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Abstract: The low stretchability of plain membranes restricts the sensitivity of conventional diaphragm-
based pressure and inflatable piezoelectric sensors. Using theoretical and computational tools, we
characterized current limitations and explored metamaterial-inspired membranes (MetaMems) to
resolve these issues. This paper develops two MetaMem pressure sensors (MPSs) to enrich the
sensitivity and stretchability of the conventional sensors. Two auxetic hexagonal and kirigami
honeycombs are proposed to create a negative Poisson’s ratio (NPR) in the MetaMems which enables
them to expand the piezo-element of sensors in both longitudinal and transverse directions much
better, and consequently provides the MPSs’ diaphragm a higher capability for flexural deformation.
Polyvinylidene fluoride (PVDF) and polycarbonate (PC) are considered as the preferable materials for
the piezo-element and MetaMem, respectively. A finite element analysis was conducted to investigate
the stretchability behavior of the MetaMems and study its effect on the PVDF’s polarization and sensor
sensitivity. The results obtained from theoretical analysis and numerical simulations demonstrate
that the proposed MetaMems enhance the sensitivity of pressure sensors up to 3.8 times more than an
equivalent conventional sensor with a plain membrane. This paper introduces a new class of flexible
MetaMems to advance wearable piezoelectric metasensor technologies.

Keywords: MetaMem; metamembrane; piezoelectric pressure sensor; metamaterial; wearable
metasensor; auxetic; kirigami

1. Introduction

Sometimes, conventional piezoelectric sensors have sensitivity limitations, owing to
their intrinsic lack of stretchability [1–4]. In order to enhance stretchability and mechanical
compliance, metamaterial-inspired substrates for piezoelectric devices are rapidly growing
and becoming widespread [5,6]. Metamaterials are artificial structures which provide
unusual mechanical properties with regard to energy absorption, mass, density, deforma-
tion, static modulus, smart functionality, and negative Poisson’s ratio (NPR) [6]. During
the past decade, there has been a tremendous interest in the use of metamaterial in 1D,
2D, and 3D structures such as: lenses, photonic crystals for light, phononic crystals for
sound, and soft acoustic metamaterials [7–9]. Poisson’s ratio defines the ratio between two
characteristics of the transverse and longitudinal strain of a structure, and NPR behavior
has been discovered in auxetic materials that expand (contract) in the transverse direction
when stretched (compressed), instead of usual materials (Figure 1) [10–14]. Such an auxetic
behavior is found in some hexagonal [15–20] and kirigami honeycombs [21–27]. Auxetic-
inspired designs for flexible membranes and substrates are attracting growing attention in
developing the next generation of highly efficient piezoelectric sensors and harvesters.

