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Abstract. We have isolated cDNA clones for mouse 
tenascin and analyzed expression of tenascin mRNAs 
during embryonic development of the kidney and gut. 
The deduced amino acid sequence of the mouse tenas- 
cin cDNAs shows a modular structure of repeats simi- 
lar to chicken and human tenascin. In mouse there are 
14.5 cysteine-rich repeats with similarity to the EGF 
repeat, followed by several repeats with similarity to 
the type 111 repeat of fibronectin. A longer variant 
contains 13 fibronectin type l/I repeats, whereas a 
shorter splice variant of mouse tenascin lacks the 5 
type l/I repeats that occur directly after the fifth repeat 
in the longer variant. Contrary to the chicken and hu- 
man sequences, mouse tenascin does not contain an 
RGD sequence in the third type III repeat implicated 
in cell attachment, or in any other positions. In 
Northern hybridizations to RNA from primary em- 
bryonic fibroblasts, the cDNA clone M 20/1 detects 

two mRNAs with sizes close to 6 and 8 kb. This, and 
the other data presented here suggest that the two ma- 
jor mouse tenascin polypeptides arise through an alter- 
native RNA splicing. The two major mRNAs are 
differentially expressed during development. The 8-kb 
mRNA is more prominent than the 6-kb mRNA 
throughout prenatal kidney development, but during 
postnatal development the ratio of the two mRNAs 
changes. A different expression pattern is seen in the 
developing gut where the 6-kb mRNA predominates 
during embryogenesis with the 8-kb mRNA appearing 
later. The mRNA data of the developing gut correspond 
with previous protein data, which showed that the 
shorter Mr 210,000 polypeptide predominates during 
earlier developmental stages and the larger Mr 260,000 
polypeptide appears later in the embryonic gut (Auf- 
derheide, E., and P. Ekblom. 1988. J. Cell Biol. 
107:2341-2349). 

T 
ENkSCIN is a mesenchymal extracellular matrix gly- 
coprotein with a spatially and temporally restricted 
tissue distribution. In the embryo, it is prominently 

expressed at sites of epithelial-mesenchymal interactions 
during organogenesis (for recent reviews; see Erickson and 
Bourdon, 1989; Ekblom and Aufderheide, 1989). Tenascin is 
a hexameric glycoprotein with disulphide-linked subunits 
originally described as myotendinous antigen (Chiquet and 
Fambrough, 1984a,b). Tenascin-like molecules have been 
described from embryonic brain and from gliomas and have 
been named cytotactin (Grumet et al., 1985), J1 (Kruse et al., 
1985; Falssner et al., 1988), and glial-mesenchymal extracel- 
lular matrix glycoprotein (GMEM; Bourdon et al., 1983, 
1985). It is now clear that cytotactin and tenascin are identical 
proteins and that GMEM is the human counterpart to tenas- 
cin. However, in the original "Jl" complex from mouse tis- 
sues, tenascin is only one of several proteins (Faissner et al., 
1988). 

In EM tenascin has a characteristic six-armed structure 

Andreas Weller's present address is Hans-Spemann-Laboratorium, Max- 
Planck-lnstitut fiir Immtmbiologie, D-7800 Freiburg, Germany. 

Peter Ekblom's present address is Department of Zoophysiology, Uppsala 
University, Box 560, S-751 22, Sweden. 

termed hexabrachion (Erickson and Iglesias, 1984; Erickson 
and Taylor, 1987). Each arm of the bexabrachion is formed 
by one subunit, but the length of the individual subunits may 
vary (Jones et al., 1989; Spring et al., 1989). In the mouse, 
two major subunits of tenascin with an apparent Mr of 
210,000 and 260,000 have been described (Aufderheide and 
Ekblom, 1988). As in chicken (Spring et al., 1989; Jones et 
al., 1989), the presence of polypeptides with varying sizes 
may be due to an alternative splicing of the mRNA, but this 
has not been directly shown. To study this possibility, and 
to learn more about the structure of mouse tenascin, we have 
isolated and analyzed cDNA clones covering the complete 
coding sequence. 

