discharge, ALT, alkaline phosphatase, aspartate 
aminotransferase/ALT, γ-glutamyltransferase, and other 
liver enzyme levels remained abnormal in recovered CO-
VID-19 patients, compared with controls [160]. While 
overall liver enzymes trended toward recovery over 40 
days in these patients, not all enzymes fully normalized 
making the complete recovery timeline unknown [160]. 
These enzyme trends are supported by abnormal plasma 
metabolic profiles, after 3 months of recovery time, which 
could indicate prolonged liver injury [226]. While the 
complete long-term implications of abnormal liver func-
tion are not yet known and additional follow-up data are 
needed, warning signs of liver injury exist in recovered 
COVID-19 patients that could contribute to dementia 
risk [195, 196].

Aging Complications

With the viral mechanisms and major damage path-
ways to COVID-19-induced cognitive decline risk delin-
eated, certain groups, such as older adults, are at greater 
risk for severe COVID-19 and subsequent cognitive de-
cline. Advancing age is the strongest independent risk 
factor for COVID-19-related severe illness and death, 
with extreme risk for those above 80 years old [3, 227]. 
This disproportional mortality is extreme; 94–99% of pa-
tients who died from COVID-19 were older than 50 years 
old [228, 229]. While pre-existing comorbidities for the 
elderly, relevant for 35–66% of those above 65 years of 
age [230], can increase the severity and mortality risk of 
COVID-19, age alone still exists as an independent risk 
factor for heightened COVID-19 severity. On the other 
end of the age spectrum, children, though not free of CO-
VID-19 symptoms or mortality [231], most often experi-
ence asymptomatic or mild symptoms from COVID-19 
[232]. It is those of older age who are at greatest risk for 
dementia [233]; thus, it is important to examine how 
COVID-19 might modulate this risk. There are multiple 
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contributing factors that could explain this steep gradi-
ent in age-related COVID-19 response, including chang-
es in ACE2 expression, immune response, and systemic 
frailty.

Starting with ACE2 levels, the attachment point for 
SARS-CoV-2, the mechanism of limited ACE2 bioavail-
ability could influence response severity to the virus [18]. 
Similar to those with pre-existing ACE2 deficiencies such 
as individuals with hypertension and diabetes mellitus, 
those of older age experience a decrease in ACE2 bioavail-
ability, leading to increased risk of organ injury. Overall, 
adults can have lower systemic ACE2 expression than 
children [234] as well as lower circulating ACE2 levels 
[235]. For vascular considerations, based on mice experi-
ments, ACE2 expression steadily decreases with age 
[236]. In the brain specifically, where ACE2 levels influ-
ence blood pressure control and autoregulation [41, 42], 
there is an age-dependent component where ACE2 levels 
are more critical for older adults. For example, in mouse 
models with ischemic injury, higher ACE2 levels are con-
sidered to be protective against damage with those of old-
er age experiencing the most benefit [44]. For cases of 
COVID-19, where ACE2 receptors are being taken up by 
the SARS-CoV-2 virus in a lower bioavailability state due 
to aging, acute exasperation of these negative vascular ef-
fects could affect neurological symptoms.

To effectively battle SARS-CoV-2, the body’s immune 
system must recognize the viral threat, signal the proper 
immune cells, destroy the virus, and clear the debris [237]. 
As the body ages, the immune system undergoes altera-
tions in the form of immunosenescence and inflammag-
ing [237]. Immunosenescence, the decline of recognition, 
signaling, and clearance abilities of both the innate and 
adaptive immune systems have implications for viral de-
fense [237–239]. Likewise, inflammaging (chronic, sys-
temic, and low-grade inflammation) occurs as part of the 
aging process through a disrupted inflammation balance 
that increases an individual’s viral susceptibility [240]. 
Overall, these age-related changes in the immune system 
allow for greater viral replication due to delayed alerting 
and an overactive immune response that could result in a 
detrimental cytokine storm [237]. Observations in differ-
ing antibody profiles between adults and children with 
COVID-19 show that children have the ability to clear the 
SARS-CoV-2 infection faster with a less powerful im-
mune response protecting them from an excessive im-
mune reaction [241]. Overall, while there are multiple as-
pects to the aged immune system interaction with SARS-
CoV-2 [237, 242], immune response and development to 
cytokine storm are among the most important factors in 

an individual’s outcome to COVID-19 and neurological 
symptoms [35].