Uniaxial kirigami patterns have been experimentally studied by Hu et al. to improve
piezoelectric material stretchability and compliance [28]. A three-dimensional hexagonal
honeycomb was studied by Khan and Khan [29] for hydrophone piezoelectric applica-
tions. Fey et al. [30] fabricated a two-dimensional auxetic hexagonal lattice from a PZT
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piezo-ceramic, exhibiting a strain amplification by a factor of 30–70 compared to PZT bulk
material. Farhangdoust [31] performed a finite element analysis to investigate the power
enhancement of a piezoelectric cantilever energy harvester in which the cantilever beam
uses a re-entrant hexagonal auxetic structure. His simulation result showed that the auxetic
cantilever beam excited by a harmonic acceleration at a low frequency was able to produce
an electric power 2.5 times that of the power produced by the equivalent plain cantilever
beam energy harvester. Khan et al. [32] investigated the elastic, dielectric, and piezoelectric
properties of hexagonal honeycomb for light-weight piezoelectric sensors and actuators.
Very recently, metamaterial-based substrate (MetaSub) was introduced by Farhangdoust
et al. [4] for the power enhancement of piezoelectric energy harvesters in which the Meta-
Sub design was made by a combination of uniaxial kirigami and hexagonal patterns to
increase the planar stretchability of the substrate. In a myriad of biomedical and wearable
health monitoring applications, metamaterial-inspired membranes for implantable strain
sensors have gained great attention, as they display great potential for continuous health
monitoring. A biaxial pattern of kirigami honeycomb has been used as a substrate for a
biomorph piezoelectric harvester by Li et al. [33]. This could enhance the power output
by 2.76 times in comparison with an equivalent plain substrate. A hexagonal honeycomb
pattern was also developed by Farhangdoust et al. [10] for a stretchable sensor used for the
continuous monitoring of structures. Sun et al. [34] used a uniaxial kirigami honeycomb
to increase piezoelectricity. It was experimentally found that the kirigami-based sensor
improved the voltage output 2.6 times more than a conventional strain sensor. It has been
reported that a uniaxial kirigami graphene electrode exhibits a controllable stretchability
and strain-insensitive electrical performance up to 240% stretching [35,36]. Sun et al. [37]
increased the flexibility performance of wearable sensors by using a uniaxial kirigami
honeycomb. A motion artifact-free sensing platform using a kirigami-patterned mesh
structure has been carried out by Lee et al. [38] to make a multi-axially stretchable sensor.
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Figure 1. Schematic of deformed and undeformed states of both usual (left) and metamaterials
(right).

Although most of the substantial features of metamaterials have recently been studied
for the strain-type of piezoelectric sensors and harvesters, the application of metamaterial-
inspired membranes (MetaMem) for inflatable and pressure sensors is still in the early
research stage [39]. In a low-pressure regime, the low sensitivity output is an important
challenge of conventional pressure sensors (CPSs) using capacitive and piezoresistive mea-
surement principles [39]. In this research, to address this challenge, a MetaMem pressure
sensor (MPS) was developed as a highly sensitive alternative to the CPS. Two honeycombs
of auxetic hexagonal and biaxial kirigami were exploited to develop a next generation of
highly stretchable MetaMems for the sensitivity enhancement of diaphragm-based pres-
sure sensors. To achieve this goal, two MetaMems, as well as a plain membrane, were
employed to analyze three pressure sensors by both theoretical and simulation techniques.
We first used a CPS comprised of a PVDF layer bonded to a plain membrane to simulate
a computational model to characterize the useable frequency range as a function of the
natural frequency of the pressure sensor. Accordingly, the two MetaMems were utilized
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to demonstrate the sensitivity enhancement of the MPSs which depended on the desired
stretchability caused by the negative Poisson’s ratio behavior of the proposed MetaMems.

2. Design

Piezoelectric materials transform mechanical energy into electrical signals when used
as a sensor. This is called the direct piezoelectric effect and is expressed using the constitu-
tive equations of Equation (1) [6]:

Sij = kE
ijklσkl + dkijEkDi = diklσkl + εT

ikEk (1)

where D, kE, σ, and εT denote the electrical charge density, compliance under a constant
electrical field, applied stress vector, and the dielectric permittivity, respectively. S, d, E and
dt, also represent the strain, direct piezoelectric effect matrix, electric field, and converse
piezoelectric effect, respectively. Figure 2 shows the design for three piezoelectric sensors.
The CPS consists of three main components: substrate, membrane, and piezo-element. The
substrate has a hole punched from the backside, and is attached to the membrane and
piezo-element from the front side, respectively. As the cross section of the CPS is shown in
Figure 2, the thin layer of substrate bonded to the membrane acts as a diaphragm film to
prevent any direct pressure penetration to the piezo-element from the backside of the sensor.
As a result, the strain response of the membrane, and accordingly the stress response of
the piezo-element, were analyzed by applying a harmonic pressure to the backside of the
substrates. As stated earlier, polyvinylidene fluoride (PVDF) was selected as a preferable
piezo-element to use due to its natural flexibility and compatibility. Polycarbonate (PC)
was also selected as the material for the substrate and membrane.
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Figure 2. Scheme of the CPS model.

