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Abstract: In the present study, we investigated the neuroprotective effect of post-ischemic treatment
with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient
forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by
occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 ◦C).
The ischemic gerbils were treated with vehicle, hypothermia (whole-body cooling; 33.0 ± 0.2 ◦C),
or 200 mg/kg OXC. Post-ischemic treatments with vehicle and hypothermia failed to attenuate and
improve, respectively, ischemia-induced hyperactivity and cognitive impairment (decline in spatial
and short-term memory). However, post-ischemic treatment with OXC significantly attenuated
the hyperactivity and the cognitive impairment, showing that OXC treatment significantly reduced
body temperature (to about 33 ◦C). When the hippocampus was histopathologically examined,
pyramidal cells (principal neurons) were dead (lost) in the subfield Cornu Ammonis 1 (CA1) of the
gerbils treated with vehicle and hypothermia on Day 4 after ischemia, but these cells were saved
in the gerbils treated with OXC. In the gerbils treated with OXC after ischemia, the expression of
transient receptor potential vanilloid type 1 (TRPV1; one of the transient receptor potential cation
channels) was significantly increased in the CA1 region compared with that in the gerbils treated with
vehicle and hypothermia. In brief, our results showed that OXC-induced hypothermia after transient
forebrain ischemia effectively protected against ischemia–reperfusion injury through an increase
in TRPV1 expression in the gerbil hippocampal CA1 region, indicating that TRPV1 is involved in
OXC-induced hypothermia.

Keywords: antiepileptic drug; cognition; hippocampus; ischemia–reperfusion; pyramidal cells;
transient receptor potential cation channels
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1. Introduction

Body temperature can affect the results of brain ischemia [1–3]. Hypothermia is one of
the available therapies for stroke, as evaluated by the Stroke Therapy Academic Industry
Roundtable criteria [4]. Neuroprotective effects by hypothermia have been established in
experimental models [5,6]. While the exact mechanism by which hypothermia protects
against neuronal cell death is unknown, hypothermia is likely to act on multiple pathways
to ultimately prevent neuronal cell death [7,8]. In most clinical studies, hypothermia is
caused by body surface cooling. Unfortunately, this method of forced cooling is slow
and cumbersome. It takes several hours to reach target core body temperature, and it
should be closely monitored to ensure that the target temperature is achieved [9]. Recently,
methods using agents for stroke therapy have been suggested as a way to reduce core body
temperature more efficiently and quickly than surface cooling [10–12]. Thus, the uses of
agent-induced hypothermia may help overcome the above-mentioned obstacles.

Many studies have shown that antiepileptic drugs have beneficial effects to counteract
neuronal damage from experimentally induced brain damage, such as ischemic stroke,
intracerebral hemorrhage, and traumatic brain injury [13–15]. OXC is an anticonvulsant
compound commonly used in epilepsy treatment [16]. The great mechanism of OXC is
reported to inhibit voltage-dependent sodium channels [17]. In addition, OXC exerts
beneficial effects through preventing the release of extracellular glutamate and changing
recurrent depolarization [18]. Furthermore, OXC reduces Ca2+ influx through blockade
of the synaptic Ca2+ channels in rat hippocampal slices [19]. In particular, we recently
reported that OXC treatment after transient forebrain ischemia in gerbils conferred neuro-
protection against ischemic injury by activating the Nrf2 defense pathway [20]. However,
the mechanism of OXC’s neuroprotective effect against ischemic damage remains unclear.

It has been reported that transient receptor potential cation channels (TRP channels) are
pivotal in temperature regulation [21,22]. Among the members of the TRP channels, tran-
sient receptor potential vanilloid type 1 (TRPV1), which is also called capsaicin–vanilloid
receptor-1, is widely expressed in the central nervous system (CNS) [23,24] and plays a
significant role in thermoregulation [25–27]. In addition, TRPV4, as a non-selective cation
channel, responds to mechanical, thermal, and chemical stimuli [28,29]. Despite evidence
suggesting that TRPVs have diverse physiological roles in the CNS, little is known about
their pathophysiological roles in neurological disorders, especially in cerebral ischemic
injury. Based on the functions of TRPVs, therefore, the objective of this study was to
investigate therapeutic effects of OXC against ischemic injury and its mechanisms in the
hippocampus, which is very vulnerable to ischemia–reperfusion injury, after transient
forebrain ischemia (tFI) in gerbils. In addition, the therapeutic effects of OXC against
ischemic injury were compared with those by whole-body cooling (hypothermia).

2. Results
2.1. Body Temperature

As shown in Figure 1, the body temperature of gerbils treated with vehicle (saline)
after a sham operation (sham+vehicle group) was not altered after the operation. However,
in gerbils treated with vehicle after tFI (tFI+vehicle group), body temperature was suddenly
elevated (to about 39 ◦C) at one and two hours after tFI and thereafter gradually decreased
(normothermia at six hours after tFI). In gerbils treated with OXC after tFI (tFI+OXC group),
body temperature was significantly decreased (to about 33 ◦C) at one and two hours after
tFI and thereafter gradually increased (to about 35 ◦C at six hours after tFI): the effect was
statistically significant (p < 0.05) when compared with the tFI+vehicle group (Figure 1). In
gerbils treated with hypothermia (HyT, whole-body cooling) (tFI+HyT group), the change
in body temperature was similar to that shown in the tFI+OXC group.
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hicle group. The white arrow indicates the time of hypothermia induction and OXC treatment. The 
bars indicate the means ± SEM (n = 7 for each group; * p < 0.05 vs. sham+vehicle group, # p < 0.05 vs. 
corresponding time of tFI+vehicle group). BL, base line; OP, operation (sham or to induce tFI). 

2.2. Hyperactivity 
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performed in all groups (Figure 2). In the sham+vehicle group, the traveled distance was 
208.4 m on average. The mean traveled distances (211.0 m and 207.9 m, respectively) in 
the sham+HyT and sham+OXC groups were similar to that shown in the sham+vehicle 
group. However, in the tFI+vehicle and tFI+HyT groups, the mean traveled distances 
(600.1 m and 588.4 m, respectively) were significantly increased when compared with that 
shown in the sham+vehicle group. In contrast, the gerbils of the tFI+OXC group traveled 
a significantly shorter distance (239.1) as compared with those in the tFI+vehicle group. 
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Figure 1. Changes in body temperature for six hours after tFI or sham operation. Body temperature
was significantly low in the tFI+HyT and tFI+OXC groups when compared with that in the tFI+vehicle
group. The white arrow indicates the time of hypothermia induction and OXC treatment. The bars
indicate the means ± SEM (n = 7 for each group; * p < 0.05 vs. sham+vehicle group, # p < 0.05 vs.
corresponding time of tFI+vehicle group). BL, base line; OP, operation (sham or to induce tFI).

2.2. Hyperactivity

To examine change in hyperactivity, the spontaneous motor activity (SMA) test was
performed in all groups (Figure 2). In the sham+vehicle group, the traveled distance was
208.4 m on average. The mean traveled distances (211.0 m and 207.9 m, respectively) in the
sham+HyT and sham+OXC groups were similar to that shown in the sham+vehicle group.
However, in the tFI+vehicle and tFI+HyT groups, the mean traveled distances (600.1 m and
588.4 m, respectively) were significantly increased when compared with that shown in the
sham+vehicle group. In contrast, the gerbils of the tFI+OXC group traveled a significantly
shorter distance (239.1) as compared with those in the tFI+vehicle group.
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Figure 2. SMA test at 24 h after sham or tFI operation. In the tFI+vehicle and tFI+HyT groups, the
mean traveled distances were significantly longer than that evaluated in the sham+vehicle group.
In contrast, in the tFI+OXC group, the mean traveled distance was similar to that shown in the
sham+vehicle group. The bars indicate the means ± SEM (n = 7 for each group; * p < 0.05 vs.
sham+vehicle group and # p < 0.05 vs. corresponding time of the tFI+vehicle group).
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2.3. Cognitive Functions
2.3.1. Spatial Memory

To examine change in spatial memory, the radial arm maze test (RAMT) was performed
in all groups (Figure 3A). At one, two, and three days before the tFI or sham operation,
changes in the numbers of errors were not significantly different across all groups: this
finding indicates that all animals had undergone identical pre-training for RAMT. In all
sham groups, a significant difference in the numbers of errors was not found every time
(one day, two days, three days, and four days) after sham operation. On the other hand, the
numbers of errors in the tFI+vehicle group were significantly higher than those shown in
the sham+vehicle group on Days 1, 2, 3 and 4 after tFI operation. In addition, the numbers
evaluated in the tFI+HyT group were similar to those in the tFI+vehicle group. However,
in the tFI+OXC group, the numbers of errors were significantly lower than those shown in
the tFI+vehicle group.
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hicle. (B) Latency time (seconds) in the PAT in all groups at 24 h before tFI/sham operation and 96 