Because of its transient appearance at sites of epithe- 
lial-mesenchymal interactions, tenascin may be involved in 
local tissue interactions during organogenesis (Chiquet- 
Ehrismann et al., 1986; Aufderheide et al., 1987). It is still 
unclear how tenascin acts on developing tissues, but it has 
been shown that binding of tenascin to cel! surfaces causes 
cells to round up (Chiquet-Ehrismann et al., 1986, 1988). 
Thus, it would be of interest to identify the cell-binding 
regions of mouse tenascin. It has been suggested that the 
tripeptide Arg-Gly-Asp/(RGD), present in chicken and human 
tenasein, is involved in cell binding (Friedlander et al., 1988) 
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and that tenascin mediates cell attachment through an RGD- 
dependent integrin receptor (Bourdon and Ruoslahti, 1989). 
Other studies, however, have shown that the GRGDS peptide 
cannot significantly inhibit cell attachment to tenascin (Chi- 
quet-Ehrismann et al., 1988) and that a cell-binding site is 
located closer to the carboxy terminus away from the region 
containing the RGD sequence (Spring et al., 1989). To as- 
sess the importance of the RGD sequence in tenascin, com- 
parisons with sequences of different species may be reveal- 
ing. Several of our mouse tenascin cDNA clones span the 
third fibronecfin type III repeat, which in human and chicken 
contains an RGD sequence (Gulcher et al., 1989; Spring et 
al., 1989). We report here that the mouse cDNA clones pre- 
dict an RVD sequence in this location, and that the RGD se- 
quence is lacking also from other parts of the two mouse 
tenascin mRNA forms we have identified. 

With the mouse cDNA clones, we studied the expression 
of tenascin mRNA during late organogenesis of the kidney 
and intestine. We find that the two mRNAs of close to 6 and 
8 kb are differentially expressed both during kidney and gut 
organogenesis. The presented data strongly suggest that the 
two major polypeptide subunits of mouse tenascin (Aufder- 
heide and Ekblom, 1988; Ekblom and Aufderheide, 1989) 
form by an alternative splicing of one mRNA. 

Materials and Methods 

Polyclonal Antibodies against Mouse Tenascin 

Initial attempts to isolate mouse tenascin eDNA clones b~ screening an ex- 
pression eDNA library with previously described mAbs MTn 5 and MTn 
12 (Aufderheide and Ekblom, 1988) were not successful, and therefore a 
polyclonai antiserum was made by immunizing rabbits with mouse tenascin 
(Weller, 1990). Mouse tenasein was purified by affinity chromatography 
using polyclonai rabbit antichicken tenascin antibodies (Chiquet-Ehris- 
mann et al., 1986). 

Cells and Tissues 
Hybrid mouse embryos 129x NMRI were used. The day of the vaginal plug 
was designated as day 0. eDNA libraries were prepared from RNA isolated 
from kidneys of 14-d-old mouse embryos and from mouse embryonic 
fibroblasts. To obtain primary cultures of mouse embryonic fibroblasts, the 
upper parts containing the head, thorax, and parts of the abdomen of 14-d- 
old mouse embryos were squeezed through a steel grid to dissociate the 
cells. This suspension was taken into culture in DME (Gibco, Eggenstein, 
FRG) containing 10% FCS (Biochrom, Berlin, FRG). Adherently growing 
cells were passaged up to five times and confluent cultures were harvested 
for RNA extraction. A part of the RNA was used for cDNA synthesis, and 
another part for Northern blots. To obtain RNA for Northern blots of cells 
not producing tenasein polypeptides, B16FI mouse melanoma cells (Fidler 
and Kripke, 1977; Aufderheide and Ekblom, 1988) were grown in DME 
containing 10% FCS. Cells were harvested for RNA extraction at con- 
fluency. 

