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Abstract
The neuropeptide arginine vasopressin (AVP) has long been implicated in the regulation of social behavior and
communication, but precisely which AVP cell groups are involved is largely unknown. To address whether the
sexually dimorphic AVP cell group in the bed nucleus of the stria terminalis (BNST) is important for social
communication, we deleted BNST AVP cells by viral delivery of a Cre-dependent caspase-3 cell-death construct
in AVP-iCre-positive mice using AVP-iCre negative littermate as controls, and assessed social, sexual, aggressive
and anxiety-related behaviors. In males, lesioning BNST AVP cells reduced social investigation of other males and
increased urine marking (UM) in the presence of a live female, without altering ultrasonic vocalizations (USVs),
resident-intruder aggression, copulatory behavior, anxiety, or investigation of females or their odor cues. In
females, which have significantly fewer AVP cells in the BNST, these injections influenced copulatory behavior but
otherwise had minimal effects on social behavior and communication, indicating that these cells contribute to sex
differences in social behavioral function.
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Introduction
Social behavior and communication show profound sex

differences in many species (Darwin, 1871; Bradbury and
Vehrencamp, 1998), and in humans, dysfunction in social
behavior and communication is prominent in chronic, de-
bilitating, and pervasive psychopathologies (Insel, 2010)

that show sex differences in prevalence and clinical out-
come (Halladay et al., 2015), such as autism (Schultz,
2005). One reasonable hypothesis is that sex differences
in the underlying neural circuitry contribute to sexually
differentiated function and dysfunction in social behavior
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Significance Statement

Despite over thirty years of indirect evidence implicating sexually-dimorphic arginine vasopressin (AVP) cells
within the bed nucleus of the stria terminalis (BNST) in the control of social and anxiety-related behavior in
mammals, the function of these cells has never been directly tested. Here, we show that deletion of these
cells in male, but not female, mice reduce investigation of same-sex conspecifics and alter social commu-
nication without changing aggressive and anxiety-related behaviors. Although AVP cell deletion in the BNST
did not alter male copulatory behavior, it impaired female sexual behavior. These results indicate that
sexually-dimorphic AVP cells in the BNST drive specific aspects of sexually-differentiated social investiga-
tion, behavior, and communication.
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and communication. A particularly well-positioned circuit
in this respect is the arginine vasopressin (AVP) innerva-
tion of the brain, which shows marked sex differences
across many species, including humans (Goodson and
Bass, 2001; De Vries and Panzica, 2006; de Vries, 2008).
Research across taxa confirms an important role for AVP
in social behavior. For example, AVP has been implicated
in aggression, pair bonding, maternal behavior, and com-
munication across vertebrates (Goodson and Bass, 2001;
Albers, 2012). However, the anatomy of AVP projections
suggests that AVP control of social behavior is complex
and, in most cases, the anatomic substrate of AVP’s
control of social behavior is unclear (Kelly and Goodson,
2013a; Ludwig and Stern, 2015; Dumais and Veenema,
2016). In most animals, AVP is synthesized in several cell
groups, each of which projecting to distinct brain areas
(De Vries and Boyle, 1998; Rood and De Vries, 2011;
Rood et al., 2013). AVP cells in the medial amygdala (MeA)
and bed nucleus of the stria terminalis (BNST) contribute
to the most pronounced sex differences in AVP innerva-
tion in brain (De Vries and Boyle, 1998). For example, male
rats and mice have about two to three times as many AVP
cells as females in these nuclei and the projections of
these cells to areas such as lateral septum (LS) are denser
as well (van Leeuwen et al., 1985; Rood and De Vries,
2011; Rood et al., 2013; Otero-Garcia et al., 2014).

Various studies suggest that AVP cells in the BNST and
MeA modulate pro-social as well as antagonistic behav-
iors. In birds, for example, partial knock-down of AVP
gene expression in the BNST reduces prosocial vocaliza-
tions and social interactions in birds while increasing
male-male aggression (Kelly et al., 2011; Kelly and Good-
son, 2013a,b). Evidence for involvement of AVP projec-
tions from the BNST and MeA in social behavior in
mammals is less direct. For example, the density of AVP
fibers in BNST and MeA projection areas and c-Fos acti-
vation in AVP cells in the BNST correlate negatively with
aggression in male mice and rats (Compaan et al., 1993;
Everts et al., 1997; Ebner et al., 2000; Beiderbeck et al.,
2007; Veenema et al., 2010) but positively with prosocial
behavior (Goodson et al., 2009; Ho et al., 2010). In addi-
tion, injecting specific V1a receptor agonists or boosting
V1a receptor expression in target areas of AVP cells in the
BNST and MeA promotes affiliation in voles (Wang et al.,
1994; Liu et al., 2001; Pitkow et al., 2001; Lim and Young,
2004; Lim et al., 2004) and social recognition and active
social behaviors in rats (Dantzer et al., 1988; Veenema
et al., 2012). In rats, where AVP release in the septum, one

of the most prominent projection areas of BNST and MeA
AVP cells (De Vries and Buijs, 1983; De Vries and Panzica,
2006), correlates positively with intermale aggression in a
resident-intruder test, a behavioral response could be
blocked by retro-dialysis of an AVP antagonist (Veenema
et al., 2010). None of these results, however, can be tied
with certainty to AVP cells in the BNST and MeA, as all
these areas receive AVP input from other sources as well,
most importantly the PVN (Rood et al., 2013). In addition,
AVP released dendritically from neurosecretory neurons in
the hypothalamus may reach these areas as well (Ludwig
and Stern, 2015). To directly test the hypothesis that AVP
cells in the BNST modulate social behavior, we injected
an adeno-associated virus (AAV) with a Cre-dependent,
genetically modified executioner caspase-3 complex
(Yang et al., 2013; Unger et al., 2015) into the BNST of
adult AVP-iCre� and AVP-iCre– (Mieda et al., 2015) male
and female mice, which specifically deleted AVP cells in
the area, and tested the effects of these deletions on
social investigation, courtship ultrasonic vocalizations
(USVs; Chabout et al., 2015), and territorial urine marking
(UM; Arakawa et al., 2008b), all aspects of mouse com-
munication known to show pronounced sex differences
(Crawley, 2012; Lehmann et al., 2013; Wöhr, 2014).

Materials and Methods
Animals and husbandry

All mice were maintained at 22°C on a 12/12 h reverse
light/dark cycle with food and water available ad libitum,
housed in individually ventilated cages (Animal Care Sys-
tems), and provided with corncob bedding, a nestlet
square, and a housing tube. All animal procedures were
performed in accordance with the Georgia State Univer-
sity animal care committee regulations and the National
Institutes of Health Guide for the Care and Use of Labo-
ratory Animals.

Subjects
Founding AVP-iCre mice were obtained from Dr. Michi-

hiro Mieda (Kanazawa University, Japan). These mice
were generated using a bacterial artificial chromosome
(BAC) that expressed codon-improved Cre recombinase
(Shimshek et al., 2002) under the transcriptional control of
the AVP promoter (AVP-iCre mice). In these animals, iCre
expression is found in the BNST and the MeA, as well as
in hypothalamic areas (Mieda et al., 2015). Subjects were
derived by crossing heterozygous iCre� mutants to wild-
type C57Bl/6J mice and genotyped (ear punch) by poly-
merase chain reaction (PCR) at 21–24 d of age
(Transnetyx). Both iCre� and iCre– littermates were used
in behavioral experiments. All subject mice were singly-
housed for a minimum of one week.

Stimulus animals
CD1(ICR) (Charles River Laboratories) mice were used

as stimuli for behavioral testing and to provide male and
female subjects with social experience because strain
differences between subjects and stimulus mice increase
social investigation (Gheusi et al., 1994). Mice were used
at 9–16 weeks of age and were novel and unrelated to the
subject to which they were exposed.
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Female stimulus mice were group-housed, ovariecto-
mized, and implanted with an estradiol capsule (GDX�E),
and given two sexual experiences before testing. Two
groups of stimulus males were used for behavioral test-
ing. Mice that were used as subordinate mice in the home
cage aggression tests and for providing aggressive expe-
rience to subjects, were group housed, gonadectomized
(GDX), and subjected to two aggressive encounters with a
dominant male. Mice in the second group, which provided
sexual experience to female subjects and served as sex-
ual partners during copulatory tests and as stimulus ani-
mal in the three-chamber social test, were singly-housed,
GDX, and implanted with testosterone (GDX�T), and
given two sexual experiences before testing.