Figure 3. (A) The mean numbers of errors in the RAMT in all six groups at 72, 48, and 24 h
before tFI/sham operation and 24, 48, 72, and 96 h after tFI/sham operation. The error number
in the tFI+OXC group was significantly decreased from 48 h after tFI when compared with that in
tFI+vehicle. (B) Latency time (seconds) in the PAT in all groups at 24 h before tFI/sham operation
and 96 h after tFI/sham operation. The latency time shown in the tFI+OXC group was significantly
increased when compared with that in the tFI+vehicle group. The bars indicate the means ± SEM
(n = 7 for each group; * p < 0.05 vs. sham+vehicle group; # p < 0.05 vs. corresponding time of the
tFI+vehicle group).
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2.3.2. Short-Term Memory

The passive avoidance test (PAT) was performed to examine changes in short-term
memory in all groups (Figure 3B). At one day before tFI or sham operation, significant
differences in latency time were not detected across all groups: this finding implies that
all gerbils had been subjected to an identical pre-training. In all sham groups, the latency
time was evaluated on Day 4 after tFI and was similar to that found at one day before tFI.
However, in the tFI+vehicle group, significantly shortened latency time was obtained on
Day 1 after tFI. In addition, the latency time in the tFI+HyT group was similar to that in
the tFI+vehicle group. In contrast, the latency time evaluated in the tFI+OXC group was
significantly lengthened as compared to that shown in the tFI+vehicle group.

2.4. Levels of TRPV1 and TRPV4

Changes in the expression levels of TRPV1 and TRPV4 in the CA1 regions of all
groups were examined using the Western blot technique (Figure 4). In all sham groups,
the TRPV1 level was fundamentally detected, and no significant difference in TRPV1 level
was found across the sham groups (Figure 4A,B). In the tFI+vehicle group, the TRPV1 level
was maintained until two days after tFI (Figure 4A,B). Also, in the tFI+HyT group, the
TRPV1 level was not significantly altered until two days after tFI (Figure 4A,B). In these two
groups, at four days after tFI, a significant decrease in TRPV1 level was observed (37.1%
and 39.8% vs. sham+vehicle group, respectively) (Figure 4A,B). However, in the tFI+OXC
group, the TRPV1 level was significantly enhanced (154.8% vs. sham+vehicle group) at
30 min after tFI, and the increased TRPV1 level was maintained until four days after tFI
(Figure 4A,B).
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TRPV4 (C). The bars indicate the means ± SEM (n = 5 for each group; * p < 0.05 vs. sham+vehicle
group, # p < 0.05 vs. corresponding time of the tFI+vehicle group).

The TRPV4 level was fundamentally found in all sham groups, and no significant dif-
ference in the level was found across the sham groups (Figure 4A,C). In the tFI+vehicle and
tFI+HyT groups, the TRPV4 level was not changed until two days after tFI (Figure 4A,C). In
these groups, the TRPV4 level was significantly reduced (39.8% and 43.6% vs. sham+vehicle
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group, respectively) at four days after tFI (Figure 4A,C). In the tFI+OXC group, however,
the TRPV4 level was significantly increased (132.1% vs. sham+vehicle group) at 12 h after
tFI, and the enhanced level was maintained until four days after tFI (Figure 4A,C).

2.5. TRPV1 and TRPV4 Immunoreactivity

Changes in TRPV1 and TRPV4 immunoreactivity in the CA1 regions of all groups
were investigated via immunohistochemistry (Figures 5 and 6).
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Figure 5. (A) Representative images of TRPV 1 immunohistochemistry in the CA1 region of all
groups at 30 min, 12 h, 24 h, 48 h, and 96 h after tFI or sham operation. In the tFI+vehicle and tFI+HyT
groups, TRPV1 immunoreactivity was not significantly changed in the stratum pyramidale (SP) until
48 h after tFI, but it was markedly reduced (arrows) at 96 h after tFI. In the tFI+OXC group, however,
TRPV1 immunoreactivity was significantly increased in the SP at 30 min and maintained (asterisks)
until 96 h after tFI. (B) Relative optical density (ROD) of TRPV1 immunoreactivity. The bars indicate
the means± SEM (n = 7 for each group; * p < 0.05 vs. sham+vehicle group, # p < 0.05 vs. corresponding
time of the tFI+vehicle group). SO, stratum oriens; SR, stratum radiatum. Scale bars = 100 µm.
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Figure 6. (A) Representative images of TRPV4 immunohistochemistry in the CA1 region of all groups
at 30 min, 12 h, 1 day, 2 days, and 4 days after tFI or sham operation. In the tFI+vehicle and tFI+HyT
groups, TRPV4 immunoreactivity was similar to that in the sham+vehicle group until 2 days after
tFI, but it was dramatically reduced in the SP (arrows) at four days after tFI. In contrast, TRPV4
immunoreactivity of the tFI+OXC group was significantly increased (asterisks) in the SP at 12 h after
tFI and slightly decreased (arrowhead) at four days after tFI. (B) ROD of TRPV4 immunoreactivity.
The bars indicate the means± SEM (n = 7 for each group; * p < 0.05 vs. sham+vehicle group, # p < 0.05
vs. corresponding time of the tFI+vehicle group). SO, stratum oriens; SR, stratum radiatum. Scale
bars = 100 µm.
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2.5.1. TRPV1 Immunoreactivity

In all sham groups, TRPV1 immunoreactivity was fundamentally detected in the CA1
region: the immunoreactivity was mainly shown in the stratum pyramidale (SP), which
consists of pyramidal cells (principal cells) (Figure 5A(a1–c1)).

In the tFI+vehicle group, TRPV1 immunoreactivity was not altered until two days
after tFI as compared to the sham+vehicle group (Figure 5A(a2–a5),B). Also, in the tFI+HyT
group, TRPV1 immunoreactivity was not significantly altered until two days after tFI
(Figure 5A(b2–b5),B). In these two groups, however, TRPV1 immunoreactivity was markedly
reduced in the SP (57.4% and 52.2% vs. sham+vehicle group, respectively) (Figure 5A(a6,b6),B).
In the tFI+OXC group, TRPV1 immunoreactivity was significantly increased in the SP
(168.9% vs. sham+vehicle group) at 30 min after tFI (Figure 5A(c2),B), and the increased
TRPV1 immunoreactivity in the SP was maintained until four days after tFI (Figure 5A(c3–c6),B).

2.5.2. TRPV4 Immunoreactivity

In all sham groups, TRPV4 immunoreactivity was fundamentally shown in the CA1
region, and the immunoreactivity was mainly expressed at the cytoplasmic periphery and
dendrites of pyramidal cells located in the SP (Figure 6A(a1,b1,c1)).

In the tFI+vehicle and tFI+HyT groups, TRPV4 immunoreactivity observed until 48 h
after tFI was similar to that shown in the sham groups (Figure 6A(a2–a5,b2–b5),B). In these
two groups, significantly reduced TRPV4 immunoreactivity was detected in the somata and
dendrites of the pyramidal cells (55.6% and 48.5% vs. sham+vehicle group, respectively) at
96 h after tFI (Figure 6A(a6,b6),B). In contrast, the TRPV4 immunoreactivity of the tFI+OXC
group was significantly strengthened (168.9% vs. sham+vehicle group) at 12 h after tFI
(Figure 6A(c3),B), was maintained until 48 h after tFI (Figure 6A(c4,c5),B), and became
similar (104.9% vs. sham+vehicle group) to that in the sham+vehicle group at 96 h after tFI
(Figure 6A(c6),B).

2.6. Neuroprotection
2.6.1. Findings by Cresyl Violet (CV) Histochemistry

We examined changes in cells located in the hippocampus after tFI or sham operation
and whether OXC was associated with cell survival in the ischemic hippocampus using CV
histochemical staining (Figure 7). In all sham groups, CV-stained (CV+) cells were easily
identified in the hippocampus, and no difference in cellular distribution was shown across
the sham groups: in particular, CV+ cells in the SP, which are called pyramidal cells and
principal neurons, were relatively large and pyramid-like in shape (Figure 7A,C,E,a,c,e). In
the tFI+vehicle group, CV stainability was apparently decreased in the SP of the CA1 region,
but not in the CA2/3 region, at four days after tFI as compared with the sham+vehicle
group (Figure 7B): at this point in time, CV+ pyramidal cells were apparently shrunken and
had darkly condensed nuclei (Figure 4B). In the tFI+HyT group, the change in CV+ cells at
four days after tFI was similar to that in the tFI+vehicle group (Figure 7D,d). However, in
the tFI+OXC group, CV+ cells at four days after tFI were not altered when compared to
those in the tFI+vehicle group (Figure 7F,f). This finding means that post-ischemic OXC
treatment saved CA1 pyramidal cells from ischemic injury.
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Figure 7. CV staining in the hippocampus and its CA1 region of the sham+vehicle (A,a), sham+HyT
(C,c), sham+OXC (E,e), tFI+vehicle (B,b), tFI+HyT (D,d), and tFI+OXC (F,f) groups. In the tFI+vehicle
and tFI+HyT groups, CV stainability was apparently reduced in the SP (arrows) of the CA1 re-
gion. In the tFI+OXC group, however, the morphology of CV+ cells was similar to that in the
sham+vehicle group. The bars indicate the means ± SEM (n = 7 for each group). DG, dentate gyrus.
Scale bars = 400 µm (A–F) and 100 µm (a–f).