As a common part of aging, systemic frailty influences 
multiple aspects of the body that play an essential role in 
fighting off SARS-CoV-2 infection. While the definition 
of frailty is not always robustly defined in the elderly, it is 
considered distinct from comorbidities and disability, 
though there can be a significant overlap [230, 243]. Frail-
ty stems primarily from the culmination of multiple non-
optimally operating organ systems and lack of robustness 
in maintaining homeostasis [230, 244] derived from both 
biological and pathophysiological sources [245]. Ulti-
mately, with relevance for COVID-19 illness, frailty leads 
to reduced mechanical advantage, atypical presentation, 
and the comorbidity of pulmonary disease in the elderly 
[239]. For reduced mechanical advantage, weakening of 
thorax muscles paired with increased stiffness of lung 
structures can diminish oxygen uptake through limited 
gas exchange across a reduced pulmonary reserve, as well 
as impair cough strength, thus reducing possible clear-
ance of viral particles [239, 246]. Those who are frail, in-
dependent of age and comorbidities, are at greater risk for 
severe COVID-19 and mortality [243, 247–249]. In fact, 
frailty status can be a better predictor of COVID-19 re-
sponse than age or comorbidity alone, depending on the 
scale utilized [248].

Disparities

While advancing age is the biggest predictor of CO-
VID-19 severity, disparities in COVID-19 severity and 
outcome have been observed across both sex and race/
ethnicity in the USA. Independent of age and with similar 
infection rates, men are more likely to have severe CO-
VID-19 that requires admissions to ICUs [227, 250, 251] 
and a higher fatality rate than women, with men making 
up approximately 70–75% of COVID-19 deaths [166, 
228, 250]. In the USA, Black Americans, Hispanic/Latinx, 
and American Indian populations have been dispropor-
tionately affected by COVID-19 compared with non-His-
panic White populations. For Black Americans, the risk 
of SARS-CoV-2 infection is 3 times higher than non-His-
panic White populations [252]. This stark disproportion 
leads to Black Americans comprising 34% of the CO-
VID-19 mortality rate while only representing 13% of the 
USA population [253]. Hispanic/Latinx populations, 
within the USA, make up 28% of the COVID-19 cases 
while only comprising 18% of the general population 
[254]. Ultimately, based on New York City estimations, 
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Hispanic/Latinx populations have twice the risk of CO-
VID-19 mortality compared to non-Hispanic White pop-
ulations [254]. Pooled across 23 states, American Indians 
and Alaskan Native persons experience 3.5 times more 
SARS-CoV-2 infections than non-Hispanic White popu-
lations [255]. While overall mortality across these states 
is not fully documented [255], using Arizona as an ex-
ample, 18% of the COVID-19 deaths are of American In-
dians while only comprising 5.3% of the state’s popula-
tion [256]. Importantly, sex differences in COVID-19 re-
sponse appear to stem from biological causes, while, in 
our opinion, racial/ethnic differences are primarily the 
result of systemic racism.

Parsing through sex disparities in COVID-19 response 
includes the main factors of ACE2 expression and im-
mune system differences. Regarding ACE2 expression, 
women generally have higher levels of ACE2 expression 
overall [234], though this has been contested [20]. Addi-
tionally, women have a less dramatic decrease in ACE2 
expression with age compared with men [234]. The high-
er ACE2 expression in women could be the result of in-
creased estrogen levels, which may reduce COVID-19-re-
lated organ damage via relatively higher levels of system-
ic ACE2 availability [234, 235]. In general, women and 
men have sexual dimorphism in immune response that 
could interact with ACE2 expression [257, 258]. Typical-
ly, women mount stronger immune responses to patho-
gens [258], but higher ACE2 levels can dampen this im-
mune response in the context of COVID-19 [20]. For ex-
ample, in the lungs, higher ACE2 levels in 
SARS-CoV-2-infected women correlated with a lower 
immune response, whereas lower ACE2 levels in men 
correlated with stronger immune response and increased 
risk of cytokine storm [20]. Lastly, COVID-19 interac-
tions with pre-existing comorbidities stratified by sex 
may influence outcome, but more data are needed [259].