Viral vector
AVP driven-, Cre-expressing-BNST neurons were ab-

lated using an AAV (AAV-flex-taCasp3-TEVp; serotype
2/1; 3 � 1012 IU/ml; University of North Carolina at Chapel
Hill Vector Core) that encodes, in a Cre-dependent fash-
ion, a mutated pro-caspase-3 and its activator (TEVp; Fig.
1A). This system activates an apoptotic signaling cas-
cade, cleaving multiple structural and regulatory proteins
critical for cell survival and maintenance (Yang et al.,
2013) and thereby inducing far less inflammation than
other lesion approaches (Morgan et al., 2014).

Surgery
All surgeries were conducted using 1.5–3% isoflurane

gas anesthesia in 100% oxygen; 3 mg/kg of carprofen
was given before surgery to reduce pain.

Stereotaxic surgery
Mice were positioned in a stereotaxic frame (David Kopf

Instruments) with ear and incisor bars holding bregma and
lambda level. After a midline scalp incision, a hand oper-
ated drill was used to make holes in the skull exposing the
dura. For all subjects, 500 nl of AAV-flex-taCasp3-TEVp
was delivered bilaterally to the BNST (coordinates: AP
–0.01 mm; ML �0.75 mm; DV 4.8 mm; Paxinos and
Franklin, 2012) at a rate of 100 nl/min using a 5-�l Ham-
ilton syringe with a 30-gauge beveled needle mounted on
a stereotaxic injector. Following virus delivery, the syringe
was left in place for 15 min and slowly withdrawn from the
brain.

Gonadectomy and hormone treatment
Testes were cauterized and removed at the ductus

deferens via a midline abdominal incision. SILASTIC cap-
sules (1.5-cm active length; 1.02-mm inner diameter,
2.16-mm outer diameter; Dow Corning Corporation) were
filled with crystalline T (Sigma) and inserted subcutane-
ously between the scapulae after gonadectomy; this pro-
cedure leads to physiologic levels of T (Barkley and
Goldman, 1977; Matochik et al., 1994). To further reduce
aggression in stimulus animals (Beeman, 1947), some
males were GDX, but did not receive a T implant (GDX).

The ovaries of stimulus female mice were removed by
cauterization at the uterine horn and attendant blood
vessels. SILASTIC capsules (0.7-cm active length;
1.02-mm inner diameter, 2.16-mm outer diameter; Dow
Corning Corporation) containing estradiol benzoate (E;

diluted 1:1 with cholesterol) were implanted subcutane-
ously in the scapular region immediately following ovari-
ectomy (GDX�E; Bakker et al., 2002; Ström et al., 2012).
To induce sexual receptivity, stimulus females were in-
jected subcutaneously with 0.1 ml of progesterone (500
�g dissolved in sesame oil, Sigma) 4 h preceding sexual
experience, urine collection, and behavioral testing (Vey-
rac et al., 2011).

Social experience
As opposite-sex sexual experience and attaining com-

petitive status (“social dominance”) promote male and
female communicative behaviors (Lumley et al., 1999;
Roullet et al., 2011), mice received social experience over
five consecutive days (sexual encounters on days 1 and 4,
aggressive encounters on days 2 and 5, and no encoun-
ters on day 3).

Sexual experience
Subjects were given two opportunities to interact with

either a stimulus female (for male subjects) or a stimulus
male (for female subjects). A sexually-experienced stim-
ulus mouse was placed in the subject’s home cage and
removed 5 min after one ejaculation or 90 min in the
absence of ejaculation. Subjects that did not show ejac-
ulation (two iCre– males) or did not elicit ejaculation (one
iCre� female) on either trial were removed from further
testing.

Aggressive experience
Male subjects were exposed to two interactions with

subordinate males treated with 40 �l of GDX�T male
urine applied to their backs. Gonadectomy, group hous-
ing, and social defeat of our subordinates reduce offen-
sive aggression in mice, while GDX�T male urine
provides subjects with a male urinary cue that elicits
offensive aggression (Beeman, 1947; Connor and Win-
ston, 1972; Van Loo et al., 2001). Subordinate stimulus
males were placed in the subject’s home cage and re-
moved after the subject’s first offensive attack (biting)
within a 10-min period. All subject males attacked the
intruder male stimulus by the second encounter, and all
subordinate stimulus males displayed submissive behav-
ior, defined as defensive postures (e.g., on-back), fleeing,
and non-social exploring (Koolhaas et al., 2013). Female
subjects were exposed to a female intruder; however, this
did not elicit any attacks from either animal.

Experimental procedure
All testing occurred within the first 6 h of the dark cycle

under red light illumination, with the exception of the
elevated plus maze (EPM). All tests were scored by an
experimenter blind to the genotype of the subject. Three
to four weeks after viral injections, subjects were habitu-
ated to the testing room and apparatus by handling and
placing mice (for 5 min) in the three-chamber apparatus
(see below) each day for 3 d. On experimental days,
subjects were adapted to the experimental room for 15
min before testing. First, we tested mice on an EPM to
test for anxiety-related behavior (Lister, 1987). Mice were
then tested in the three-chamber apparatus over six con-
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Figure 1. AVP histology and experiment timeline. A, Cre-dependent AAV (AAV-flex-taCasp3-TEVp) and location of bilateral BNST
injection site; coordinates: AP –0.01 mm; ML �0.75 mm; DV 4.8 mm; modified from Paxinos and Franklin (2012). Timeline of
experimental manipulations. B, Example images of fluorescent in situ hybridization (ISH)-labeled BNST AVP cells and boxplot of cell
number. Within the BNST, a significant decrease in AVP cell label was observed in both iCre� male and female mice compared to
iCre– control animals (males: p � 0.00014; females: p � 0.0025). iCre– (n � 13) and iCre� (n � 11) males and iCre– (n � 13) and iCre�
(n � 8) females. C, Example images of fluorescent ISH-labeled accessory nucleus-AVP cells and boxplot of cell number. No significant
AVP cell loss was observed between iCre� and iCre– subjects (males: p � 0.98; females: p � 0.89). iCre– (n � 13) and iCre� (n �
11) males and iCre– (n � 13) and iCre� (n � 8) females. D, Example images of fluorescent ISH-labeled PVN and boxplot of image
intensity (arbitrary units). iCre� and iCre– subjects did not differ in PVN signal intensity (males: t(20) � 0.66, p � 0.947; females: p �
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secutive days with a day off on the fourth day. Lastly, odor
discrimination, copulatory, and aggressive behavior were
measured in the subject’s home cage (Fig. 1A). Female
subjects were tested irrespective of estrous cycle day,
except during copulation testing, when they were in be-
havioral estrus. Prior research indicates minimal effects of
estrous cycle on female mouse communicative behavior
(Maggio and Whitney, 1985; Coquelin, 1992; Moncho-
Bogani et al., 2004). Following testing, subjects were
killed and their brain tissue was processed for in situ
hybridization to detect AVP expression in BNST and
nearby hypothalamic areas.

Social behavior
USV, UM, and social investigation were recorded in an

acrylic three-chamber apparatus (Crawley, 2007; Ara-
kawa et al., 2008a; Moy et al., 2009; Harvard Apparatus;
dimensions: 20.3 � 42 � 22 cm). Instead of a solid floor,
the apparatus was placed on absorbent paper (Nalgene
Versi-dry paper, Thermo Fisher Scientific) so as to accu-
rately measure UM. Animals were also tracked using
motion detection software (ANY-maze, San Diego Instru-
ments, RRID:SCR_014289). During testing with stimulus
animals, subjects had access to either a stimulus animal
in a cage [8 cm (D), 18 cm (H); 3-mm diameter steel bars,
7.4 mm spacing] or an empty cage placed at opposite
corners of the outermost chambers of the apparatus. For
testing with social odors, subjects had access to 50 �l of
fresh urine from a stimulus animal or 50-�l saline pipetted
onto a clean piece of filter paper (3 cm2), that was taped
on the outside of cages. The location of stimulus and the
“clean” cage were counterbalanced across animals. After
placing the subject in the center of the middle chamber,
we measured, across a 5-min trial, close investigation of
clean and stimulus cages, distance traveled throughout
the apparatus, time spent in the stimulus and clean cage
chambers as well as USVs and UMs. After testing, the
apparatus and cages were thoroughly cleaned with 70%
ethanol and allowed to dry before further testing. In all
cases, urine stimulus from one sex was presented first
followed by a live stimulus of that same sex; this order
was then repeated for the opposite sex. In this fashion,
mice experienced first weak (urine) then stronger social
stimuli (stimulus animal; the order of male and female
stimuli presentation was counterbalanced.