2.6.2. Findings by Neuronal Nuclei (NeuN) Immunohistochemistry and Fluoro-Jade B
(F-J B) Staining

We examined neuronal change and death (loss) in the CA1 region using NeuN (a
marker for neurons) immunohistochemistry and F-J B (a fluorescent marker for neurodegen-
eration) staining, respectively (Figure 8). In all sham groups, intact pyramidal cells (neurons)
(84.4, 85.3, and 84.6 cells/250 µm2 in the sham+vehicle, sham+HyT, and sham+OXC group,
respectively) located in the SP were strongly immunostained with NeuN (Figure 8A,C,E,G).
In these sham groups, F-J B+ cells were not detected in the CA1 region (Figure 8a,c,e,g).
However, in the tFI+vehicle group, few NeuN+ cells (6.9 cells/250 µm2) and many F-J B+

cells (71.9 cells/250 µm2) were observed in the SP on Day 4 after tFI (Figure 8B,b,G,g). Also,
few NeuN+ and many F-J B+ cells (7.4 cells/250 µm2 and 70.4 cells/250 µm2, respectively)
were observed in the tFI+HyT group on Day 4 after tFI (Figure 8D,d,G,g). In contrast, many
NeuN+ cells (80.6 cells/250 µm2) and few F-J B+ cells (3.4 cells/250 µm2) were detected in
the SP of the tFI+OXC group on Day 4 after tFI (Figure 8F,f,G,g).
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Figure 8. (A–F and a–f) NeuN immunohistochemistry (A–F) and F-J B staining (a–f) in the CA1
region of the sham+vehicle (A,a), sham+HyT (C,c), sham+OXC (E,e), tFI+vehicle (B,b), tFI+HyT
(D,d), and tFI+OXC (F,f) groups on Day 4 after tFI or sham operation. Few NeuN+ and many F-J B+

cells were observed in the SP of the tFI+vehicle and tFI+HyT groups. However, in the tFI+OXC group,
many NeuN+ and few F-J B+ cells were found in the SP on Day 4 after tFI. (G,g) Mean numbers of
NeuN+ (G) and F-J B+ (g) cells. The bars indicate the means ± SEM (n = 7 for each group; * p < 0.05
vs. sham+vehicle group, # p < 0.05 vs. corresponding time of the tFI+vehicle group). SO, stratum
oriens; SR, stratum radiatum. Scale bars = 100 µm.

3. Discussion

Transient brain ischemia selectively induces neuronal death (DND) in vulnerable
structures, such as the neocortex, striatum, and hippocampus [30,31]. The hippocampus is
well known to be especially vulnerable to transient ischemia [32,33]. Namely, a massive
loss of pyramidal cells (principal neurons) located in the hippocampal CA1 region happens
in humans and experimental animals at several days after transient ischemia [34,35]. In this
regard, a protective timeline of neuronal death (loss) in ischemic regions has given hope for
protective or therapeutic interventions to decrease ischemic injury. However, the underlying
mechanisms related to the selectively delayed death of neurons have not yet been fully
elucidated. Recently, we reported that pre- and post-treatment with OXC protected against
ischemic injury in gerbils [36]. However, the mechanism of neuroprotection is still unclear.
Therefore, this study examined the therapeutic effect of OXC treatment after tFI against
ischemic injury and its mechanism in a gerbil model of tFI.

In this study, post-ischemic treatment with OXC significantly reduced the body tem-
perature (to about 33 ◦C) and significantly attenuated tFI-induced hyperactivity, although
therapeutic hypothermia (whole-body cooling) failed to attenuate tFI-induced hyperactivity.
Accumulating experimental data have reported that gerbils, after tFI, show hyperactivity in
their locomotor activity: the hyperactivity is well addressed on Day 1 after tFI [37,38]. Some
studies have reported that ischemia-induced hyperactivity is attenuated by treatments
with neuroprotective materials. For instance, in a gerbil model of tFI, pretreatment with fu-
coidan (a sulfated polysaccharide originating from brown seaweed) attenuates tFI-induced
hyperactivity, showing that pyramidal cells of the hippocampal CA1 region are saved from
ischemic injury [39]. In addition, it has been reported that pretreatment with rufinamide (a
voltage-gated sodium channel blocker) ameliorates tFI-induced hyperactivity in gerbils,
showing that CA1 pyramidal neurons are not damaged after tFI [40].
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It is well known that the role of the hippocampus in brain function is closely related
to learning and memory function [41,42]. Cognitive dysfunction, including decline in
short-term memory and spatial memory, can be detected by simple behavioral tests, such
as the RAMT (for spatial memory) and PAT (for short-term memory) [43,44]. In our current
study, post-ischemic treatment with OXC significantly improved cognitive impairment
(decline in spatial and short-term memory) by the RAMT and PAT, respectively, although
whole-body cooling failed to improve the tFI-induced cognitive impairment. Previous
studies showed that tFI-induced cognitive deficit is improved by neuroprotectants. For
instance, administration of Pycnogenol® (a standardized extract of French maritime pine
tree bark) before ischemic insults ameliorates decline in short-term memory and spatial
memory in a gerbil model of tFI [43]. In addition, treatment with chlorogenic acid (an ester
of caffeic acid and quinic acid) significantly moderates tFI-induced cognitive dysfunction in
gerbils [44]. These papers show that such cognitive dysfunction is accompanied by delayed
neuronal death in the hippocampus. Based on the findings mentioned above, we assessed
whether OXC treatment after tFI therapeutically protected neurons in the hippocampus
following tFI using CV histochemistry, NeuN immunohistochemistry, and F-J B staining,
and we found that post-treatment with OXC effectively protected CA1 pyramidal neurons
from ischemic injury induced by tFI.

It has been reported that hypothermia is one of the most powerful neuroprotective
strategies against ischemic injuries [45–47]. Moyer et al. (1992) reported that, in a rat
model of 60-min transient focal brain ischemia, intra-ischemic hypothermia (about 32 ◦C
immediately induced after the ischemia) decreased infarct volume, whereas delaying
cooling did not show a significant effect [48]. In addition, Yamamoto et al. (1999) reported
that, in a rat model of traumatic brain injury coupled with hypoxia and hypotension,
hypothermia (about 30 ◦C) reduced supraventricular subcortical neuronal damage [47].
However, there are reports showing that therapeutic hypothermia does not display a
considerable neuroprotective effect against brain ischemic injuries. Friedman et al. (2001)
reported that post-ischemic hypothermia failed to save hippocampal pyramidal neurons
in a rat model of 10-min transient global brain ischemia [49]. In our current experiment,
post-ischemic hypothermia did not protect against the death of CA1 pyramidal neurons
induced by tFI in gerbils. Generally, it is known that hypothermia is best protective when
hypothermia (32 to 35 ◦C) is induced as soon as possible after ischemia onset and lasts at
least one to two hours [50]. Therapeutic hypothermia of human subjects is now obtained
in a variety of ways, combining physical cooling of the body surface or blood flow with
anesthesia and relaxation to suppress shivering; however, these methods are cumbersome
and reveal side effects [9,51]. In this regard, recently, methods using pharmacological agents
have been suggested as a way to reduce the core temperature in the body more efficiently
and quickly than surface cooling [10]. In our current study, immediate OXC treatment after
tFI induced hypothermia within one hour after the reperfusion, and whole-body cooling
similar to OXC-induced hypothermia was controlled for six hours after the reperfusion.
OXC-induced hypothermia protected CA1 pyramidal cells against death from ischemic
injury induced by tFI, but whole-body cooling failed to save the neurons from tFI-induced
injury. These findings suggest that there is a critical interaction between body temperature
and OXC that appears to permit neuroprotection after ischemic insults, as described below.