As shown in Figure 2, to evaluate the stretchability investigation of MetaMems, two
distinctive auxetic hexagonal and biaxial kirigami honeycombs were also modeled as the
same size as the plain membrane used in the CPS. The dimension and geometric parameters
of the CPS model are listed in Table 1. Figure 3 shows the details of the two proposed
auxetic hexagonal and biaxial kirigami honeycombs.
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Table 1. Parameter values used in the pressure sensor models.

Part Parameter Value Unit

Substrate

Width, Ws 14 mm
Length, Ls 13.5 mm

Thickness, ts 500 µm
Diaphragm’s Thickness, td 125 µm

Membrane
Width, Wm 12.125 mm
Length, Lm 11.5 mm

Thickness, tm 250 µm

Piezo-element
Width, Wp 11.625 mm
Length, Lp 11 mm

Thickness, tp 250 µm
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For the computational analysis, the material properties of different components of the
pressure sensors are listed in Table 2.

In Table 2, polycarbonate’s Poisson’s ratio (a), elastic modulus (b), and density (c) as
functions of temperature were taken from the material library of the COMSOL Multiphysics
3.5a software (Figure 4) [40].

Table 2. Material properties for models.

Material Property Value

Piezo-Element:
Polyvinylidene
fluoride (PVDF)

Density, kg/m3 ρPVDF 1780
Load Resistance, k Ω R 2000

Compliance Matrix, p/Pa sE
11 378

sE
33 109

Coupling Matrix, 10−12 C/N
d31 13
d32 14
d33 −33

Relative Permittivity, – ∈33 7.6

Substrate and
Membrane:

Polycarbonate (PC)

Density, kg/m3 ρPC ρ(T)
Poisson’s Ratio νPC ν(T)

Young’s Modulus, GPa EPC E(T)
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3. Finite Element Analysis

The finite element analysis (FEA) was employed to investigate the sensitivity enhance-
ment of the two proposed MPSs. To this end, three designs of pressure sensors proposed in
the previous section (Figures 2 and 3) were simulated in the three-dimensional geometrics
module of the COMSOL Multiphysics 3.5a software. Table 2 was used for material and
mechanical properties. In the electrical circuit module of the software, the piezoelectric
sensors were modeled as a charge source (Q) in parallel with a capacitor (CS) (Figure 5).
In addition, the piezoelectric terminals were determined in the electrostatics module of
the software. These modules were coupled together to develop and evaluate the three
proposed sensors using the frequency domain study of the COMSOL Multiphysics 3.5a
software. Accordingly, with regard to the stretchability capacity of the membrane and
MetaMems, the voltage output of the three pressure sensors was studied for different
sensors and fabrication parameters including resonance frequency, load resistance of the
piezo-element, amplitude and frequency of the applied pressure, and the thickness of the
membrane/MetaMems.

The first five natural frequencies and mode shapes of three sensors were carried out
using the eigenfrequency study of the COMSOL Multiphysics 3.5a software. Figure 6 shows
the FEM results for three models of CPS with a plain membrane, MPS with a kirigami
MetaMem, and hexagonal MPS with a hexagonal MetaMem. As shown in this Figure, the
first bending natural frequency of CPS, kirigami MPS, and hexagonal MPS take place at
8240 (Hz), 8388 (Hz), and 8458 (Hz).
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Figure 6. First natural frequencies and mode shapes of the three sensors.