Investigation and USVs
Close investigation was defined as time spent sniffing

within 2 cm of the stimulus or clean cage; climbing on the
cage was not scored as investigation. USVs were de-
tected using a condenser microphone connected to an
amplifier (UltraSoundGate CM16/CMPA, 10–200 kHz, fre-

quency range) placed 4 cm inside the apparatus and
directly above the center compartment. USVs were sam-
pled at 200 kHz (16-bit) with target frequency set to 70
kHz (UltraSoundGate 116Hb, Avisoft Bioacoustics). Re-
cordings were then analyzed using a MATLAB (Math-
Works, RRID:SCR_001622) plug-in that automates USV
analysis (Van Segbroeck et al., 2017). Using this program,
sonograms were generated by calculating the power
spectrum on Hamming windowed data and then trans-
formed into compact acoustic feature representations
(Gammatone Filterbank). Each 200-ms window containing
the maximum USV syllable duration was then clustered,
via machine learning algorithms, into USV syllable types
(repertoire units) based on time-frequency USV shape.
Repertoire units that appeared as background noise were
discarded. We counted the number of all USV produced
by each subject. USV syllable types were identified from a
subset of males (iCre– n � 6; iCre� n � 7) using criterion
previously described: short, composite, downward, up-
ward, 1 frequency jump, modulated, multiple frequency
jumps, u-shape, flat, chevron (Hanson and Hurley, 2012).

UM
Following testing, the substrate sheet was allowed to

dry for 1 h and then sprayed with ninhydrin fixative (LC-
NIN-16; Tritech Forensics Inc.) to visualize urine marks
(Meyer, 1957; Lehmann et al., 2013). After 24 h, sheets
were imaged (Sony DSC-S700 camera), binarized and
analyzed using a computer-aided imaging software (Im-
ageJ, RRID:SCR_003070). UM was measured as the total
area (cm2) of visualized ninhydrin urine marks in the entire
arena. Urine marks that were larger than 6 cm2 and di-
rected toward corners were counted as eliminative
“pools” and were counted separately (Bishop and Chev-
ins, 1987).

Copulatory and aggressive behavior
To measure copulatory behavior, the stimulus mouse

was placed in the subject’s home cage and then removed
5 min after one ejaculation had occurred or if 90 min had
elapsed without copulation. The latency and total time
investigating the anogenital region, latency to mount, per-
centage of females that were mounted, percentage of
male ejaculations, and number of mount rejections (fe-
male kicking male off during mounting attempt) in female
subjects was recorded. To measure territorial aggression,
subordinate stimulus males were placed in the subject’s
home cage and then removed after the subject’s first
offensive attack (biting) within a 10-min period; the latency
to first bite was recorded.

continued
0.29). iCre– (n � 13) and iCre� (n � 10) males and iCre– (n � 13) and iCre� (n � 8) females. E, Example images of Nissl-stained BNST
tissue and boxplot of cell number. No difference in BNST cell number between iCre� and iCre– subjects was observed (males: p �
0.439; females: p � 0.44). iCre– (n � 6) and iCre� (n � 9) males and iCre– (n � 8) and iCre� (n � 6) females. In boxplots, dots indicate
individual data points, bold horizontal lines illustrate the median, the areas above and below the lines show the 1st/3rd quartile. The
vertical bars range from the minimal to the maximal values excluding outliers (�1.35 SDs from interquartile range). Images were taken
at 10� for fluorescent material and 20� for Nissl-stained tissue. Scale bar � 50 �m; �� indicates significant effect of genotype, p �
0.005.
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Odor discrimination
We used a habituation-discrimination procedure on a

subset of subjects to test whether they could distinguish
between social odors (Baum and Keverne, 2002). Sub-
jects were given five consecutive 2-min presentations of
an odor stimulus with one min intervals between presen-
tations. Subjects were first presented with deionized wa-
ter, followed by two non-social odors (100% almond,
lemon, or vanilla extract, Frontier Natural Products), and
then two urine samples (one from each sex) within their
home cage. The sequence of odor presentation was
counterbalanced within non-social or social odor cate-
gory. Each odor stimulus (30 �l) was placed onto a clean
piece of filter paper (3 cm2) taped to an empty food
hopper such that subjects could contact the urine sam-
ples. Time spent sniffing within 2 cm of the filter paper
was recorded. Food hoppers were cleaned with 70%
ethanol and allowed to dry between each odor presenta-
tion.

EPM
The EPM consisted of two open arms (30 � 5 cm) and

two closed arms (30 � 25 � 5 cm) crossed perpendicu-
larly and raised 60 cm above the floor. Subjects were
placed at the arm intersection facing the open arm and
were allowed to habituate to the apparatus for 1 min;
subjects were then observed for an additional 5 min.
Animals were tracked by ANY-maze so that measure-
ments of time spent in open and closed arms were re-
corded automatically whereas the number of risk
assessment behaviors (stretch-attend posture, head-
dips) were manually scored from video (Cole and Rodg-
ers, 1993).

Urine collection
Pooled urine samples were collected from stimulus

females induced into estrus and from stimulus males (five
to eight mice per sample). Estrous state was verified by
color, swelling, and expanded size of vaginal opening
(Caligioni, 2009). To collect urine, mice were picked up by
the tail base and held by dorsal neck skin; this method
was often sufficient to induce urination. If the mouse did
not urinate, stroking its belly from an anterior to posterior
direction stimulated bladder voiding. Each mouse pro-
vided 15–50 �l of urine that was pooled into a 1.5-ml
Eppendorf tube. Urine samples were used fresh within 1 h
of collection to prevent chemosignal degradation (Roullet
et al., 2011).

Histology and in situ hybridization
Following testing, subjects were killed via CO2 asphyx-

iation. Brains were extracted and flash frozen via submer-
sion in 2-methyl-2-butanol (Sigma) for 10–20 s and stored
at �80°C until sectioned. Coronal sections (20 �m) were
cut with a cryostat (Leica CM3050 S, Leica Biosystems)
into three series and stored at �80°C. All tissue was
handled in a RNase-free environment. Tissue was post-
fixed in paraformaldehyde, followed by a wash in 2�
saline-sodium citrate (SSC) and acetylation in a trietha-
nolamine/acetic anhydride solution, rinsed in dH2O,
washed in acetone/methanol solutions (1:1), and again in

2� SSC. Tissue was first incubated at 65°C in hybridiza-
tion buffer (50% deionized formamide, 1% yeast tRNA,
10% dextran sulphate, 1� Denhardt’s solution, 5% 20�
SSC) for 30 min before probe application. Riboprobes
were developed from linearized PK Bluescript SK(�) with
inserted mouse-vasopressin gene (NM_027106.4, Gen-
script) using digoxygenin (DIG)-conjugated uracil. Ribo-
probe synthesized from this plasmid was added to
hybridization buffer at a concentration of 100 ng/100 �l
and denatured at 90°C for 5 min. Tissue was then hybrid-
ized at 65°C for 24 h in a humid chamber. The tissue was
then subjected to two 10-min washes in 2� SSC at room
temperature followed by a 15-min digestion with RNase A
(10 g/ml in 2� SSC) at 37°C. This was followed by a
30-min 2� SSC wash at 56°C and two 10-min 2� SSC
washes at room temperature. The tissue was then
quenched in 1% H2O2 in 1� SSC for 15 min, rinsed twice
in 1� SSC with 0.1% Tween followed by one 5-min TBS
(20 mM Tris and 150 mM NaCl, pH 7.6) wash. Blocking
solution (normal sheep serum and bovine caesin) was
applied and tissue was incubated for 30 min followed by
a 2-h, room temperature incubation with anti-DIG-HRP
(1:200, Roche Applied Sciences). Unbound antibody was
washed away with three 10-min washes in TBS-T (0.05%
Tween in TBS). DIG-labeled probe signal was amplified
and visualized using a TSA Plus Fluorescein kit (PerkinEl-
mer) by incubating sections in a 1:50 dilution of the Flu-
orescein working solution for 12 min followed by three
10-min washes in TBS. Tissue was then cover-slipped
using Prolong Gold (Life Technologies) for subsequent
imaging and tissue analysis. Tissue processed using
sense RNA probe generated no specific labeling. A subset
of brain sections was Nissl stained to determine whether
viral vector injections resulted in a non-specific loss of
BNST cells.