Body temperature control is a complex biological process controlled not only by
the hypothalamus but also by peripheral thermo-sensors [21]. It has been demonstrated
that hypothermia-inducing drugs effectively promote hypothermia in multiple species,
including humans [52–54]. Ion channels of the transient receptor potential family are
pivotal in the regulation of body temperature and engage in the peripheral mechanisms
that detect high and low temperature [22]. A central member of the transient receptor
potential family is TRPV1, formerly known as capsaicin–vanilloid receptor-1 [55]. TRPV1
receptor is apparently expressed in adult brains, including in the hippocampus, cortex,
and hindbrain [23,24], and has an ability to detect variation in body temperature [56].
TRPV1 receptor activation is known to be involved in hypoxic preconditioning in rat
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hearts [55] and in remote ischemic postconditioning in isolated rat hearts [56], protecting
the hearts against ischemia–reperfusion injury. Moreover, Cao et al. [57] demonstrated that
pharmacological activation of the TRPV1 channel induces hypothermia and produces neu-
roprotective effects against ischemia/reperfusion-induced injury in conscious C57BL/6 WT
and TRPV1 knockout mice, showing that treatment with TRPV1 agonist (dihydrocapsaicin)
at the onset of reperfusion induces hypothermia (33 ◦C), reduces infarction, and improves
neurological function in ischemia-affected mice, but hypothermic and neuroprotective
effects were not shown in TRPV1-knockout mice [57]. In addition, capsaicin (a classic
TRPV1 channel agonist) produces hypothermia through the activation of centrally located
TRPV1-containing neurons [21]. In our current study, OXC (200 mg/kg) treatment after tFI
enhanced TRPV1 expression in pyramidal cells located in the hippocampal CA1 region at
30 min after the start of reperfusion, and the increased expression was maintained until
four days post-ischemia. Based on our and previous results, OXC produces hypothermia
to protect against neuronal death through TRPV1.

TRPV4, a nonselective cation channel, is also expressed in brains [58,59] and acts
as an osmotic sensor that mediates changes in osmotic pressure in response to cellular
reactions [60]. In addition, TRPV4 activation has been suggested to mediate neuronal and
glial responses to swelling in the retina [61]. However, it remains unclear whether TRPV4
is activated via temperature-dependent mechanisms in the process of brain ischemia. Here,
we examined the possible involvement of TRPV4 activation in the hippocampus following
OXC treatment after tFI using Western blot and immunohistochemistry for TRPV4, and we
found that post-treatment with OXC did not significantly increase TRPV4 expression in
gerbil hippocampus after tFI.

In conclusion, the results of our present study show that OXC induced hypother-
mia through activation of TRPV1 and provided neuroprotection against ischemic injury
induced by tFI in gerbils. This study provides evidence showing that thermoreceptor
targeting can be an effective strategy for ischemia treatment in conscious subjects, even
though the treatment is immediately performed after reperfusion. Therefore, OXC can
be introduced to lower the body temperature rapidly and may be applied to patients for
hypothermic therapy.

4. Materials and Methods
4.1. Experimental Animals

Male gerbils (total number = 252) were used at the age of 6 months (body weight,
63–78 g). The gerbils were bred in the Experimental Animal Center of Kangwon National
University (Chuncheon, Korea). For this study, the experimental protocol was approved
(approval no. KW-200113-1; approval date, 18 February 2020) by the Institutional Animal
Care and Use Committee. The research protocol adhered to the guidelines suggested in
the “Current International Laws and Policies” of the Guide for the Care and Use of Laboratory
Animals published by The National Academies Press (8th Ed., 2011).

4.2. Experimental Groups, Induction of tFI, and HyT and OXC Treatments

In order to prove the protective effects of OXC against ischemic injury following
tFI in gerbils, the gerbils were divided into six groups: (1) sham+vehicle group (n = 24);
(2) tFI+vehicle group (n = 60); (3) sham+HyT group (n = 24); (4) tFI+HyT group (n = 60);
(5) sham+OXC (200 mg/kg) group (n = 24); and (6) tFI+OXC group (n = 60). Seven and
five gerbils in the three tFI groups were used for Western blot analysis and histological
examination, respectively, at 30 min, 12 h, 1 day, 2 days, and 4 days after the tFI operation,
and in the three sham groups, seven and five gerbils were used at 30 min and 4 days after
the sham operation to minimize the numbers.

In this experiment, tFI was developed as previously described [34]. In short, the
gerbils were anesthetized with 2.5% isoflurane (in 32% oxygen and 68% nitrous oxide).
Under anesthesia, both common carotid arteries were isolated from the carotid sheath
and occluded with aneurysm clips (Yasargil FE 723K) (Aesculap, Tuttlingen, Germany)



Int. J. Mol. Sci. 2022, 23, 237 13 of 19

for five minutes. The perfect stop of blood supply to the brain was confirmed through
the observation of arterial blood flow in both retinal arteries (branches of internal carotid
arteries) using an ophthalmoscope (HEINE K180®) from Heine Optotechnik (Herrsching,
Germany). The body temperature before and during the surgery in all groups was con-
trolled at normothermia (37 ± 0.2 ◦C) using a thermometric blanket. After five minutes of
occlusion, the clips were removed. In this study, a sham operation was done by subjecting
them to the same tFI surgery without the occlusion of the common carotid arteries.

HyT in the two sham+HyT and tFI+HyT groups was controlled (similar to the change
in body temperature in the tFI+OXC group) by whole-body cooling with an ice pack for six
hours. The body temperature of the two sham+OXC and tFI+OXC groups was recorded
for six hours after immediate intraperitoneal injection of 200 mg/kg OXC (Sigma–Aldrich,
St. Louis, MO, USA) after the tFI operation. The dosage of OXC was selected based on a
previous study reporting that 200 mg/kg OXC effectively protected against cell death in
the brain after tFI [36].

To record body temperature change, the body temperature was measured in the rectum
every one hour after tFI, over a 6 h period, under ambient room temperature (about 22 ◦C).
The gerbils received a recovery time of four days after tFI because pyramidal cells located
in the hippocampal CA1 region begin to die at four days after tFI [30,34,62].

4.3. SMA Test

The SMA test was performed to examine changes in hyperactivity in all groups. In
short, as described previously [63], the SMA test was done on Day 1 after tFI since locomotor
activity reaches the highest point on Day 1 after ischemic injury following tFI. The gerbils
of all groups received environmental adaptation for two hours, and they were placed onto
an open field cage (width, 44 cm; length, 44 cm; height, 30) obtained from Ugo Basile SRL
(Gemonio, Italy), in which two parallel horizontal infrared beams 4 × 8 off the floor were
installed, for one hour. SMA was recorded using a Photobeam Activity System-Home Cage
from San Diego Instruments (San Diego, CA, USA). Movement (trajectory and total distance
traveled) was detected through interruption of the array of infrared beams produced by
photocells. SMA was continuously monitored for one hour, and the data were collected
using an AMB analyzer from IPC Electronics (Cumbria, UK). The data collection was
initiated 15 min following habituation in the open field cage. Finally, the obtained results
were evaluated as the distance (meters) of movement in the test period (one hour).

4.4. Tests of Cognitive Functions
4.4.1. RAMT

To compare spatial memory across all groups, the RAMT was carried out according to
precedent studies [38,44]. A radial 8-arm maze from Stoelting Co (Wood Dale, IL, USA)
was used for this test. The maze instrument consisted of a central platform and eight arms
(each arm width, 5 cm; height, 9 cm; length, 35 cm). The gerbils were trained once a day
for three days before tFI. Namely, pellet feed obtained from DBL Co (Chungbuk, Korea)
was put at the end part of each arm, and each gerbil was placed onto the central platform.
Thereafter, the gerbil looked for the feed. After sham or tFI operation, the real test was
carried out once a day for four days beginning one day after the operation. For the analysis,
the number of errors was evaluated, with one error occurring every time the gerbil entered
an arm that was already visited before. The test was finished when the gerbil consumed
the feed.

4.4.2. PAT

To compare short-term memory across the groups, the PAT was conducted according
to previously reported methods [64,65] with some modification. In short, the gerbils were
tested using the Gemini Avoidance System (GEM 392) from San Diego Instruments (San
Diego, CA, USA), which consists of two (dark and light) compartments that communicate
each other via a vertically sliding gate. The experimental sessions were performed in
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two phases: a training session and a real test session performed at one day before and
four days after the tFI or sham operation. The real test was performed at 20 min after the
training session by measuring the latency time (seconds) during the stay in the dark room.
Namely, in the training session, the gerbil was allowed to explore the two compartments
freely for one minute while the gate was opened. Thereafter, when the gerbil went into the
dark compartment, the door was closed and the gerbil was given an electric foot-shock
(0.5 mA) from a steel grid on the floor for five seconds. In the real test session, on Day 4
after tFI, the gerbil was placed onto the light compartment, and the latency time in the light
compartment before entering the dark compartment was recorded.