RNA Isolation 
Tissues were frozen on dry ice immediately after microsurgery, and care 
was taken to perform the microsurgery immediately after decapitation. Tis- 
sues or cells were homogenized in 4 M guanidinium thiocyanate (Fluka AG, 
Buchs, Switzerland) using an Ultra-Turrax T25 homogenizer (IKA-Labo- 
rechnik, Staufen i. Br., FRG). The homogenate was squeezed through a 20- 
gauge needle to shear the high molecular weight DNA. The RNA was then 
purified by ultracentrifugation (SW41 Ti rotor, 30,000 rpm, 20°C, >20 h) 
through a 3.3-rnl cushion of 5.7 M cesium chloride (Chirgwin et al., 1979). 
The supernatant was removed by suction and the RNA pellet was dissolved 
in sterile double-distilled H20. Total RNA was harvested by ethanol pre- 
cipitation. The concentration of the RNA was determined by reading the 
absorbance at 260 rim. The purity and integrity of the RNA was tested by 

determining the A26o/A2so ratio and by agarose gel electrophoresis (Mania- 
tis et al., 1982). 

cDNA Library Construction and Cloning of cDNAs 
Encoding Mouse Tenascin 

Poly(A) + RNA was isolated by twofold oligo(dT)-cellulose chromatogra- 
phy (Collaborative Research/Paesel, Frankfurt, FRG) from primary mouse 
embryonic fibroblasts and from mouse embryonic kidneys. For eDNA li- 
brary construction the eDNA synthesis system and the ~gtl I cloning system 
of Amersham-Buchler (Braunschweig, FRG) were used. Two eDNA 
libraries were made from 5 ~tg of poly(A) + RNA using either random or 
oligo(dT) priming. The libraries were constructed, plated as described (Gu- 
bler and Hoffman, 1983; Huynh et al., 1985), and screened with the poly- 
clonal and monoclonal antitenascin antibodies using biotinylated antirat or 
antirabbit antiserum and streptavidin-biotinylated HRP complex (Amer- 
sham-Buchler) to detect immunoreactive fusion proteins (Huynh et al., 
1985). The Eco RI insert of the positive phage clone M20/I isolated from 
the primary embryonic fibroblast library was purified and subcloned into 
pGEM-blue (Promega/Genofit, Heidelberg, FRG) and M13mplS/19 (Boeh- 
ringer, Mannheim, FRG). The M20h clone was used for subsequent screen- 
ing of three additional hgtl0 eDNA libraries made from poly(A) + RNA 
from mouse primary embryonic fibroblasts. One of the )~gtl0 libraries was 
made using specific priming with an oligomer from the 5' region of clone 
M20/1 and the cloning kits from Amersham-Buchler (Braunschweig, FRG), 
the two other Xgtl0 eDNA libraries were custom made by Stratagene Clon- 
ing Systems (La Jolla, CA) using either oligo(dT) or random oligonucleo- 
tides as primers. The nucleotide sequences of all isolated clones were deter- 
mined on both strands (Sanger et ai., 1977) using Sequenase TM (USB/ 
Renner, Dannstadt, FRO and 35S-dATP (Amersham-Buchler, Braun- 
schweig, FRG) after subcloning into pUC vectors (Yannisch-Perron et al., 
1985). Several parts of the sequence were determined by using specific oli- 
gonucleotides as sequencing primers. The synthetic oligonucleotides were 
synthesized on a gene assembler (Pharmacia-LKB Biotechnology Inc., 
Uppsaia, Sweden) at the Max-Planck-Institut fOr Entwicklungsbiologie 
(Tiibingen, FRG). For sequence analysis the MicroGenie TM sequence 
analysis software (Queen and Korn, 1984) and the UWGCG Sequence Anal- 
ysis Software Package (Devereux et ai., 1984) were used. The mouse se- 
quence was compared with the complete chicken sequence (Spring et al., 
1989; Jones et al., 1989) and partial human sequence of tenasein (Gulcher 
et al., 1989). 

Northern Blotting 

RNA was subjected to eleetrophoresis on 1% agarose gels after denaturation 
with glyoxai (McMaster and Carmichael, 1977). Transfer to hybond N 
(Amersham-Buchler) was carded out as described by the manufacturer. 
Preparation of radiolabeled probe using a nick translation kit (BRL, Eggen- 
stein, FRG) or an oligo-labeling kit (Pharmacia, Freiburg, FRG) was done 
with 30-50 #Ci [a-32PldCTP (Amersham-Buchler) according to the 
manufacturer's protocols. Hybridization of the filters was carried out as de- 
scribed p~viously (Mugraner et al., 1988), except that washing of the filters 
in 0.1x SSC/0.1% SDS was done at a higher temperature (56-65"C). 