With respect to racial/ethnic differences in SARS-
CoV-2 infection response, there is little supporting evi-
dence of biological differences between groups that influ-
ence outcomes. When controlling for comorbidities, no 
differences in ACE2 levels exist across race [20]. Once 
including cardiovascular and pulmonary comorbidities, 
differences in ACE2 polymorphisms could account for 
aspects of increased COVID-19 susceptibility [260]. In 
addition, differences in nasal TMPRSS2 levels could be 
influential in COVID-19 infection risk [261]. Notably, 
cardiovascular disease and gene expression (ACE2 and 
TMPRSS2) differences across race are influenced by so-
cial and environmental factors (also known as social de-
terminants of health) [262, 263]. In the USA, Black, His-

panic/Latinx, and American Indian populations have 
higher rates of vascular risk factors such as hypertension, 
diabetes, and obesity [264] compared with non-Hispanic 
White populations. These differences are mediated by re-
duced medical access, limited resources, discrimination, 
and other social determinants of health across the lifetime 
and may interact to increase dementia risk in certain 
groups [265]. Higher rates of COVID-19 exposure due to 
in-person work and household exposure increase the in-
fection potential [253, 256]. In the context of COVID-19, 
Black Americans, Hispanic/Latinx, and American Indian 
populations have a greater pre-existing risk of cognitive 
decline that is now potentially compounded with dispro-
portionate rates and more severe cases of COVID-19. 
This occurrence of higher rates and more severe cases 
within marginalized populations is consistent with previ-
ous disease outbreaks, such as in the H1N1 influenza A 
pandemic and seasonal influenza [266]. Ultimately, more 
access to medical care, health insurance options, societal 
support, and vaccine access need to be distributed to 
Black Americans, Hispanic/Latinx, and American Indian 
populations disproportionally battling the COVID-19 
pandemic.

Implications for Dementia

Overall, SARS-CoV-2 infection, moderated in severity 
by age-, sex-, and race/ethnicity-dependent factors, initi-
ates a disease progression that has the potential to pro-
mote cognitive decline and exacerbate pre-existing de-
mentia (see Fig. 1). The damage cascade of COVID-19 is 
multifaceted and interdependent, with multiple pathways 
that could lead to cognitive hazard mechanisms. One 
such cognitive hazard mechanism, cerebral direct infec-
tion, is possible with the SARS-CoV-2 virus, exhibiting 
neuroinvasive and neurotropic characteristics with neu-
rovirulent potential. The greatest cognitive risk though 
may be from immune-mediated damage originating as 
cytokine storms that have far-reaching consequences for 
multiple organ systems, including the brain. Damage to 
organ systems and detrimental immune response, across 
the disease progression of COVID-19, may affect cogni-
tion via cerebral ischemia, hypoxia/acidosis, and neuro-
inflammation. The initiation of a coagulation cascade, 
from excessive immune response, which can generate mi-
cro-/macro-thromboemboli also poses significant risk. 
While long-term cognitive outcomes have not been fully 
evaluated, emerging reports indicate high rates of long-
term symptoms and cognitive alterations in recovered 
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COVID-19 patients. Due to these plausible COVID-19 
cognitive decline pathways, evidence of prevalent neuro-
logical symptoms in patients, and long-term symptoms 
in recovered individuals, our conclusion is that CO-
VID-19 represents a credible risk for cognitive decline 
and has the potential to exacerbate pre-existing dementia. 
For those at higher baseline dementia risk, older adults, 
those with cardiovascular risk factors, and people of col-
or, COVID-19 may not only increase the risk of cognitive 
decline but also interact in a synergistic way with pre-
existing dementia risk factors to disproportionately in-
crease this dementia risk.

For those with severe COVID-19 or cases of long-term 
symptoms, there are limited evidence-based interven-
tions that address cognitive decline or risk of future de-
cline. While long-term studies on the effectiveness of re-

covery therapies have not yet been evaluated, strategies 
based on the medical needs of recovered critically ill CO-
VID-19 patients and past recovery experience from pa-
tients with sepsis may provide some guidance [150, 267]. 
For example, recovering COVID-19 patients may benefit 
from adhering to structured exercise programs, attending 
physical/occupational therapy, optimizing nutrition, re-
ducing existing cardiovascular risk factors, practicing 
proper sleep hygiene, seeking out peer support [268], at-
tending cognitive therapy/training, and seeking mental 
health support [150, 267]. Clinicians should be aware of 
the possibility of risk for cognitive decline or persistence 
of cognitive symptoms and monitor cognitive health 
closely, seeking formal neuropsychological evaluation 
when indicated [267]. In addition, patient reports indi-
cate the need for follow-up appointments, the review/op-