As a general rule in pressure sensors, the frequency response of a recessed diaphragm
system will be useable from 20% to 30% of the resonance frequency fn [41]. There is a
point at 20% of the resonance frequency fn where the sensor’s sensitivity rises about 0.5 dB
(5%). Similarly, the sensor’s sensitivity increases about 1dB (10%) at 30% of the resonance
frequency fn. Hence, as an indicator for frequency analysis in computational study, the
preferable frequency range of the models can be defined between those two points of 0.2fn
and 0.3fn which are, respectively, 1648 (Hz) and 2472 (Hz). Figure 7 illustrates the log
voltage against frequency for the CPS.
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As a preliminary electrical characterization, the voltage output generated by the three
simulated sensor models is shown in Figure 8 for when the sensors were subjected to a
harmonic pressure. In this Figure, it is clearly identifiable that the resonance frequency is
dependent upon membrane design, and ranges from 8240 (Hz) to 8458 (Hz). According to
those resonance frequencies, the hexagonal and kirigami MPS models generated voltage
outputs of 16.2 (V) and 15.3 (V), respectively, showing a remarkable voltage enhancement
in comparison with the CPS that generated 15.0 (V).
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To investigate the performance of sensor simulation models, a voltage index (VI) was
defined to calculate a normalized voltage output of the proposed auxetic hexagonal MPS
and kirigami MPS, with respect to the voltage output of the CPS (Equation (2)):

VI :
V MPS − V CPS

V CPS
× 100 (2)

Table 3 shows normalized voltage outputs for the proposed MPS models at their
resonance frequency and 10 kPa pressure amplitude of excitation. It was demonstrated
that the auxetic hexagonal honeycomb enabled the pressure sensor to generate the highest
voltage with a VI of 9.64%.

Table 3. Normalized voltage output of the two proposed auxetic MPS models: kirigami and hexago-
nal.

Type fn (Hz) VI (%)

Kirigami 8388 1.33
Hexagonal 8458 9.64

As a figure of merit (FoM) for resonance behavior, a bandpass filter was applied to
the sensors. The bandwidth (BW) of the bandpass filter is usually calculated by ω2− ω1

2ωn
to show the maximum data transfer rate of sensors. For 3 dB BW calculations, the signal
amplitude of An reduces by 3 dB, i.e., becomes An/

√
2 (Figure 9) [42].

Figure 10 illustrates the lower cut-off frequency (ω1) as well as the upper cut-off
frequency (ω2) of the 3 dB BW for all sensors. The corresponding 3 dB BW of three sensors
was tabulated in Table 4. As this table shows, the BW of the proposed auxetic hexagonal
MPS and the kirigami MPS were almost two times more than that of the CPS.

Table 4. 3 dB bandwidth of the proposed sensors.

Type Amplitude (v) ωn (Hz) ω1 (Hz) ω2 (Hz) BWMPS/BWCPS

Plain 15.076 8240 8238 8242 1
Hexagonal 16.184 8458 8454 8463 2.19
Kirigami 15.277 8388 8384 8392 1.96

To investigate the effect of pressure on the sensors’ performances, the voltage output
of the three models was determined when the applied pressure doubled. Figure 11 clearly
shows that the voltage output increases when the pressure amplitude increases. Further-
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more, the auxetic hexagonal MPS provided the best performance at different pressures of
excitation.
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As shown in Figure 5, piezoelectric sensors were modeled in parallel with a capacitor
and resistor that effectively formed the voltage output. Figure 12 compares the voltage
results of three sensors for different load resistances. The voltage first increases with the
load resistor and then gradually stabilizes at the voltage output.
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Using Kirchoff’s law, the voltage output for the electrical circuit generated across the
electrodes of a thin piezo-layer under dynamic bending is [6]:

VS=
tpD3

ε0ε33
(3)

where ε0 and tp denote the permittivity of free space and the thickness of the PVDF,
respectively. Assuming an isotropic and planar behavior for the piezoelectric sensors, the
electrical charge density of the sensors can be calculated by the scalar Equation (4):

D3 =
Q

Ap
= d31(σ11 + σ22) (4)

where A, σ11, σ22 and d31 denote PVDF area, longitudinal stress, transverse stress, and
the piezoelectric constant, respectively. For piezoelectric sensors, the maximum electric
power is proportional to the square of the RMS of the voltage output, and takes place at the
optimum load resistance (RL) (Equation (5)) [6,43].