4.5. Western Blot Analysis for TRPV1 and TRPV4

To examine the expression levels of TRPV1 and TRPV4 in gerbil hippocampal CA1, the
Western blot technique was performed according to previously described methods [66,67].
Briefly, according to the designated time schedule (30 min, 12 h, 1 day, 2 days, and 4 days
after sham or tFI operation), gerbils (n = 5 for each group) were given anesthesia for eu-
thanasia by intraperitoneal injection with 200 mg/kg pentobarbital sodium (JW pharm.
Co., Ltd., Seoul, Korea). Thereafter, their brains were harvested and homogenized with
50 mM phosphate-buffered saline (PBS, pH 7.4) containing 0.1 mM ethylene glycol-bis (β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) (pH 8.0), 10 mM ethylenediaminete-
traacetic acid (EDTA) (pH 8.0), 0.2% Nonidet P-40, 15 mM sodium pyrophosphate, 100 mM
β-glycerophosphate, 2 mM sodium orthovanadate, 50 mM NaF, 150 mM NaCl, 1 mM
phenylmethylsulfonyl fluoride (PMSF), and 1 mM dithiothreitol (DTT). Next, the samples
were centrifuged, and the supernatants were taken to determine protein levels using a
Micro BCA assay kit from Thermo Fisher Scientific Inc (Waltham, MA, USA) with bovine
serum albumin from Pierce Chemical Co (Rockford, IL, USA). Aliquots including 20 µg of
total protein were boiled in loading buffer, 150 mM Tris (pH 6.8) containing 6% sodium
dodecyl sulfate (SDS), 3 mM DTT, 0.3% bromophenol blue, and 30% glycerol. The sam-
ples were separated via 10% SDS-polyacrylamide gel electrophoresis (PAGE). Next, the
gels were transferred to nitrocellulose membranes from Pall Co (East Hills, NY, USA) at
350 mA and 4 ◦C for 90 min. To block non-specific staining, the membranes were incubated
in 5% defatted milk for 60 min at room temperature. Thereafter, they were immunore-
acted with each primary antibody: rabbit anti-TRPV1 (diluted 1:1000) (Abcam, Cambridge,
UK), rabbit anti-TRPV4 (diluted 1:1000) (Abcam), and rabbit anti-β-actin (diluted 1:2000)
(Sigma-Aldrich, St. Louis, MO, USA) at 4 ◦C for 7 h. Subsequently, they were reacted
with horseradish peroxidase (HRP)-conjugated donkey anti-rabbit IgG (diluted 1:4500)
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) at room temperature for 1 h. Finally, a
luminol-based chemiluminescence kit from Thermo Fisher Scientific Inc (Waltham, MA,
USA) was used to enhance visualization.

As described previously [68], the immunoblots of TRPV1 and TRPV4 were analyzed
using Scion Image software from Scion Crop (Frederick, MD, USA). The bands were
scanned, and densitometric analysis was performed. The protein levels were normalized
versus the corresponding level of β-actin.

4.6. Preparation of Histological Sections

For immunohistochemical and histopathological examinations, gerbils (n = 7 for each
group) were sacrificed according to the designated time schedule (30 min, 12 h, 1 day, 2 days,
and 4 days after tFI or sham operation). As previously described [34], the gerbils were
deeply anesthetized with pentobarbital sodium (200 mg/kg) (JW Pharmaceutical, Seoul,
Korea). Under the anesthesia, the gerbils were rinsed transcardially with 0.1 M phosphate-
buffered saline (pH 7.4) and fixed with 4% paraformaldehyde (in 0.1 M phosphate-buffer,
pH 7.4). Subsequently, their brains were obtained and post-fixed using the same fixative
for six hours. Thereafter, the brain tissues were cut (25 µm thickness of coronal planes) in a
cryostat (Leica, Wetzlar, Germany).
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4.7. Histochemical Staining Using CV

In order to examine the morphological and neuronal damage in the hippocampus of
each group, cresyl violet (CV) staining was performed as we described previously [69]. In
brief, cresyl violet acetate (Sigma-Aldrich, St. Louis, MO, USA) was dissolved at 1.0% (w/v)
in distilled water, and glacial acetic acid (0.28%) was added to this solution. The sections
were stained and mounted with Canada balsam (Kanto, Tokyo, Japan).

4.8. F-J B Staining

F-J B staining was performed to examine neuronal degeneration (death or loss). Ac-
cording to published procedure [34], the prepared brain sections were soaked in 1% sodium
hydroxide, immediately transferred to 0.06% potassium permanganate, and promptly
reacted with 0.0004% Fluoro-Jade B (Histochem, Jefferson, AR, USA). The sections were
briefly washed and put on a slide warmer (about 50 ◦C) for reaction with F-J B. To appraise
the therapeutic effect of OXC against tFI, the numbers of F-J B+ cells were counted in the
CA1 region according to a method published in [70]. Briefly, digital images of F-J B+ cells
were captured from five sections per gerbil using an epifluorescent microscope (Carl Zeiss)
(Oberkochen, Germany) at 450–490 nm wavelength. The cells were counted in 250 µm2,
which included the SP, at the center of the CA1 region using an image analyzing system
(Optimas 6.5) (CyberMetrics, Scottsdale, AZ, USA).

4.9. Immunohistochemistry

In order to investigate changes in NeuN, TRPV1, and TRPV4 immunoreactivity in the
CA1 region, general immunohistochemistry was performed. In brief, according to a pub-
lished method [34], the prepared brain sections were incubated with primary antibodies—
mouse anti-NeuN (diluted, 1:1100) (Chemicon, Temecula, CA, USA), mouse anti-TRPV1
(diluted, 1:500) (Abcam, Cambridge, UK), and rabbit anti-TRPV4 (diluted, 1:500) (Abcam,
Cambridge, UK). Thereafter, these incubated sections were incubated in the corresponding
secondary antibodies (diluted, 1:250) (Vector Laboratories Inc., Burlingame, CA, USA) and
developed using Vectastain ABC (diluted, 1:250) (Vector Laboratories Inc., Burlingame,
CA, USA). Finally, these immunoreacted sections had color after visualization with 3,3’-
diaminobenzidine. The numbers of NeuN+ cells were counted as follows. Digital images of
NeuN+ cells were captured from five sections per gerbil using a light microscope (AxioM1)
(Carl Zeiss, Germany). The cells were counted in the same way as the F-J B+ cell count. To
evaluate the density of TRPV1+ and TRPV4+ structures, the corresponding areas in the CA1
region were used in five sections per animal. Images of the TRPV1+ and TRPV4+ structures
were captured using an AxioM1 light microscope (Carl Zeiss) (Germany). The densities of
TRPV1+ and TRPV4+ structures were evaluated as the relative optical density (ROD). To
this end, the images were transformed to the mean gray level. The ROD was presented as
a percentage using Adobe Photoshop (version 8.0) and NIH Image J software (National
Institutes of Health, Bethesda, MD, USA).

4.10. Statistical Analysis

We presented the data as the means ± standard error of the mean (SEM). All statis-
tical analyses were performed with the aid of GraphPad Prism (version 5.0) (GraphPad
Software, La Jolla, CA, USA). Differences in the means among the experimental groups
were statistically analyzed by two-way analysis of variance (ANOVA) with a post hoc
Bonferroni’s multiple comparison test to elucidate tFI-related differences among all groups.
Statistical significance was considered at p < 0.05.

Author Contributions: Conceptualization: M.-H.W. and T.-K.L.; Methodology, J.-C.L. and D.W.K.;
Software, H.-I.K. and M.C.S.; Validation, J.H.A., I.J.K. and J.H.P.; Investigation, J.-C.L., H.-I.K. and
M.C.S.; Data Curation, J.H.C., I.J.K. and J.H.P.; Writing—Original Draft Preparation, H.-I.K. and
J.-C.L.; Writing—Review and Editing, M.-H.W.; Supervision, S.-S.L.; Project Administration, M.-H.W.;



Int. J. Mol. Sci. 2022, 23, 237 16 of 19

Funding Acquisition, S.-S.L. and T.-K.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Brain Korea 21 (BK21) Fostering Outstanding Universities for
Research (FOUR, 4220200913807) funded by the National Research Foundation (NRF) of Korea, and
by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (NRF-2020R1I1A1A01070897).

Institutional Review Board Statement: The gerbils were bred in the Experimental Animal Center of
Kangwon National University (Chuncheon, Korea). For this study, the experimental protocol was
approved (approval No., KW-200113-1; approval date, 18 February 2020) by the Institutional Animal
Care and Use Committee. The research protocol adhered to the guidelines suggested in the “Current
International Laws and Policies” of the Guide for the Care and Use of Laboratory Animals published by
The National Academies Press (8th Ed., 2011).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors appreciate Hyun Sook Kim and Seung Uk Lee for their technical
help in this study.

Conflicts of Interest: The authors have declared that there is no financial conflict of interest.