Tissue analysis
Bilateral images were taken at 10� magnification using

a Zeiss Axio Imager.M2 microscope (Carl Zeiss Microim-
aging), which transferred fluorescent images (FITC
contrast reflector) to image analysis software (Stereo In-
vestigator, MicroBrightField, RRID:SCR_002526). Imag-
ing domains (2 mm2) were placed with reference to
anatomic landmarks (ventricles, fiber tracts; Paxinos and
Franklin, 2012). Fluorescently labeled AVP mRNA-
expressing cells were counted in the BNST in both hemi-
spheres and averaged over three sections covering the
extent of the AVP cell population in the BNST. In addition,
we counted nearby accessory AVP mRNA expressing
cells (Rood and De Vries, 2011) as well as average label
intensity for AVP mRNA in the paraventricular nucleus of
the hypothalamus (PVN; ImageJ) to determine any possi-
ble off-target effects of our injections. Although we
counted AVP mRNA-expressing cells in the PVN as well,
AVP mRNA label intensity was chosen as the preferred
method for quantification due to the difficulty of discrim-
inating between overlapping AVP cells in PVN. Lastly, we
Nissl stained and imaged BNST tissue at 20� magnifica-
tion to confirm no significant cell loss.
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Table 1 Statistical analysis
Figure Data structure Type of test Sample size Statistical data

1B, AVP cell count in
BNST

Normal distribution Independent samples t test Males: AVP-iCre– � 13 AVP-iCre� � 11
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: p � 0.00014 (two-tailed), t � 4.57, df � 22;
Cohen’s d � 2.64

Females: p � 0.0025 (two-tailed), t � 3.58, df � 19;
Cohen’s d � 2.02

1C, AVP cell count in
nearby accessory area

Normal distribution Independent samples t test Males: AVP-iCre– � 13 AVP-iCre� � 11
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: p � 0.987 (two-tailed) t � –0.16, df � 22
Females: p � 0.89 (two-tailed) t � –0.15, df � 19

1D, AVP fluorescent
intensity (au) in the
PVN and cell count in
the PVN

Normal distribution Independent samples t test Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Intensity (au) measurement:
Males: p � 0.947 (two-tailed), t � 0.66, df � 20
Females: p � 0.289 (two-tailed) t � –1.10, df � 19
Cell counts:
Males: p � 0.514 (two-tailed) t � 0.66, df � 20
Females: p � 0.82 (two-tailed) t � 0.79, df � 19

1E, Nissl cell count in
BNST

Normal distribution Independent samples t test Males: AVP-iCre– � 6 AVP-iCre� � 9
Females: AVP-iCre– � 8 AVP-iCre� � 6

Males: p � 0.439 (two-tailed), t � 0.79, df � 13
Females: p � 0.44 (two-tailed), t � –0.80, df � 12

2A,B, social investigation
(live animal condition)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
two repeated measure
[sex of stimulus,
location of stimulus (two
levels)], followed by
independent samples t
test with Bonferroni
correction

Males: AVP-iCre– � 13 AVP-iCre� � 11
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FSEX OF STIMULUS(1,22) � 261.34, p � 1.0792E–13
FGENOTYPE(1,22) � 0.62 , p � 0.438
FGENOTYPE � SEX OF STIMULUS(1,22) � 5.89, p � 0.024
FGENOTYPE � LOCATION OF STIMULUS(1,22) � 10.71, p �

0.003
FSEX OF STIMULUS � LOCATION OF STIMULUS(1,22) � 59.35, p

� 1.0976E-7
FGENOTYPE � SEX OF STIMULUS � LOCATION OF STIMULUS(1,22)

� 11.16, p � 0.003
Investigation of female stimulus: p � 1.0 (two-tailed) t

� –0.70, df � 22
Investigation of male stimulus: p � 0.004 (two-tailed) t

� 3.75, df � 22; Cohen’s d � 1.52
Investigation of clean stimulus in female condition: p �

0.70 (two-tailed) t � –1.40, df � 22
Investigation of clean stimulus in male condition: p �

1.0 (two-tailed) t � –0.92, df � 22
Females:
FSEX OF STIMULUS(1,19) � 55.92, p � 4.4965E-7
FGENOTYPE(1,19) � 1.60 , p � 0.29
FGENOTYPE � SEX OF STIMULUS(1,19) � 2.16, p � 0.161
FGENOTYPE � LOCATION OF STIMULUS(1,19) � 11.58, p �

0.001
FSEX OF STIMULUS � LOCATION OF STIMULUS(1,19) � 3.12, p �

0.09
FGENOTYPE � SEX OF STIMULUS � LOCATION OF STIMULUS(1,19)

� 0.004, p � 0.94
Investigation of female stimulus: p � 0.33 (two-tailed) t

� 1.82, df � 19
Investigation of male stimulus: p � 0.51 (two-tailed) t

� 0.67, df � 19
Investigation of clean stimulus in female condition: p �

0.58 (two-tailed) t � 0.57, df � 19
Investigation of clean stimulus in male condition: p �

0.06 (two-tailed) t � –2.69, df � 19

2C,D, social investigation
(urine condition)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
two repeated measure
[sex of stimulus,
location of stimulus (two
levels)]

Males: AVP-iCre– � 13
AVP-iCre� � 11
Females: AVP-iCre– � 13
AVP-iCre� � 8

Males: FSEX OF STIMULUS(1,22) � 117.39, p � 2.7526E–10
FGENOTYPE(1,22) � 0.07 , p � 0.79
FGENOTYPE � SEX OF STIMULUS(1,22) � 1.31, p � 0.26
FGENOTYPE � LOCATION OF STIMULUS(1,22) � 0.05, p �

0.003
FSEX OF STIMULUS � LOCATION OF STIMULUS(1,22) � 59.35, p

� 0.82
FGENOTYPE � SEX OF STIMULUS � LOCATION OF STIMULUS(1,22)

� 0.22, p � 0.64
Females:
FSEX OF STIMULUS(1,19) � 60.33, p � 2.5924E-7
FGENOTYPE(1,19) � 2.9 , p � 0.10
FGENOTYPE � SEX OF STIMULUS(1,19) � 1.48, p � 0.161
FGENOTYPE � LOCATION OF STIMULUS(1,19) � 1.16, p � 0.30
FSEX OF STIMULUS � LOCATION OF STIMULUS(1,19) � 4.27, p �

0.53
FGENOTYPE � SEX OF STIMULUS � LOCATION OF STIMULUS(1,19)

� 2.91, p � 0.10

(Continued)
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Table 1 Continued
Figure Data structure Type of test Sample size Statistical data

Table 2, social
investigation (time spent
in zones, live animal
condition)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
two repeated measure
[sex of stimulus,
location of zone (two
levels)]

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FZONE LOCATION(1,22) � 15.68, p � 0.001
FGENOTYPE(1,22) � 0.0002 , p � 0.99

FGENOTYPE � SEX OF STIMULUS(1,22) � 1.33, p � 0.26
FGENOTYPE � ZONE LOCATION(1,22) � 0.01, p � 0.922
FSEX OF STIMULUS � ZONE LOCATION(1,22) � 14.30, p �

0.001
FGENOTYPE � SEX OF STIMULUS � ZONE LOCATION(1,22) � 0.13,

p � 0.72
Females:
FZONE LOCATION(1,19) � 1.56, p � 0.23
FGENOTYPE(1,19) � 1.70 , p � 0.21
FGENOTYPE � SEX OF STIMULUS(1,19) � 2.32, p � 0.14
FGENOTYPE � ZONE LOCATION(1,19) � 2.21, p � 0.15
FSEX OF STIMULUS � ZONE LOCATION(1,19) � 6.73, p � 0.017
FGENOTYPE � SEX OF STIMULUS � ZONE LOCATION(1,19) � 0.04,

p � 0.85
Table 2, social
investigation (distance
traveled, live animal
condition)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
one repeated measure
(sex of stimulus)

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FSEX OF STIMULUS(1,22) � 2.16, p � 0.16
FGENOTYPE(1,22) � 3.48, p � 0.33
FGENOTYPE � SEX OF STIMULUS(1,22) � 0.01, p � 0.92
Females:
FSEX OF STIMULUS(1,19) � 0.000043, p � 0.96
FGENOTYPE(1,19) � 3.47, p � 0.08
FGENOTYPE � SEX OF STIMULUS(1,19) � 0.01, p � 0.91

Not shown, social
investigation (time spent
in zones, urine condition)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
two repeated measure
[sex of stimulus,
location of zone (two
levels)]

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FZONE LOCATION(1,22) � 0.07, p � 0.80
FGENOTYPE(1,22) � 3.21 , p � 0.08
FGENOTYPE � SEX OF STIMULUS(1,22) � 0.52, p � 0.48
FGENOTYPE � ZONE LOCATION(1,22) � 0.75, p � 0.40
FSEX OF STIMULUS � ZONE LOCATION(1,22) � 0.26, p � 0.61
FGENOTYPE � SEX OF STIMULUS � ZONE LOCATION(1,22) � 0.56,

p � 0.82
Females:
FZONE LOCATION(1,19) � 1.14, p � 0.30 FGENOTYPE(1,19) �

4.28 , p � 0.54
FGENOTYPE � SEX OF STIMULUS(1,19) � 0.66, p � 0.43
FGENOTYPE � ZONE LOCATION(1,19) � 5.10, p � 0.12
FSEX OF STIMULUS � ZONE LOCATION(1,19) � 0.19, p � 0.67
FGENOTYPE � SEX OF STIMULUS � ZONE LOCATION(1,19) �

0.0003, p � 0.99

Not shown, social
investigation (distance
traveled, urine condition)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
one repeated measure
(sex of stimulus),
followed by independent
samples t test with
Bonferroni correction

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FSEX OF STIMULUS(1,22) � 0.73, p � 0.79
FGENOTYPE(1,22) � 2.85, p � 0.11
FGENOTYPE � SEX OF STIMULUS(1,22) � 0.70, p � 0.41
Females:
FSEX OF STIMULUS(1,19) � 0.15, p � 0.70
FGENOTYPE(1,19) � 7.6, p � 0.012
FGENOTYPE � SEX OF STIMULUS(1,19) � 0.33, p � 0.57
distance traveled in male urine condition: p � 0.05

(two-tailed), t � –2.42, df � 19
distance traveled in male urine condition: p � 0.19

(two-tailed), t � –1.93, df � 19

3A,B, UM (live animal
condition)

Males: normal
distribution
Females:
non-normal

Males: mixed model
analysis with one
between-subject factor
(genotype) and one
repeated measure (sex
of stimulus), followed by
independent samples t
test with Bonferroni
correction

Females: Mann–Whitney U
test, independent
samples with Bonferroni
correction

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FSEX OF STIMULUS(1,22) � 52.62, p � 0.00000029
FGENOTYPE(1,22) � 23.72, p � .000072
FGENOTYPE � SEX OF STIMULUS(1,22) � 21.02, p � 0.000145
UM to female stimulus: p � 0.000112 (two-tailed) t �

–4.6, df � 22; Cohen’s d � 2.04
UM to male stimulus: p � 0.16 (two-tailed) t � –1.45,

df � 22
Females:
UM to female stimulus across genotype: p � 0.15

(two-tailed), U � 20
UM to male stimulus across genotype: p � 0.32 (two-

tailed), U � 32

3C,D, UM (urine condition) Males: normal
distribution
Females:
non-normal

Males: mixed model
analysis with one
between-subject factor
(genotype) and one
repeated measure (sex
of stimulus)

Females: Mann–Whitney U
test, independent
samples with Bonferroni
correction

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FSEX OF STIMULUS(1,22) � 0.53, p � 0.48
FGENOTYPE(1,22) � 12.51, p � 0.002
FGENOTYPE � SEX OF STIMULUS(1,22) � 0.16, p � 0.70
Females:
UM to female stimulus across genotype: p � 0.467

(two-tailed), U � 52
UM to male stimulus across genotype: p � 0.858 (two-

tailed), U � 32

(Continued)
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Table 1 Continued
Figure Data structure Type of test Sample size Statistical data

4A,B, USVs (live animal
condition)

Non-normal Mann–Whitney U test,
independent samples
with Bonferroni
correction

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: USV to female stimulus across genotype: p �

1.0 (two sided), U � 64
USV to male stimulus across genotype: p � 0.334 (two

sided), U � 47
Females: USV with male stimulus across genotype: p

� 0.16 (two-tailed), U � 52
USV to female stimulus across genotype: p � 0.18

(two-tailed), U � 58
4E,F, USVs (live animal
condition), syllable type

Non-normal/
homogenous

Mann–Whitney U test,
independent samples
with Bonferroni
correction

Males: AVP-iCre– � 6 AVP-iCre� � 7 Males: USV syllable type (all two-tailed):
short: p � 0.14, U � 10, composite: p � 1.0, U � 22,

downward: p � 0.63, U � 17,
upward: p � 0.63, U � 17, 1 frequency jump: p �

0.45, U � 15, modulated: p � 0.37, U � 27,
multiple frequency jumps: p � 0.63, U � 24.5, u-
shape: p � 0.83, U � 19.5, flat: p � 0.73, U � 18,

chevron: p � 0.08, U � 39

4C,D, USVs (urine
condition)

Non-normal Mann–Whitney U test,
independent samples
with Bonferroni
correction

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: USV to female stimulus across genotype: p �

0.77 (two sided), U � 60
USV to male stimulus across genotype: p � 0.50 (two

sided), U � 52
Females: USV with male stimulus across genotype: p

� 0.49 (two sided), U � 58
USV to female stimulus across genotype: p � 0.26

(two sided), U � 60

5A,B, EPM (open/closed
arm measurements)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
one repeated measure
(open/closed arm)

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FOPEN/CLOSED ARM(1,22) � 51.74, p � 7.826E-7
FGENOTYPE(1,22) � 0.36 , p � 0.52
FGENOTYPE � OPEN/CLOSED ARM(1,22) � 2.81, p � 0.11
Females: FOPEN/CLOSED ARM(1,19) � 189.41, p �

2.477E-11
FGENOTYPE(1,19) � 0.30 , p � 0.60
FGENOTYPE � OPEN/CLOSED ARM(1,19) � 1.30, p � 0.59

5C,D, EPM (additional
anxiety measurements)

Normal distribution Mixed model analysis with
one between-subject
factor (genotype) and
one repeated measure
(stretch attends/head
dips)

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: FSTRETCH ATTENDS/HEAD DIPS(1,22) � 262.1, p �

1.0479E-13
FGENOTYPE(1,22) � 0.68 , p � .42
FGENOTYPE � STRETCH ATTENDS/HEAD DIPS(1,22) � 3.90, p �

0.16
Females: FSTRETCH ATTENDS/HEAD DIPS(1,19) � 33.82, p �

0.000016
FGENOTYPE(1,19) � 2.03 , p � 0.17
FGENOTYPE � STRETCH ATTENDS/HEAD DIPS(1,19) � 0.80, p �

0.382

6A,B, sex behavior
(latency to mount, number
of female rejections)

Normal distribution Independent samples t test
with Bonferroni
correction

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: latency to mount: p � 0.31 (two-tailed), t �

1.04, df � 22
Females: latency to be mounted: p � 0.03 (two-tailed),

t � –0.52, df � 19
number of rejections: p � 0.61 (two-tailed), t � –0.52,

df � 19

6C,D, sex behavior
(percent mounted)

NA Pearson’s �2 Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: Pearson’s �2: p � 0.34
Females: Pearson’s �2: p � 1.2797E-27

7A, aggressive behavior
(latency)

Non-normal Mann–Whitney U test,
independent samples

Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: latency to attack across genotype: p � 0.955
(two sided), U � 60

Females: NA

7B, aggressive behavior
(percent attacking)

NA Pearson’s �2 Males: AVP-iCre– � 13 AVP-iCre� � 10
Females: AVP-iCre– � 13 AVP-iCre� � 8

Males: Pearson’s �2: p � 0.85 (two sided)
Females: NA

8A,B, odor discrimination Normal distribution Paired samples t test with
Bonferroni correction
between odors

Males: AVP-iCre– � 11 AVP-iCre� � 5
Females: AVP-iCre– � 5 AVP-iCre� � 7

Males (all two-tailed, iCre– df � 10, iCre� df � 4):
water (3) vs almond (1): t � 5.132, p � 0.0004 (iCre–),

t(4) � 5.261, p � 0.006 (iCre�)
almond (3) vs coconut (1): t � 1.21, p � 0.20 (iCre–),

t � 1.725, p � 0.16 (iCre�)
coconut (3) vs male urine (1): t � 11.41, p � 0.00001

(iCre–), t � 6.675, p � 0.003 (iCre�)
male urine (3) vs female urine (1): t � 7.936, p �

0.00001 (iCre–), t � 8.313, p � 0.001 (iCre�)
Females (all two-tailed, iCre– df � 10, iCre� df � 4):
water (3) vs almond (1): t � 1.431, p � 0.226 (iCre–),

t � 1.56, p � 0.218 (iCre�)
almond (3) vs coconut (1): t � 2.250, p � 0.09 (iCre–),

t � 2.10, p � 0.10 (iCre�)
coconut (3) vs male urine (1): t � 6.197, p � 0.003

(iCre–), t � 7.454, p � 0.0003 (iCre�)
male urine (3) vs female urine (1): t � 7.071, p � 0.002

(iCre–), t � 5.211, p � 0.002 (iCre�)
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Statistical analysis
All data were analyzed and graphed in R (3.4.4; R Core

Team, 2017). Histology, social investigation, movement,
UM (in male subjects), odor discrimination, and EPM
data met the assumptions of parametric statistical tests.
Therefore, we analyzed histologic data with t tests and
data on social investigation, movement (distance traveled,
time in chambers containing stimulus and clean cages)
and male UM with mixed-model ANOVAs [between-
subject factor: genotype (iCre�, iCre–); within-subject
factors: sex of stimulus (male, female); preference for
stimulus (stimulus, clean) followed by t tests assessing
genotype effects]. Total distance traveled within the ap-
paratus was analyzed using a mixed-model ANOVA
(between-subject factor: genotype; within-subject factor:
sex of stimulus) as was time spent in open/closed arms in
the EPM test (between-subject factor: genotype; within-
subject factor: arm); effects of genotype on additional
anxiety behaviors (stretch-attend, head-dips) were ana-
lyzed using t tests. We determined whether subjects
could discriminate between odors by comparing odor
investigation on the last trial for one odor and odor investi-
gation on the first trial of the subsequent odor using paired t
tests. The number of female UMs, USVs, USV syllable type,
measures of copulatory behavior, and aggression behavior
were not normally distributed and could not be transformed,

therefore, we analyzed genotype effects using pairwise
Mann–Whitney U tests. Differences in proportion of animals
engaging in copulatory/aggressive behaviors across geno-
type was assessed using �2 tests. All post hoc pairwise
comparisons report Bonferroni-corrected p values and Co-
hen’s d for effect size when statistically significant. Results
were considered significant if p � 0.05. All statistical tests
are presented in Table 1.