Glycosidase Digest of Purified Tenascin 
2.5 #g of purified tenascin were digested overnight at 37°C in 100 mM Na- 
acetate, pH 6.5, 50 mM EDTA, 1% Triton-X-100, 0.2 % SDS, 1%/3-mercap- 
toethanol using 20 mU endoglycosidase F (Boehdnger). Another aliquot of 
tenascin was incubated under the same conditions without enzyme. Detec- 
tion of tenascin by immunoblotting through PAGE and transfer to nitrocellu- 
lose using the monoclonal antitenascin antibody MTnl2 was carded out as 
described previously (Aufderbeide and Ekblom, 1988). 

Results  

Isolation of Mouse Tenascin eDNA Clones and Major 
Features of Mouse Tenascin mRNAs 
cDNA libraries in hgtll prepared from 14 d embryonic 
mouse kidneys and from primary mouse embryo fibroblasts 
were screened with the polyclonal antiserum raised against 
mouse tenascin. In the screening of 1.2 x 106 phage 
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Figure 1. Deduced amino acid sequence of mouse tenascin in a display that shows the modular structure of this protein. The two blocks 
of contiguous repeats with similarity to EGF (residues 174-620) and fibronectin type III repeat (residues 621-1,791) become apparent. 
Type Ill repeats 6-10 (residues 1,072-1,526) are present only in the large subunit of tenascin. The type III rep0ats are arranged such that 
the conserved amino acids Trp, Leu, and Thr are aligned. Potential Asn-glycosylation sites, most of which are found in the differentially 
spliced type III repeats, are underlined. The tripeptide Arg-Val-Asp in the third type III repeat (residues 877-879) is emphasized through 
double underlining. These sequence data at the nucleotide level are available from EMBL/GenBank/DDBJ under accession number 
X56304. 

plaques for immunoreactive tenascin fusion proteins, one 
positive clone (M20/1) was identified from the random- 
primed cDNA library made from RNA of mouse embryonic 
fibroblasts. With the insert of  this clone additional clones 
covering the complete coding sequence of mouse tenascin 
were isolated. The available clones cover a total of  6,831 bp, 
including 126 bp of 5' untranslated and 645 bp of 3' untrans- 
lated sequence. The 3' end contains an AATAAA sequence 
17 bp upstream to the end of the sequence which may serve 
as a polyadenylation signal. Northern blot data suggest that 
the full-length mRNA can be close to 8 kb rather than 6.8 
kb, but it is likely that we are missing a part of  the 5' leader. 
Analysis of  12 cDNA clones covering the complete coding 

sequence of mouse tenascin revealed two splice variants with 
open reading frames of 2,019 for the larger and 1,564 amino 
acids for the shorter variant (Fig. 1). The calculated M, of 
the primary translational products is 221,842 and 172,181, 
respectively. Minor additional splice variants may exist but 
clones that would demonstrate their presence have not been 
found so far. 

The deduced amino acid sequence of mouse tenascin dis- 
plays a modular structure of contiguous repeats very similar 
to chicken and human tenascin (Jones et al., 1988, 1989; 
Pearson et al., 1988; Gulcher et al., 1989; Spring et al., 
1989). The two blocks of contiguous repeats with similarity 
to the EGF repeat and to the type III repeat of  fibronectin 
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Figure 2. Schematic represen- 
tation of one polypeptide chain 
of mouse tenascin showing its 
modular structure and the rel- 
ative positions of the eDNA 
clones. After putative leader 
and propeptide sequences the 
amino terminal globular do- 
main of the mature protein is 
indicated as a segment of a 
circle. The first block of 14.5 
contiguous EGF-like repeats 
is represented by small rectan- 
gles, the second block of 13 
repeats with similarity to the 
type RI repeat of fibronectin 
is indicated with big rectan- 

gles. Differential splicing of the type III repeats 6-10 gives rise to the small subunit of mouse tenascin. Clone 03'-22 is derived from the 
small mRNA and therefore does not contain these repeats. The third type HI repeat which contains the tripeptide Arg-Val-Asp in place 
of the cell attachment sequence Arg-Gly-Asp is marked with an asterisk. At the carboxy terminus a circle represents a domain with similarity 
to fibrinogen. Potential N-glycosylation sites are indicated with thin lines. 

become apparent in Fig. 1. The relative positions of  the 
cDNA clones are shown in Fig. 2, where the EGF-like 
repeats are represented by small rectangles and the subse- 
quent fibronectin type III repeats by big rectangles. 