Neuronal 
damage

Cognitive decline
DementiaSARS-CoV-2 infection

Vasospasm
Myocardial injury

Endothlial disruption

BBB disruption

Acute kidney injury
Immunosenescence*

Inflammaging*
Immune response+

Pre-existing comorbidities *+#

Exposure risk #

System frailty *

(Moderates)

Pulmonary injury 

Cognitive hazard mechanism

COVID-19 disease progression

* = Age-dependent
+ = Sex-dependent
# = Race/ethnicity-dependent Micro/macro thrombi

Hypoxia/acidosis

Cerebral ischemia

Cerebral direct
Infection

Neuroinflammation

Delirium
Insomnia

Chronic fatigue
Social isolation

PTSD
Depression

Fig. 1. SARS-CoV-2 infection, with age-, sex-, and race/ethnicity-dependent moderators that influence severity, 
initiates interdependent damage pathways that have the potential to cascade toward the outcome consequence 
of long-term cognitive decline and/or dementia. Lighter gray arrows represent conditional influences. SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2; PTSD, posttraumatic stress disorder; COVID-19, coro-
navirus disease 2019.
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timization of medication on a regular basis, facilitation of 
referrals to specialists, education on respiratory treat-
ments, and coordination across health services and be-
tween providers [150, 267]. When possible, early reha-
bilitation after complete recovery, or especially during 
hospitalization, is shown to be more beneficial in COV-
ID-19 patients than later [267]. Together, these sugges-
tions may help mitigate the effect of COVID-19 on long-
term symptom outcomes.

There is an essential need for longitudinal studies that 
include recovered COVID-19 patients to evaluate long-
term symptoms, measure organ damage where possible, 
and perform cognitive outcome measures [49]. To quan-
tify the viral effects properly, populations of interest 
should include all ranges of COVID-19 severity from as-
ymptomatic to severe patients as well as broad age ranges. 
Of critical importance is the inclusion of underrepresent-
ed populations as well as non-hospitalized individuals 
who had COVID-19. Cases of multiple infection and 
long-COVID will also be important for understanding 
mechanisms potentially linking COVID-19 to cognitive 
decline [269]. Longitudinal studies should ideally include 
neuroimaging to track potential cerebral structural, func-
tional, and cerebrovascular consequences of infection. 
For existing studies about cognitive aging and dementia, 
it will be important to collect participant information re-
lated to COVID-19 [49]. Other critical topics include 
quantifying the persistence of SARS-CoV-2 in the brain 
to understand potential neurovirulence effects and fully 
identifying its role in potential neuropathogenesis [47].

In the USA, the COVID-19 pandemic has dispropor-
tionately affected minoritized communities. With both 
higher infection rates and more severe outcomes, these 
populations have endured the brunt effects of COVID-19 
in a multifaceted way. The amplified influence of CO-
VID-19 in these populations could be mitigated through 
improved medical access, food security, job-based per-
sonal protective equipment, housing availability, finan-
cial assistance, and better public health initiatives to in-
crease trust [266, 270]. COVID-19 is unlikely to be the 
world’s last coronavirus outbreak, so creating robust sys-
tems for health equality to prevent this type of damage to 
our communities is essential moving forward [49].

Based on the availability of current data, we can make 
predictions about how many individuals are at risk for 
dementia progression. To establish a baseline percentage 
of COVID-19 severity across cases, the largest recorded 
population of 44,000 COVID-19 cases from the Chinese 
Center for Disease Control and Prevention indicates that 
≈80% of COVID-19 cases are asymptomatic/mild, ≈14% 

severe, and ≈5% critically ill [271]. If all severe COVID-19 
cases are considered to be at risk for cognitive decline 
from infection, then to date, an additional 4.7 million in-
dividuals within the USA and 26 million people world-
wide would be at risk [1]. While the death rate of CO-
VID-19 is high, the long-term health consequences of 
those recovering from COVID-19 should not be under-
stated or ignored [272]. These numbers represent an 
alarming clinical case load for extended COVID-19 mon-
itoring, a significant challenge, but essential for full popu-
lation recovery.
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