Results
Histology

Injection of a viral vector encoding a Cre-dependent
cell-death construct into the BNST highly effectively re-
duced AVP cell numbers in both iCre� males and fe-
males, which had only 10% of the number found in iCre–
subjects (males: t(22) � 4.57, p � 0.00014, d � 2.64;
females: t(19) � 3.58, p � 0.0025, d � 2.02; Fig. 1B),
without significantly reducing the number of nearby ac-
cessory AVP mRNA-expressing cells (males: t(22) � –0.16,
p � 0.98; females: t(19) � –0.15, p � 0.89; Fig. 1C) or total
level of AVP mRNA label in the PVN (males: t(20) � 0.66, p
� 0.947; females: t(19) � –1.10, p � 0.29; Fig. 1D), sug-
gesting that there were no significant off-target effects.
We also observed no difference in the number of AVP
mRNA-expressing cells in the PVN between genotype
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Figure 2. BNST AVP cell ablations in iCre� males reduced male-male social investigation. Boxplot and individual data points of time spent
investigating male or female animals or their urine versus clean control stimuli within the three-chamber apparatus. A, B, Time spent
investigating either a caged female versus a clean cage or a caged male versus clean cage. A, iCre– (males: n � 13, females: n � 13) and
iCre� mice (males: n � 11, females: n � 8) differed in preference for investigating the stimulus depending on the sex of stimulus (p � 0.003).
Post hoc analysis revealed iCre� males significantly decreased investigation of the male animal compared to iCre– littermates p � 0.004.
B, iCre– and iCre� females did not differ in investigation (p � 0.94). C, D, Time spent investigating either female urine or male urine versus
saline control placed on filter paper. iCre– and iCre� subjects did not differ in their investigation of female or male urine. C, Male subjects:
p � 0.64. D, Female subjects: p � 0.10. Note scale difference in animal investigation time between male and female subjects; �� indicates
significant effect of genotype, p � 0.004. Boxplot representations as in Figure 1.
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(males: t(20) � 0.66, p � 0.514; females: t(19) � 0.79, p �
0.82; Table 1). In addition, Nissl-stained tissue from a
subset of subjects revealed no overall cell loss in the
BNST (males: t(13) � 0.79, p � 0.439; females: t(12) �
–0.80, p � 0.44 (Fig. 1E). Two iCre� males and two iCre�
females were removed from the analysis as their AVP cell
numbers in the BNST were �3 standard deviations above
the mean, which we interpreted as off-target injections.
Two additional iCre� females were removed due to uni-
lateral AVP cell loss in the PVN.

BNST AVP cell ablations in iCre� males reduced
male-male social investigation

Mice from both genotypes investigated female stimulus
animals more than male stimulus animals (males subjects:
F(1,22) � 261.34, p � 0.00001; female subjects: F(1,19) �

55.92, p � 0.00001) and had similar overall levels of
investigation (male subjects: F(1,22) � 0.62, p � 0.438;
female subjects: F(1,19) � 1.60, p � 0.29). However, iCre–
and iCre� males differed in preference for investigating
the stimulus animal depending on the sex of stimulus
(F(1,22) � 11.16, p � 0.003). Post hoc comparisons re-
vealed that iCre� males significantly decreased investi-
gation of male animals compared to iCre– littermates (t(22)

� 3.75, p � 0.004, d � 1.52; Fig. 2A) but not female
stimulus animals (t(22) � –0.70, p � 1.0), while ablation of
these cells in females did not affect social investigation
(F(1,19) � 0.004, p � 0.94; Fig. 2B).

Males of both genotypes investigated female urine more
than male urine (F(1,22) � 117.39, p � 0.00001), whereas female
subjects investigated male urine more than female urine (F(1,19)

� 60.33, p � 0.00001). iCre� mice did not investigate urine

Table 2. Table of median (interquartile range) distance traveled and time spent in stimulus or clean cage chamber
Male subjects Female subjects

iCre– iCre� iCre– iCre�

Stimulus Female Male Female Male Female Male Female Male

Distance traveled (m) 0.33 (0.22–0.54) 0.32 (0.16–0.5) 0.34 (0.19–0.48) 0.29 (0.13–0.44) 0.28 (0.08–0.38) 0.23 (0.01–0.47) 0.35 (0.16–0.42) 0.34 (0.04–0.5)
Time in stimulus chamber (s) 185 (129–248) 127 (78–195) 175 (111–229) 97 (15–209) 174 (102–246) 147 (30–227) 155.75 (23–198) 119 (91–155)

Time in clean chamber (s) 86 (45–122) 127 (73–155) 90 (49–158) 130 (67–231) 90 (43–176) 113 (52–240) 106 (48–170) 136 (74–282)

iCre– and iCre� mice did not differ in distance traveled, time spent in animal stimulus, or clean stimulus chambers.
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Figure 3. BNST AVP cell ablations in iCre� males increased UM to females. Boxplot and individual data points of UM in presence
of males or females or their urine within the three-chamber apparatus. A, iCre– (males: n � 13, females: n � 13) and iCre� mice
(males: n � 11, females: n � 8) differed in UM depending on the sex of stimulus (p � 0.00015). Post hoc analysis revealed iCre� males
significantly increased UM to the female stimulus compared to iCre– littermates (p � 0.000112). B, iCre– and iCre� females did not
differ in UM to stimulus animals [p � 0.32 (males), p � 0.15 (females)]. C, D, UM with either female urine or male urine present. iCre–
and iCre� subjects did not differ in UM to female or male urine. C, Male subjects: p � 0.70. D, Female subjects: p � 0.467 (female
stimulus), p � 0.858 (male stimulus); ��� indicates significant effect of genotype, p � 0.00015. Boxplot representations as in
Figure 1.
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differently from iCre– littermates (males: F(1,22) � 0.22, p � 0.64;
females: F(1,19) � 2.91, p � 0.10; Fig. 2C,D).

BNST AVP cell ablations in iCre� animals did not
alter the amount or spatial distribution of activity

Overall, mice of both genotypes traveled similar dis-
tances throughout the three-chamber apparatus (males:

F(1,22) � 3.48, p � 0.33; females: F(1,19) � 3.47, p � 0.08);
this pattern did not differ when presented with female or
male stimulus animals (males: F(1,22) � 0.01, p � 0.92;
females: F(1,19) � 0.01, p � 0.91). There were no differences
between genotypes in the amount of time mice spent in the
stimulus and clean chamber zones (males: F(1,22) � 0.13, p �
0.72; females: F(1,19) � 0.04, p � 0.85; Table 2).

Figure 4. BNST AVP cell ablations in iCre� animals did not alter USVs. Boxplot and individual data points of USV in presence of a
male or female or their urine within the three-chamber apparatus. A, B, iCre– (males: n � 13, females: n � 13) and iCre� mice (males:
n � 11, females: n � 8) did not differ by genotype in USV production. A, Male subjects: p � 1.0 (female stimulus), p � 0.33 (male
stimulus). B, Female subjects: p � 0.18 (female stimulus), p � 0.16 (male stimulus). C, D, USV with either female urine or male urine
present. iCre– and iCre� subjects did not differ in USVs to female or male urine. C, Male subjects: p � 0.77 (female stimulus), p �
0.5 (male stimulus). D, Female subjects: p � 0.26 (female stimulus), p � 0.49 (male stimulus). E, USV emitted by male mice were
gammatone-transformed (200-ms window) and divided into 10 categories of calls based on spectrographic parameters. F, Male USV
syllable type (iCre– n � 6; iCre� n � 7). BNST-AVP ablations did not change the percentage of USV syllable types produced between
genotypes. Boxplot representations as in Figure 1.
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BNST AVP cell ablated iCre� males increased UM to
females

Male mice UM more in the presence of females than
males (F(1,22) � 52.62, p � 0.00001. iCre– and iCre�
males differed in overall UM (F(1,22) � 23.72, p � 0.00007)
and UM depending on the sex of stimulus (F(1,22) � 21.02,
p � 0.00015). Post hoc comparisons revealed that iCre�
males significantly increased UM to the female stimulus
compared to iCre– littermates (t(22) � 4.6, p � 0.000112,
d � 2.04; Fig. 3A) but not to the male stimulus (t(22) � 1.45,
p � 0.16). iCre– and iCre� females did not differ in UM in
the presence of males (U � 32, p � 0.32) or females (U �
20, p � 0.15; Fig. 3A). Neither male nor female subjects
differed in UM to urine depending on the sex of stimulus
[male subjects: F(1,22) � 1.16, p � 0.70; female subjects: U
� 52, p � 0.467 (female stimulus), U � 32, p � 0.858
(male stimulus)]. Only one male (iCre�) pooled urine in the
male condition, therefore we did not analyze pooled urine.