Abbreviations

CA1: subfield Cornu Ammonis 1; CNS, central nervous system; CV, cresyl violet; DG, dentate gyrus;
F-J B, Fluoro-Jade B; HyT, hypothermia; NeuN, neuronal nuclei; OXC, oxcarbazepine; PAT, passive
avoidance test; ROD, relative optical density; SMA, spontaneous motor activity; SO, stratum oriens;
SP, stratum pyramidale; SR, stratum radiatum; tFI, transient forebrain ischemia; TRPV1, transient
receptor potential vanilloid type 1.

References
1. Busto, R.; Dietrich, W.D.; Globus, M.Y.; Valdes, I.; Scheinberg, P.; Ginsberg, M.D. Small differences in intraischemic brain

temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab. 1987, 7, 729–738. [CrossRef]
[PubMed]

2. Maher, J.; Hachinski, V. Hypothermia as a potential treatment for cerebral ischemia. Cerebrovasc. Brain Metab. Rev. 1993, 5,
277–300.

3. Nurse, S.; Corbett, D. Neuroprotection after several days of mild, drug-induced hypothermia. J. Cereb. Blood Flow Metab. 1996, 16,
474–480. [CrossRef]

4. Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H.; Group, S. Update of the stroke therapy
academic industry roundtable preclinical recommendations. Stroke 2009, 40, 2244–2250. [CrossRef]

5. Liu, L.; Yenari, M.A. Therapeutic hypothermia: Neuroprotective mechanisms. Front. Biosci. 2007, 12, 816–825. [CrossRef]
6. Lyden, P.D.; Krieger, D.; Yenari, M.; Dietrich, W.D. Therapeutic hypothermia for acute stroke. Int. J. Stroke 2006, 1, 9–19. [CrossRef]

[PubMed]
7. Klassman, L. Therapeutic hypothermia in acute stroke. J. Neurosci. Nurs. 2011, 43, 94–103. [CrossRef]
8. Groysman, L.I.; Emanuel, B.A.; Kim-Tenser, M.A.; Sung, G.Y.; Mack, W.J. Therapeutic hypothermia in acute ischemic stroke.

Neurosurg. Focus 2011, 30, E17. [CrossRef] [PubMed]
9. Schwab, S.; Georgiadis, D.; Berrouschot, J.; Schellinger, P.D.; Graffagnino, C.; Mayer, S.A. Feasibility and safety of moderate

hypothermia after massive hemispheric infarction. Stroke 2001, 32, 2033–2035. [CrossRef]
10. Katz, L.M.; Young, A.S.; Frank, J.E.; Wang, Y.; Park, K. Regulated hypothermia reduces brain oxidative stress after hypoxic-

ischemia. Brain Res. 2004, 1017, 85–91. [CrossRef]
11. Liu, K.; Khan, H.; Geng, X.; Zhang, J.; Ding, Y. Pharmacological hypothermia: A potential for future stroke therapy? Neurol. Res.

2016, 38, 478–490. [CrossRef]
12. Ma, J.; Wang, Y.; Wang, Z.; Li, H.; Wang, Z.; Chen, G. Neuroprotective effects of drug-induced therapeutic hypothermia in central

nervous system diseases. Curr. Drug Targets 2017, 18, 1392–1398. [CrossRef]
13. Calabresi, P.; Cupini, L.M.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in

brain ischemia. Ann. Neurol. 2003, 53, 693–702. [CrossRef]
14. Tanaka, T.; Litofsky, N.S. Anti-epileptic drugs in pediatric traumatic brain injury. Expert Rev. Neurother. 2016, 16, 1229–1234.

[CrossRef]

http://doi.org/10.1038/jcbfm.1987.127
http://www.ncbi.nlm.nih.gov/pubmed/3693428
http://doi.org/10.1097/00004647-199605000-00014
http://doi.org/10.1161/STROKEAHA.108.541128
http://doi.org/10.2741/2104
http://doi.org/10.1111/j.1747-4949.2005.00011.x
http://www.ncbi.nlm.nih.gov/pubmed/18706063
http://doi.org/10.1097/JNN.0b013e31820b5fcd
http://doi.org/10.3171/2011.4.FOCUS1154
http://www.ncbi.nlm.nih.gov/pubmed/21631218
http://doi.org/10.1161/hs0901.095394
http://doi.org/10.1016/j.brainres.2004.05.020
http://doi.org/10.1080/01616412.2016.1187826
http://doi.org/10.2174/1389450118666170607104251
http://doi.org/10.1002/ana.10603
http://doi.org/10.1080/14737175.2016.1200974


Int. J. Mol. Sci. 2022, 23, 237 17 of 19

15. Angriman, F.; Tirupakuzhi Vijayaraghavan, B.K.; Dragoi, L.; Lopez Soto, C.; Chapman, M.; Scales, D.C. Antiepileptic drugs to
prevent seizures after spontaneous intracerebral hemorrhage. Stroke 2019, 50, 1095–1099. [CrossRef]

16. Swinyard, E.A.; Brown, W.C.; Goodman, L.S. Comparative assays of antiepileptic drugs in mice and rats. J. Pharmacol. Exp. Ther.
1952, 106, 319–330. [PubMed]

17. Wamil, A.W.; Schmutz, M.; Portet, C.; Feldmann, K.F.; McLean, M.J. Effects of oxcarbazepine and 10-hydroxycarbamazepine on
action potential firing and generalized seizures. Eur. J. Pharmacol. 1994, 271, 301–308. [CrossRef]

18. Wang, S.J.; Sihra, T.S.; Gean, P.W. Lamotrigine inhibition of glutamate release from isolated cerebrocortical nerve terminals
(synaptosomes) by suppression of voltage-activated calcium channel activity. Neuroreport 2001, 12, 2255–2258. [CrossRef]
[PubMed]

19. Rekling, J.C. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation.
Neurosci. Lett. 2003, 335, 167–170. [CrossRef]

20. Park, C.W.; Ahn, J.H.; Lee, T.K.; Park, Y.E.; Kim, B.; Lee, J.C.; Kim, D.W.; Shin, M.C.; Park, Y.; Cho, J.H.; et al. Post-treatment
with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating nrf2 defense
pathway. Biomed. Pharmacother. 2020, 124, 109850. [CrossRef]

21. Romanovsky, A.A. Thermoregulation: Some concepts have changed. Functional architecture of the thermoregulatory system. Am.
J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R37–R46. [CrossRef]

22. Caterina, M.J. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 2007, 292, R64–R76. [CrossRef] [PubMed]

23. Toth, A.; Boczan, J.; Kedei, N.; Lizanecz, E.; Bagi, Z.; Papp, Z.; Edes, I.; Csiba, L.; Blumberg, P.M. Expression and distribution of
vanilloid receptor 1 (trpv1) in the adult rat brain. Brain Res. Mol. Brain Res. 2005, 135, 162–168. [CrossRef]

24. Martins, D.; Tavares, I.; Morgado, C. “Hotheaded”: The role of trpv1 in brain functions. Neuropharmacology 2014, 85, 151–157.
[CrossRef]

25. Moran, M.M.; McAlexander, M.A.; Biro, T.; Szallasi, A. Transient receptor potential channels as therapeutic targets. Nat. Rev.
Drug Discov. 2011, 10, 601–620. [CrossRef] [PubMed]

26. Romanovsky, A.A.; Almeida, M.C.; Garami, A.; Steiner, A.A.; Norman, M.H.; Morrison, S.F.; Nakamura, K.; Burmeister, J.J.;
Nucci, T.B. The transient receptor potential vanilloid-1 channel in thermoregulation: A thermosensor it is not. Pharmacol. Rev.
2009, 61, 228–261. [CrossRef] [PubMed]

27. Wetsel, W.C. Sensing hot and cold with trp channels. Int. J. Hyperth. 2011, 27, 388–398. [CrossRef] [PubMed]
28. Grace, M.S.; Bonvini, S.J.; Belvisi, M.G.; McIntyre, P. Modulation of the trpv4 ion channel as a therapeutic target for disease.

Pharmacol. Ther. 2017, 177, 9–22. [CrossRef]
29. Garcia-Elias, A.; Mrkonjic, S.; Jung, C.; Pardo-Pastor, C.; Vicente, R.; Valverde, M.A. The trpv4 channel. Handb. Exp. Pharmacol.