PMax=
VRMS

2

RL
=

fAptpd2
31

ε0ε33
(σ11 + σ22) (5)

Theoretically, the optimal load resistance (RL) matches the internal impedance of the
piezo-element and can be calculated by Equation (6) [6].

RL=
1

2πfCs
=

tp

2πfε0ε33Ap
(6)

To find the maximum power output and corresponding load resistance of the sensors,
FEA was carried out when a pressure amplitude of 10 kPa was applied to the simulation
models. As shown in Figure 13, the maximum power output for the three models took
place at the load resistance of 2760 kΩ, which is very close to the theoretical optimum load
resistance of 2756 kΩ calculated by Equation (6).
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Finite element modelling was used to investigate the benefits of the MetaMems on per-
formance enhancement. It is generally acceptable to use pressure sensors over a frequency
range between 0.2fn and 0.3fn. As mentioned earlier, 0.2fn and 0.3fn of CPS are 1648 (Hz)
and 2472 (Hz), respectively. Furthermore, most micro-electromechanical systems (MEMS)
require an appropriate sensitivity in a low-pressure regime, less than 10 kPa [44]. Therefore,
the simulation models were developed in pressure range of 0 to 10 kPa at 1648 (Hz).

The strain performance and power output of sensors for a wide range of pressure
amplitudes are presented in Figure 14. Figure 14 left shows the impact of the MetaMems’
mechanism on the power increase is positive, specifically for the hexagonal MPS. In general,
the membrane/MetaMem transfers deformation energy of the applied bending over the
PVDF, and accordingly polarizes the PVDF to generate electric power output. Since the
power output depends on the sum of the axial and lateral stress tensors across the PVDF, a
strain index (SI) was studied for all sensors in Figure 14 right. The SI was defined based on
a longitudinal and transverse strain of the membrane/MetaMem, (ε11 + ε22)

2. Thus, the
better strain performance a sensor has, the more power output its PVDF generates. Figure 14
right clearly shows the hexagonal MetaMem had the best deformation performance in
different pressure amplitudes, causing a higher stress concentration across the PVDF in
bending pressure, and accordingly greater power output (Figure 14 right).
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As a further design investigation, simulations were performed to study the effect of
the thickness of the plain membrane and two MetaMems on the voltage output when the
pressure sensors were actuated at 10 kPa, 2760 kΩ, and 1648 (Hz). The results showed that
as the thickness of the membrane and MetaMems increased, the voltage output of all three
sensor models decreased (Figure 15). This is because the deformation from the substrate
was transferred to the piezo-element by the membrane/MetaMem, and therefore, when
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the thickness of the membrane/MetaMem increased, more strain energy was dissipated in
the membrane/MetaMem, with a reduced strain energy transferred to the piezo-element.
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4. Results and Discussions

The voltage output over strain input is defined as the sensitivity of sensors [45].
To clarify, the membrane/MetaMem transfers strain energy to the piezo-element, and
causes polarization across the piezo-element to generate voltage. Equation (7) was used to
investigate the effect of the membrane design on the sensor sensitivity, S .

S = V/(ε11 + ε22)
2 (7)

In this simulation, the sensitivity of the three models were studied at the usable range
of pressure amplitudes and frequencies. The optimum values calculated in the previous
sections were used as the load resistance and membrane/MetaMem thickness. To predict a
magnification factor for the proposed MPSs, their sensitivity was investigated for different
excitation frequencies and amplitudes in which the thin diaphragm film of the substrate
was subjected to a bending movement caused by a harmonic pressure of 1 to 10 kPa at a
frequency range of 1648 (Hz) to 2472 (Hz).

The effects of the pressure amplitude and frequency on the performance of the simu-
lated sensors are illustrated in Figures 16 and 17. As is shown in Figure 16, the sensitivity
of the three models decreases with the pressure amplitude. The applied frequency was
kept constant at 1648 (Hz) when the pressure amplitude was varied (Figure 16).