BNST AVP cell ablations in iCre� animals did not
alter USVs

The total number of USVs emitted when iCre– and
iCre� mice were placed with female (male subjects: U �
64, p � 1.0; female subjects: U � 58, p � 0.18) or male
animals did not differ by genotype (male subjects: U � 47,
p � 0.33; female subjects: U � 52, p � 0.16; Fig. 4A,B).
Mice from both genotypes also did not differ in USVs to
female urine (male subjects: U � 60, p � 0.77; female
subjects: U � 53, p � 0.26) or male urine (male subjects:

U � 52, p � 0.5; female subjects: U � 60, p � 0.49; Fig.
4C,D). Additionally, BNST AVP cell ablations did not
change the percentage of USV syllable types produced
between male genotypes (short: U � 10, p � 0.14, com-
posite: U � 22, p � 1.0, downward: U � 17, p � 0.63,
upward: U � 17, p � 0.63, 1 frequency jump: U � 15, p
� 0.45, modulated: U � 27, p � 0.37, multiple frequency
jumps: U � 24.5, p � 0.63, u-shape: U � 19.5, p � 0.83,
flat: U � 18, p � 0.73, chevron: U � 39, p � 0.08; Fig.
4E,F).

BNST AVP cell ablations in iCre� animals did not
influence anxiety-like behavior

All mice spent less time in the open arm than the closed
arm of the EPM (male subjects: F(1,22) � 51.74, p �
0.000001; female subjects: F(1,19) � 89.41, p � 0.000001).
iCre– and iCre� mice did not differ in the time spent in
either arm of the EPM (male subjects: F(1,22) � 2.81, p �
0.11; female subjects: F(1,19) � 1.30, p � 0.59; Fig. 5A,B).
Additionally, both genotypes did not differ in frequency of
stretch attend postures or head dips (male subjects: F(1,22)

� 3.90, p � 0.16; female subjects: F(1,19) � 0.80, p � 0.38;
Fig. 5C,D).

BNST AVP cell ablations in iCre� animals did not
alter male copulatory behavior but did reduce
mounting of females

iCre� and iCre– males mounted females with similar
latencies and did not differ in the percentage of subjects
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Figure 5. BNST AVP cell ablations in iCre� animals did not influence anxiety-like behavior. Boxplot and individual data points of time
spent in the open and closed arms within the EPM, number of stretch attends, and number of head dips. A, B, iCre– (males: n � 13,
females: n � 13) and iCre� mice (males: n � 11, females: n � 8) did not differ by genotype in time spent in open and closed arms.
A, Male subjects: p � 0.11. B, Female subjects: p � 0.59. C, D, iCre– mice (males: n � 13, females: n � 13) and iCre� mice (males:
n � 11, females: n � 8) did not differ by genotype in number of stretch attends or head dips. C, Male subjects: p � 0.16. D, Female
subjects: p � 0.38. Boxplot representations as in Figure 1.
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mounting and/or ejaculating (t(22) � 1.04, p � 0.31; Fig.
6A,C). However, it took longer for males to mount iCre�
females (U � 22, p � 0.03) and fewer iCre� females were
mounted overall as compared to iCre– females (�2(2), p �
0.000001). However, female iCre� mice did not reject
stimulus males more frequently than did iCre– females
(t(19) � 0.52, p � 0.61). One iCre� female was removed
during the sex behavior test and sex behavior analysis
because the stimulus male attacked the female.

BNST AVP cell ablation did not alter territorial
aggression

The proportion of male subjects that attacked the sub-
ordinate intruder in their home cage did not differ between
genotypes (�2(2), p � 0.85) nor did they differ in attack
latency (U � 60, p � 0.955; Fig. 7A,B). Female subjects
did not attack female intruders.

BNST AVP cell ablations did not change the ability to
discriminate between social odors

Males and females of both genotypes were able to
discriminate between male and female urine odors [males:

t(10) � 7.936, p � 0.00001 (iCre–), t(4) � 8.313, p � 0.001
(iCre�); females: t(4) � 7.071, p � 0.002 (iCre–), t(6) �
5.211, p � 0.002 (iCre�)] and could distinguish between
non-social and social odors [males: t(10) � 11.41, p �
0.00001 (iCre–), t(4) � 6.675, p � 0.003 (iCre�); females:
t(4) � 6.197, p � 0.003 (iCre–), t(6) � 7.454, p � 0.0003
(iCre�)]. However, subjects’ ability to discriminate be-
tween non-social odors was not robust (Fig. 8A,B). Al-
though both iCre� and iCre– males discriminated
between water and almond odor, females did not, and no
subjects discriminated between the two non-social odors
(Table 1).

Discussion
We found that deletion of the sexually dimorphic AVP

cell group in the BNST significantly affected social behav-
ior in males, reducing social investigation of other males
and increasing UM in the presence of a female. In fe-
males, which have significantly fewer AVP BNST cells,
similar deletions minimally affected social behavior and
communication. This is the first time that direct alteration
of a male-biased, sexually-dimorphic population of neu-
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Figure 6. BNST AVP cell ablations in iCre� animals did not alter male copulatory behavior but did reduce mounting of females.
Boxplot and individual data points of male subject’s latency to mount a female (A) or female subject’s latency to be mounted (B). Pie
chart summarizing proportion of male subjects that ejaculated (C) or the proportion of female subjects mounted by a male (D) with
number of subjects in each category indicated. A, C, iCre– (n � 13) and iCre� (n � 11) male mice did not differ by genotype in their
latency to mount females or in the percentage of subjects ejaculating. B, D, iCre� (n � 8) female mice were mounted at longer
latencies (p � 0.03) and proportionally less (p � 0.000001) than iCre– (n � 13) females; � indicates significant effect of genotype,
p � 0.03. Boxplot representations as in Figure 1.
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ropeptidergic cells has caused a sex difference in mam-
malian social responses. While several studies have
directly tested the social function of sexually-dimorphic
cell populations (Yang et al., 2013; Scott et al., 2015;
Unger et al., 2015; Wei et al., 2018), only one has found a
strong sex difference in social behavior tied to an ana-
tomic sexual dimorphism, in this case a female-biased
one (Scott et al., 2015). Our results indicate that sex
differences in AVP cells in the BNST contributes to sex-
ually dimorphic components of social communication.

Our experiments do not allow us to conclude that re-
moval of AVP production in the BNST, by and of itself,
caused the behavioral effects observed in this study.
Lesioning AVP cells also removed all other neuroactive
substances co-expressed by these cells, for example,
galanin (Miller et al., 1993), which also has been impli-
cated in control of social behavior (Wu et al., 2014).
Consequently, our behavioral results may be due to
depletion of AVP, or of co-transmitters from BNST pro-
jections, or both. Our finding of reduced male-male inves-
tigation following BNST AVP cell deletion, however, is
strikingly similar to the effects of RNA interference for the
homologous peptide arginine vasotocin (AVT) in the BNST
of territorial finches (Kelly and Goodson, 2013b) and sug-
gests that this effect is mainly due to a reduction of AVP
signal from the BNST.

Our cell deletion approach is, by design, permanent,
and so behavioral effects may reflect molecular, cellular,
and anatomic adjustments or compensations to chronic
depletion of AVP cells in the BNST. Indeed, long-term
pharmacological reduction of V1a receptor activity in the
LS, a key target of AVP cells in the BNST (De Vries and
Panzica, 2006), produces different changes in behavior
than acute receptor blockade (Liebsch et al., 1996; Everts
and Koolhaas, 1999). A lack of an effect on a behavior,
therefore, does not exclude involvement of these cells in
that behavior. Nevertheless, our findings of male-specific
alterations in social interactions and communication fol-

lowing deletion of AVP cells in the BNST strongly indicate
that in males these cells are critical for these functions.