2014, 222, 293–319.
30. Pulsinelli, W.A. Selective neuronal vulnerability: Morphological and molecular characteristics. Prog. Brain Res. 1985, 63, 29–37.
31. Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22,

391–397. [CrossRef]
32. Kirino, T. Delayed neuronal death. Neuropathology 2000, 20, 95–97. [CrossRef] [PubMed]
33. Lee, J.C.; Park, J.H.; Ahn, J.H.; Kim, I.H.; Cho, J.H.; Choi, J.H.; Yoo, K.Y.; Lee, C.H.; Hwang, I.K.; Cho, J.H.; et al. New gabaergic

neurogenesis in the hippocampal ca1 region of a gerbil model of long-term survival after transient cerebral ischemic injury. Brain
Pathol. 2016, 26, 581–592. [CrossRef]

34. Lee, J.C.; Park, J.H.; Kim, I.H.; Cho, G.S.; Ahn, J.H.; Tae, H.J.; Choi, S.Y.; Cho, J.H.; Kim, D.W.; Kwon, Y.G.; et al. Neuroprotection
of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal ca1 region following a subsequent transient cerebral
ischemia. Brain Pathol. 2017, 27, 276–291. [CrossRef] [PubMed]

35. Petito, C.K.; Feldmann, E.; Pulsinelli, W.A.; Plum, F. Delayed hippocampal damage in humans following cardiorespiratory arrest.
Neurology 1987, 37, 1281–1286. [CrossRef] [PubMed]

36. Ahn, J.H.; Shin, B.N.; Park, J.H.; Lee, T.K.; Park, Y.E.; Lee, J.C.; Yang, G.E.; Shin, M.C.; Cho, J.H.; Lee, K.C.; et al. Pre- and
post-treatment with novel antiepileptic drug oxcarbazepine exerts neuroprotective effect in the hippocampus in a gerbil model of
transient global cerebral ischemia. Brain Sci. 2019, 9, 279. [CrossRef]

37. Kim, D.H.; Li, H.; Yoo, K.Y.; Lee, B.H.; Hwang, I.K.; Won, M.H. Effects of fluoxetine on ischemic cells and expressions in bdnf
and some antioxidants in the gerbil hippocampal ca1 region induced by transient ischemia. Exp. Neurol. 2007, 204, 748–758.
[CrossRef]

38. Kondo, T.; Yoshida, S.; Nagai, H.; Takeshita, A.; Mino, M.; Morioka, H.; Nakajima, T.; Kusakabe, K.T.; Okada, T. Transient
forebrain ischemia induces impairment in cognitive performance prior to extensive neuronal cell death in mongolian gerbil
(meriones unguiculatus). J. Vet. Sci. 2018, 19, 505–511. [CrossRef] [PubMed]

39. Kim, H.; Ahn, J.H.; Song, M.; Kim, D.W.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Kim, J.D.; Cho, J.H.; Hwang, I.K.; et al. Pretreated fucoidan
confers neuroprotection against transient global cerebral ischemic injury in the gerbil hippocampal ca1 area via reducing of glial
cell activation and oxidative stress. Biomed. Pharmacother. 2019, 109, 1718–1727. [CrossRef]

40. Park, C.W.; Lee, T.K.; Cho, J.H.; Kim, I.H.; Lee, J.C.; Shin, B.N.; Ahn, J.H.; Kim, S.K.; Shin, M.C.; Ohk, T.G.; et al. Rufinamide
pretreatment attenuates ischemia-reperfusion injury in the gerbil hippocampus. Neurol. Res. 2017, 39, 941–952. [CrossRef]

http://doi.org/10.1161/STROKEAHA.118.024380
http://www.ncbi.nlm.nih.gov/pubmed/13000628
http://doi.org/10.1016/0014-2999(94)90787-0
http://doi.org/10.1097/00001756-200107200-00042
http://www.ncbi.nlm.nih.gov/pubmed/11447345
http://doi.org/10.1016/S0304-3940(02)01193-X
http://doi.org/10.1016/j.biopha.2020.109850
http://doi.org/10.1152/ajpregu.00668.2006
http://doi.org/10.1152/ajpregu.00446.2006
http://www.ncbi.nlm.nih.gov/pubmed/16973931
http://doi.org/10.1016/j.molbrainres.2004.12.003
http://doi.org/10.1016/j.neuropharm.2014.05.034
http://doi.org/10.1038/nrd3456
http://www.ncbi.nlm.nih.gov/pubmed/21804597
http://doi.org/10.1124/pr.109.001263
http://www.ncbi.nlm.nih.gov/pubmed/19749171
http://doi.org/10.3109/02656736.2011.554337
http://www.ncbi.nlm.nih.gov/pubmed/21591901
http://doi.org/10.1016/j.pharmthera.2017.02.019
http://doi.org/10.1016/S0166-2236(99)01401-0
http://doi.org/10.1046/j.1440-1789.2000.00306.x
http://www.ncbi.nlm.nih.gov/pubmed/11037198
http://doi.org/10.1111/bpa.12334
http://doi.org/10.1111/bpa.12389
http://www.ncbi.nlm.nih.gov/pubmed/27117068
http://doi.org/10.1212/WNL.37.8.1281
http://www.ncbi.nlm.nih.gov/pubmed/3614648
http://doi.org/10.3390/brainsci9100279
http://doi.org/10.1016/j.expneurol.2007.01.008
http://doi.org/10.4142/jvs.2018.19.4.505
http://www.ncbi.nlm.nih.gov/pubmed/29695143
http://doi.org/10.1016/j.biopha.2018.11.015
http://doi.org/10.1080/01616412.2017.1362189


Int. J. Mol. Sci. 2022, 23, 237 18 of 19

41. Bird, C.M.; Burgess, N. The hippocampus and memory: Insights from spatial processing. Nat. Rev. Neurosci. 2008, 9, 182–194.
[CrossRef]

42. Sweatt, J.D. Hippocampal function in cognition. Psychopharmacology 2004, 174, 99–110. [CrossRef]
43. Kim, B.; Lee, T.K.; Park, C.W.; Kim, D.W.; Ahn, J.H.; Sim, H.; Lee, J.C.; Yang, G.E.; Kim, J.D.; Shin, M.C.; et al. Pycnogenol((r))

supplementation attenuates memory deficits and protects hippocampal ca1 pyramidal neurons via antioxidative role in a gerbil
model of transient forebrain ischemia. Nutrients 2020, 12, 2477. [CrossRef] [PubMed]

44. Lee, T.K.; Kang, I.J.; Kim, B.; Sim, H.J.; Kim, D.W.; Ahn, J.H.; Lee, J.C.; Ryoo, S.; Shin, M.C.; Cho, J.H.; et al. Experimental pretreat-
ment with chlorogenic acid prevents transient ischemia-induced cognitive decline and neuronal damage in the hippocampus
through anti-oxidative and anti-inflammatory effects. Molecules 2020, 25, 3578. [CrossRef] [PubMed]

45. Guluma, K.Z.; Hemmen, T.M.; Olsen, S.E.; Rapp, K.S.; Lyden, P.D. A trial of therapeutic hypothermia via endovascular approach
in awake patients with acute ischemic stroke: Methodology. Acad. Emerg. Med. 2006, 13, 820–827. [CrossRef] [PubMed]

46. den Hertog, H.; van der Worp, B.; van Gemert, M.; Dippel, D. Therapeutic hypothermia in acute ischemic stroke. Expert Rev.
Neurother. 2007, 7, 155–164. [CrossRef]

47. Yenari, M.A.; Hemmen, T.M. Therapeutic hypothermia for brain ischemia: Where have we come and where do we go? Stroke
2010, 41, S72–S74. [CrossRef]

48. Moyer, D.J.; Welsh, F.A.; Zager, E.L. Spontaneous cerebral hypothermia diminishes focal infarction in rat brain. Stroke 1992, 23,
1812–1816. [CrossRef]

49. Friedman, L.K.; Ginsberg, M.D.; Belayev, L.; Busto, R.; Alonso, O.F.; Lin, B.; Globus, M.Y. Intraischemic but not postischemic
hypothermia prevents non-selective hippocampal downregulation of ampa and nmda receptor gene expression after global
ischemia. Mol. Brain Res. 2001, 86, 34–47. [CrossRef]

50. Yenari, M.A.; Han, H.S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat. Rev. Neurosci 2012, 13, 267–278.
[CrossRef]

51. Sagalyn, E.; Band, R.A.; Gaieski, D.F.; Abella, B.S. Therapeutic hypothermia after cardiac arrest in clinical practice: Review and
compilation of recent experiences. Crit. Care Med. 2009, 37, S223–S226. [CrossRef]

52. Fosgerau, K.; Weber, U.J.; Gotfredsen, J.W.; Jayatissa, M.; Buus, C.; Kristensen, N.B.; Vestergaard, M.; Teschendorf, P.; Schneider,
A.; Hansen, P.; et al. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential
vanilloid type 1 agonist. BMC Cardiovasc. Disord. 2010, 10, 51. [CrossRef]

53. Jancso-Gabor, A.; Szolcsanyi, J.; Jancso, N. Irreversible impairment of thermoregulation induced by capsaicin and similar pungent
substances in rats and guinea-pigs. J. Physiol. 1970, 206, 495–507. [CrossRef] [PubMed]