Furthermore, as shown in Figure 17, the sensitivity remains constant when the fre-
quency changes between 0.2fn and 0.3fn. When the frequency varied, the pressure ampli-
tude was kept constant at 10 kPa (Figure 17).

In Figure 18, the sensitivity of the two proposed MPSs—the auxetic hexagonal and
kirigami MetaMems—was compared to an equivalent CPS using a plain membrane. A
comparison ratio of ζ is defined as the sensitivity gain factor in order to evaluate the
sensitivity performance of the MPSs against the CPS (Equation (8)).

ζ =
SMPS
SCPS

(8)
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Figure 18 illustrates the distribution of the sensitivity gain factor for the auxetic
hexagonal and kirigami MPSs with varying applied pressure amplitudes and frequencies.

The two contours shown in Figure 18 prove that the sensitivity amplification remains
constant across different pressure amplitudes, which means the magnification factor is a
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function of the membrane/MetaMems geometry of the sensors, and is not dependent on
the excitation conditions. As a further evaluation, the sensitivity amplification for both
the auxetic hexagonal and kirigami MPSs was investigated at a wide range of frequency.
As demonstrated in Figure 19, the sensitivity gain factor for the auxetic hexagonal and
kirigami MPSs can reach up to 3.8 and 1.3, respectively.
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In order to explore reasons of such remarkable sensitivity enhancement and dif-
ferent reactions to an identical excitation, first the stress distribution across the piezo-
elements layer was obtained, and then the strain response of the plain membrane and two
metamembranes was investigated and compared. According to our sensitivity definition
(Equation (7)), the sensitivity of a pressure sensor depends on the stretchability of its mem-
brane and the voltage generated by its piezo-element. Hence, a simulation was developed
using COMSOL Multiphysics 3.5a software to investigate the sensitivity performance of
the three sensors when a sinusoidal pressure was applied on the surface of their substrate’s
diaphragm (Figure 2) along the Z-axis at 10 kPa and a frequency of 1648 (Hz). The thickness
of plain membrane and two MetaMems was also considered to be 0.25 mm.

For the pressure sensors, the voltage output was made by the piezo-element polariza-
tion along the Z-axis, and was proportional to the square root of optimal power output
(Equation (9)) [3].

VRMS =
√

RL Popt (9)

The RMS of the voltage output could be then obtained by substituting Equations (2)
and (4) into Equation (10) [4]:

VRMS =
tpd31

εT (σ11 + σ22) (10)

Table 5 summarizes the voltage output for all simulated sensors. The results showed
that the MPSs with the MetaMem generated more voltage compared to the CPS with the
plain membrane. Since the voltage output is related to the sum of the axial and lateral
stress tensors for the sensor’s piezo-element (Equation (8)), the stress distribution across the
piezo-element layer was also examined for the sensors in Table 4. This table demonstrates
that the mean value of stress across the PVDF of auxetic hexagonal and kirigami MetaMems
was greater than the plain CPS. The stress distribution across the PVDF of the three sensors
is shown in Figure 20g–i. The black lines were considered to show the original shape,
and the deformation in these figures is scaled up by 500 times for a better evaluation. As
observed in this figure, most of the area of the PVDF’s surface for the two MPSs experiences
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a higher level of stress compared to the CPS. The peak stress of 6.64 MPa, 4.98 MPa, and
4.56 MPa were observed in the hexagonal MPS, kirigami MPS, and CPS, respectively. It is
worth mentioning that these stress values are sufficiently below the yield strength of both
PVDF and PC (30–80 MPa) [46–48].

Table 5. Voltage output and longitudinal as well as transverse stresses for all simulated models.