One of the strongest effects of deletion of AVP cells in
the BNST was the reduction of same-sex social investi-
gation, which we found in males but not in females.
Importantly, this reduction was not due to a lack of gen-
eral social interest, as investigation of females was
unchanged. It was not due to changes in general chemo-
sensory function or motor behavior either, as odor habit-
uation or discrimination of non-social odors and detection
of social odors (male or female urine) was unaffected and
measures of general activity were also not changed. This
reduction can also not be explained by a general increase
in anxiety-like behaviors, because the lesions did not
affect behavior in the anxiogenic EPM. Instead, it sug-
gests that one function of AVP cells in the BNST is to
generate male-typical approach, investigation, and as-
sessment of potential territorial competitors (Oldfield
et al., 2015), which is consistent with the observation that
knocking down AVT mRNA in the BNST of territorial birds
reduces social contact with other males (Kelly and Good-
son, 2013b), and that overexpression of V1a receptors
(Landgraf et al., 2003) or AVP injections (Koolhaas et al.,
1991) in the LS, a key target for AVP projections from the
BNST (De Vries and Panzica, 2006), increases active
male-male interactions and aggressive behavior in rats.
Indeed, retrodialysis of V1aR antagonist into the LS of
male rats blocks further territorial aggression during re-
peated resident-intruder tests (Veenema et al., 2010). Our
finding that deleting AVP cells in the BNST reduced in-
vestigation of potential competitors is consistent with
these findings. Our failure to see a change in aggressive
behavior is not. One explanation for this apparent discrep-
ancy is that AVP from other sources contribute to stimu-
lating effects on aggressive behavior in areas such as the
LS. For example, AVP cells in the MeA show similar
dimorphisms as BNST cells and project to overlapping
areas (De Vries and Panzica, 2006). Lesioning both cell
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groups may be necessary to identify all behaviors in which
these sexually dimorphic cell groups are critically in-
volved. Nevertheless, AVP cells in the BNST appear to be
required for the proactive investigation of credible social
threats rather than for offensive aggression per se.

Ablation of AVP cells in the BNST of male, but not
female, mice strongly increased UM toward females, sug-
gesting that these cells normally suppress male scent
marking toward females. This increase in UM is not due to
excessive eliminative urination because it was not ob-
served toward male stimuli nor was it manifested as an
increase in pooled urine. It is possible that this increase is
simply due to increased proximity and interest in females.

However, males with deletions of AVP cells in the BNST
did not differ from control animals in time spent investi-
gating female stimuli, making this explanation less likely.
Although UM strongly depends on chemosensory pro-
cessing (Maruniak et al., 1986; Labov and Wysocki, 1989),
the increase in UM by lesioned males was not driven
primarily by female urine cues because marking to female
urine was not increased, suggesting that other cues, che-
mosensory as well as non-chemosensory, may drive this
increase in scent marking. Given the metabolic costs of
urination (Gosling et al., 2000) and the increased risks
associated with attraction of aggressive competitors and
predators toward urine marks (Desjardins et al., 1973;

Figure 8. BNST AVP cell ablations did not change the ability to discriminate between social odors. Time spent investigating water,
almond or coconut extract, male urine, or female urine. A, Males and B, females of both genotypes were able to discriminate between
male and female urine odors [A, males: p � 0.00001 (iCre�), p � 0.001 (iCre�); B, females: p � 0.002 (iCre�), p � 0.002 (iCre�)]
and could distinguish between non-social and social odors [males: p � 0.00001 (iCre�), p � 0.003 (iCre�); p � 0.003 (iCre�), p �
0.0003 (iCre�)]. However, subjects’ ability to discriminate between non-social odors was not robust. Although both iCre� and iCre�
males discriminated between water and almond odor, females did not, and no subjects discriminated between the two non-social
odors. Data are expressed as mean (�) SEM; trial numbers are given on the x-axis; � indicates significant difference (all p � 0.005)
between investigation of odors, irrespective of genotype.
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Roberts et al., 2001), UM should be strongly regulated so
that signaling occurs in only specific social contexts. The
present results indicate that the BNST-AVP cells may be
a key part of the neural system that adaptively regulates
this critical signaling behavior.

Although AVP/AVT has been implicated in the produc-
tion of vocalizations across taxa (Goodson and Bass,
2001), deleting the AVP cells in the BNST did not signifi-
cantly alter the production of USVs in a reproductive
context. This is consistent with the few studies examining
male courtship vocalizations (in birds) that report no effect
of central infusions of AVT or V1a antagonists on female-
directed singing (Goodson and Adkins-Regan, 1999;
Goodson and Evans, 2004) or got mixed results from
antisense knock-down of BNST-AVP, with one study find-
ing no effect (Kelly et al., 2011) and another observing
decreased singing (Kelly and Goodson, 2013b). Most
other studies supporting a role for AVP/AVT in vocaliza-
tions have not identified the relevant neuroanatomical
source of the peptide or its locus of action (Wilczynski
et al., 2017) or tended to focus on stress-related or ag-
gressive vocalizations across development (Winslow and
Insel, 1993; Bleickardt et al., 2009; Iijima et al., 2014;
Lukas and Wöhr, 2015; Paul et al., 2016; Freeman et al.,
2018).

Our study also points to a limited, sexually dimorphic
role of BNST AVP cells in reproductive behavior. Removal
of these cells in males did not alter copulatory behavior,
which is consistent with the absence of copulatory defi-
cits in whole-animal knock-outs of V1a or V1b receptors
(Wersinger et al., 2004, 2007). However, unexpectedly,
ablating these cells in females delayed, and reduced the
number of times they were mounted by males. This effect
may represent reduced attractiveness of the female or an
increased rejection of the male. The latter possibility
seems less likely, as we did not detect any change in male
investigation toward lesioned females, nor did such fe-
males reject males more frequently. It is possible that
these females show decreases in cryptic proceptive
and/or receptive behaviors. Although AVP has been im-
plicated in female rat sexual behavior, the pattern of prior
results is opposite to our findings: in rats, AVP reduced,
whereas V1a receptor antagonists increased, female sex-
ual behavior in rats (Södersten et al., 1983; Pedersen and
Boccia, 2006). However, as in these studies peptides
were injected into the lateral ventricle, it is unclear with
what AVP system they interacted.

Although central AVP has been repeatedly implicated in
the generation of anxiety states (Ebner et al., 2002; Biel-
sky et al., 2004; Raggenbass, 2008), we did not observe
changes in anxiety-like behavior of lesioned males or
females in a non-social anxiogenic environment (Hogg,
1996). This is somewhat surprising because AVP in the
LS, an important target of the BNST AVP cells (De Vries
and Panzica, 2006), controls anxious states. For example,
injections of AVP or V1aR antagonists, or V1aR knock-
down within LS all support the idea that AVP is anxiogenic
at this site (Landgraf et al., 1995; Liebsch et al., 1996;
Beiderbeck et al., 2007). However, since large lesions of
BNST have no effect on anxiety-like behavior in the EPM

task either (Treit et al., 1998), it may simply mean that, as
with aggressive behavior, AVP cells in the BNST are not
critically involved in anxiety-like behaviors, and that AVP
derived from other sources, such as the PVN or the
amygdala (Rood et al., 2013), also drive AVP’s anxiogenic
action in the septum and elsewhere.

Conclusions
A growing body of literature indicates that vasopressin

plays a sexually dimorphic role in control of social and
anxiety-related behaviors. In humans, for example, intra-
nasal vasopressin stimulates reciprocation of cooperation
in males and conciliatory behavior in females, while acti-
vating brain areas implicated in reward, social bonding,
arousal and memory in males, but not in females (Rilling
et al., 2014). In hamsters, hypothalamic injections of va-
sopressin stimulate aggression in males, while reducing it
in females (Terranova et al., 2016). In mice, a genetic
knock-out of the vasopressin V1a receptor gene reduces
anxiety-related behaviors in males, but not in females
(Bielsky et al., 2004, 2005). In rats, a V1a antagonist
reduces social play in males while increasing them in
females when injected intracerebroventricularly, but has
the exact opposite effect when injected into the septum
(Veenema et al., 2013). Although, these studies clearly
point at a sexually dimorphic role of vasopressin and its
cognate receptor in behavior, they do not identify which
AVP system is involved, and the opposite effects in play
behavior, depending on the area injected, suggests that
more than one system may be involved. By targeting a
specific AVP cell group directly, our study has identified
the sexually dimorphic AVP cells in the BNST as contrib-
uting to sex differences in social behavior, and has shown
the feasibility of following a similar approach in identifying
the contributions of other AVP systems in the brain as
well.
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