54. Hori, T. Capsaicin and central control of thermoregulation. Pharmacol. Ther. 1984, 26, 389–416. [CrossRef]
55. Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion

channel in the pain pathway. Nature 1997, 389, 816–824. [CrossRef] [PubMed]
56. Cristino, L.; de Petrocellis, L.; Pryce, G.; Baker, D.; Guglielmotti, V.; Di Marzo, V. Immunohistochemical localization of cannabinoid

type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 2006, 139, 1405–1415.
[CrossRef]

57. Cao, Z.; Balasubramanian, A.; Marrelli, S.P. Pharmacologically induced hypothermia via trpv1 channel agonism provides
neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am. J. Physiol. Regul. Integr. Comp. Physiol.
2014, 306, R149–R156. [CrossRef]

58. Everaerts, W.; Nilius, B.; Owsianik, G. The vanilloid transient receptor potential channel trpv4: From structure to disease. Prog.
Biophys. Mol. Biol. 2010, 103, 2–17. [CrossRef]

59. White, J.P.; Cibelli, M.; Urban, L.; Nilius, B.; McGeown, J.G.; Nagy, I. Trpv4: Molecular conductor of a diverse orchestra. Physiol.
Rev. 2016, 96, 911–973. [CrossRef]

60. Mizuno, A.; Matsumoto, N.; Imai, M.; Suzuki, M. Impaired osmotic sensation in mice lacking trpv4. Am. J. Physiol. Cell Physiol.
2003, 285, C96–C101. [CrossRef]

61. Ryskamp, D.A.; Jo, A.O.; Frye, A.M.; Vazquez-Chona, F.; MacAulay, N.; Thoreson, W.B.; Krizaj, D. Swelling and eicosanoid
metabolites differentially gate trpv4 channels in retinal neurons and glia. J. Neurosci. 2014, 34, 15689–15700. [CrossRef]

62. Lee, J.C.; Cho, J.H.; Cho, G.S.; Ahn, J.H.; Park, J.H.; Kim, I.H.; Cho, J.H.; Tae, H.J.; Cheon, S.H.; Ahn, J.Y.; et al. Effect of transient
cerebral ischemia on the expression of receptor for advanced glycation end products (rage) in the gerbil hippocampus proper.
Neurochem. Res. 2014, 39, 1553–1563. [CrossRef] [PubMed]

63. Park, J.H.; Park, C.W.; Ahn, J.H.; Choi, S.Y.; Shin, M.C.; Cho, J.H.; Lee, T.K.; Kim, I.H.; Cho, J.H.; Lee, J.C.; et al. Neuroprotection
and reduced gliosis by pre- and post-treatments of hydroquinone in a gerbil model of transient cerebral ischemia. Chem. Biol.
Interact. 2017, 278, 230–238. [CrossRef] [PubMed]

64. Ahn, J.H.; Park, J.H.; Park, J.; Shin, M.C.; Cho, J.H.; Kim, I.H.; Cho, J.H.; Lee, T.K.; Lee, J.C.; Shin, B.N.; et al. Long-term treadmill
exercise improves memory impairment through restoration of decreased synaptic adhesion molecule 1/2/3 induced by transient
cerebral ischemia in the aged gerbil hippocampus. Exp. Gerontol. 2018, 103, 124–131. [CrossRef] [PubMed]

65. Dhar, A.; Kaundal, R.K.; Sharma, S.S. Neuroprotective effects of fetmpyp: A peroxynitrite decomposition catalyst in global
cerebral ischemia model in gerbils. Pharmacol. Res. 2006, 54, 311–316. [CrossRef]

66. Engel, T.; Schindler, C.K.; Sanz-Rodriguez, A.; Conroy, R.M.; Meller, R.; Simon, R.P.; Henshall, D.C. Expression of neurogenesis
genes in human temporal lobe epilepsy with hippocampal sclerosis. Int. J. Physiol. Pathophysiol. Pharmacol. 2011, 3, 38–47.

http://doi.org/10.1038/nrn2335
http://doi.org/10.1007/s00213-004-1795-9
http://doi.org/10.3390/nu12082477
http://www.ncbi.nlm.nih.gov/pubmed/32824513
http://doi.org/10.3390/molecules25163578
http://www.ncbi.nlm.nih.gov/pubmed/32781658
http://doi.org/10.1197/j.aem.2006.03.559
http://www.ncbi.nlm.nih.gov/pubmed/16766740
http://doi.org/10.1586/14737175.7.2.155
http://doi.org/10.1161/STROKEAHA.110.595371
http://doi.org/10.1161/01.STR.23.12.1812
http://doi.org/10.1016/S0169-328X(00)00252-7
http://doi.org/10.1038/nrn3174
http://doi.org/10.1097/CCM.0b013e3181aa5c7c
http://doi.org/10.1186/1471-2261-10-51
http://doi.org/10.1113/jphysiol.1970.sp009027
http://www.ncbi.nlm.nih.gov/pubmed/5498502
http://doi.org/10.1016/0163-7258(84)90041-X
http://doi.org/10.1038/39807
http://www.ncbi.nlm.nih.gov/pubmed/9349813
http://doi.org/10.1016/j.neuroscience.2006.02.074
http://doi.org/10.1152/ajpregu.00329.2013
http://doi.org/10.1016/j.pbiomolbio.2009.10.002
http://doi.org/10.1152/physrev.00016.2015
http://doi.org/10.1152/ajpcell.00559.2002
http://doi.org/10.1523/JNEUROSCI.2540-14.2014
http://doi.org/10.1007/s11064-014-1345-8
http://www.ncbi.nlm.nih.gov/pubmed/24880882
http://doi.org/10.1016/j.cbi.2017.01.018
http://www.ncbi.nlm.nih.gov/pubmed/28137511
http://doi.org/10.1016/j.exger.2018.01.015
http://www.ncbi.nlm.nih.gov/pubmed/29341891
http://doi.org/10.1016/j.phrs.2006.06.009


Int. J. Mol. Sci. 2022, 23, 237 19 of 19

67. Zhao, H.; Li, Z.; Wang, Y.; Zhang, Q. Hippocampal expression of synaptic structural proteins and phosphorylated camp response
element-binding protein in a rat model of vascular dementia induced by chronic cerebral hypoperfusion. Neural Regen. Res. 2012,
7, 821–826.

68. Yoo, Y.H.; Kim, D.W.; Chen, B.H.; Sim, H.; Kim, B.; Lee, J.C.; Ahn, J.H.; Park, Y.; Cho, J.H.; Kang, I.J.; et al. Comparison of
age-dependent alterations in thioredoxin 2 and thioredoxin reductase 2 expressions in hippocampi between mice and rats. Lab.
Anim. Res. 2021, 37, 11. [CrossRef]

69. Park, J.H.; Shin, B.N.; Ahn, J.H.; Cho, J.H.; Kim, I.H.; Kim, D.W.; Won, M.H.; Hong, S.; Lee, C.H. Ischemia-induced changes
of pras40 and p-pras40 immunoreactivities in the gerbil hippocampal ca1 region after transient cerebral ischemia. Cell. Mol.
Neurobiol. 2016, 36, 821–828. [CrossRef]

70. Park, J.H.; Shin, B.N.; Chen, B.H.; Kim, I.H.; Ahn, J.H.; Cho, J.-H.; Tae, H.-J.; Lee, J.-C.; Lee, C.-H.; Kim, Y.-M. Neuroprotection and
reduced gliosis by atomoxetine pretreatment in a gerbil model of transient cerebral ischemia. J. Neurol. Sci. 2015, 359, 373–380.
[CrossRef]

http://doi.org/10.1186/s42826-021-00088-y
http://doi.org/10.1007/s10571-015-0265-8
http://doi.org/10.1016/j.jns.2015.11.028

	Introduction 
	Results 
	Body Temperature 
	Hyperactivity 
	Cognitive Functions 
	Spatial Memory 
	Short-Term Memory 

	Levels of TRPV1 and TRPV4 
	TRPV1 and TRPV4 Immunoreactivity 
	TRPV1 Immunoreactivity 
	TRPV4 Immunoreactivity 

	Neuroprotection 
	Findings by Cresyl Violet (CV) Histochemistry 
	Findings by Neuronal Nuclei (NeuN) Immunohistochemistry and Fluoro-Jade B (F-J B) Staining 


	Discussion 
	Materials and Methods 
	Experimental Animals 
	Experimental Groups, Induction of tFI, and HyT and OXC Treatments 
	SMA Test 
	Tests of Cognitive Functions 
	RAMT 
	PAT 

	Western Blot Analysis for TRPV1 and TRPV4 
	Preparation of Histological Sections 
	Histochemical Staining Using CV 
	F-J B Staining 
	Immunohistochemistry 
	Statistical Analysis 

	References