Design —
σ11, MPa

—
σ22, MPa VRMS, V

Hexagonal 0.5 0.5 13.74
Kirigami 0.3 0.4 11.33

Plain 0.3 0.3 10.61

The membrane/MetaMem transfers the stress of the applied bending over the PVDF.
Therefore, we need to examine the strain performance of the membrane/MetaMem to
understand the stretchability of the MetaMem mechanism and its impact on the PVDF
stress distribution and voltage increase.

Furthermore, Figure 20a–c illustrate that the MPSs presents greater displacement along
the Z-axis compared to the CPS. The deformations are scaled up by 200 times for clarity.
From a structural standpoint, the displacement of the pressure sensors in the Z-axis are
caused by the membrane’s expansion in other directions (ε11 and ε22).

Since an auxetic design inherently enables structures to stretch more, we expect that
the two auxetic hexagonal and kirigami honeycombs provide a stretchability greater than
the plain membrane. The maximum longitudinal and transverse strains for the three
simulated models are tabulated in Table 6. As a result, the auxetic hexagonal and kirigami
meta-materials demonstrated remarkable longitudinal and transverse strain values. The
two proposed honeycombs help the flexible MetaMems to enrich the sensor stretchability
and transfer more strain energy to the piezo-element.

Table 6. Longitudinal and transverse strains for all simulated models.

Design ε11, µε ε22, µε

Hexagonal 468 475
Kirigami 228 236

Plain 188 194

In Figure 20d–f it can be also observed that the displacement fields of the metamaterials
are severely distorted by the auxetic hexagonal and kirigami honeycombs. In this Figure,
the deformation is scaled up by 1000 times for clarity, and the black lines were considered
to show the original shape.

There are many techniques to fabricate such pressure sensors. Usually, the fabrication
process includes iterations of film depositions, micro-patterning features, and etching to
create the desired layers of a sensor. Transfer printing is one of the fabrication methods
which enables a combination of materials with different properties onto flexible membranes.
Moreover, 3D printing and 4D printing are other techniques that can be achieved through
various additive manufacturing processes such as micro-stereolithography, multiphoton
lithography, laser chemical vapor deposition (LCVD), laser-induced forward transfer (LIFT),
and UV lithography [39,49–52].
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Sensors 2022, 22, 1909 16 of 18

5. Conclusions

FEA was performed to determine the sensitivity enhancement of two proposed aux-
etic hexagonal and kirigami MPSs by using COMSOL Multiphysics 3.5a software. The
computational results demonstrated that the 3 dB bandwidth of the MPSs was two times
greater than the CPS, and the sensitivity gain factor for the auxetic hexagonal and kirigami
MPSs also reached up to 3.8 and 1.3, respectively, when their substrates were subjected
to a bending movement. In order to explore reasons of such a remarkable sensitivity
enhancement, the stress distribution across the PVDF layer as well as the strain response
of the MetaMems were investigated for the two proposed MPSs and, accordingly, their
results were compared to the CPS’s output. Since the two auxetic hexagonal and kirigami
honeycombs inherently enable MetaMems to stretch better, it was found that the MPSs
indicated a higher flexural deformation capability compared to the plain membrane. The
elastic energy from the substrate transfers to the PVDF layer by the diaphragm film. There-
fore, the stress across the PVDF layer will be increased as much as the strain response
of the diaphragm film increases. Numerical results showed that the auxetic hexagonal
MetaMem with 0.4 mε enhanced the strain capability of the sensor up to 4 times, compared
to plain membrane with 0.1 mε, when they were subjected to a harmonic pressure at a
frequency of 1648 (Hz) and 10 kPa. Accordingly, the average stresses of 0.5 MPa and
0.3 MPa were measured across the PVDF of the MPSs and CPS, respectively, enabling the
pressure sensor to generate the highest possible voltage output with a normalized voltage
index of 9.64%. The finite element modelling also showed that the magnification factor
remains approximately constant across different pressure amplitudes, which means it is
a function of the MetaMems geometry and does not depend on the excitation conditions.
This paper opens up great potential for using MetaMem applications for different flexible
sensor systems in wearable technologies.
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