Leader Peptide and EGF-like Repeats 

The sequence of mouse tenascin contains a putative leader 
peptide (residues 1-19) as predicted by the program SIGSEQ 
(Popowicz and Dash, 1988) using the algorithm of yon 
Heijne (1987). This sequence shows only '~40% sequence 
identity to chicken tenascin (Spring et al., 1989), whereas 
the remainder of the amino terminal sequence (residues 
20-173) is >70% identical. Both in chicken and mouse tenas- 
cin this sequence is followed by a long contiguous block of 
several cysteine-rich EGF-like repeats, 13.5 in chick and 
14.5 in mouse (residues 174-620 in our sequence). Except 
for the third repeat, the conserved cysteines in the mouse 
repeats show the same spacing found in the chicken and hu- 
man sequences (Pearson et al., 1988; Gulcher et al., 1989), 
and additional amino acids are conserved in the consensus 
of the human, mouse, and chicken sequences. The repeats 
appear to be conserved between mouse and human with re- 
spect to position: repeats in the same relative positions are 

"~90% identical on the amino acid level, whereas other com- 
binations show only •60% identity on average. However, 
EGF repeats of chicken and mouse tenascin in the same rela- 
tive positions are not nearly as similar as the human and 
mouse EGF-like repeats. It must be noted that only partial se- 
quences of  the human EGF-like repeats (Gulcher et al., 
1989) were available for the comparison. 

l~'bronectin 1)/pe III  Repeats 

As in human and chicken, the EGF-like repeats are followed 
by several fibronectin type RI repeats (residues 621 to 1791). 
The longer mRNA splice variant of  mouse tenascin com- 
prises 13 fibroneetin type lIl  repeats, characterized through 
the rather conserved spacing of tryptophane, leucine, and 
threonine residues (Fig. 1). The sequence of the chick is 
somewhat shorter with 11 such elements, whereas the human 

il  i 1 | n i i I in  i i 
human I I I I I I 

mouse 

chick 

-=I I 

Figure 3. Alignment of the 
differentially spliced type RI 
repeats ofhnman, mouse, and 
chick tenasein. These repeats 
are contiguous in all three spe- 
cies. The three spliced repeats 
of chick and the five spliced 
repeats of mouse show higher 
sequence similarity with cer- 
tain of the seven repeats of the 
human tenascin. Thin lines in- 

dicate the position of potential N-glycosylation sites. The position 
of these sites has been conserved very well between human and 
mouse. In chick an additional splice variant has been described 
which lacks the first and second, but contains the third of the 
differentially spliced type III repeats. 

Figure 4. Immunoblot of purified mouse 
tenascin after treatment with endoglycosi- 
dase E Tenascin purified from the culture 
supernatant of primary embryonic fibro- 
blasts was treated with (b) and without (a) 
endoglycosidase F and transferred to nitro- 
cellulose after gel electrophoresis. Staining 
with the monoclonal antitenascin antibody 
Ml"nl2 detects a prominent band at '~260 
kD and a weak band of ,u 210 kD in the un- 
digested sample. In the digested sample the 
large band has shifted to ,,0230 kD. The po- 
sition of the marker proteins is indicated in 
kilodaltons. 

The Journal of Cell Biology, Volume 112, 1991 358 



tenascin with 15 such elements is somewhat longer. The 
fibronectin type ll/repeats of the different species appear to 
be conserved with respect to their relative positions: repeats 
in comparable locations show >70% identity between chicken 
and mouse, whereas all other combinations give only ,,o25 % 
identity. The similarity of repeats in comparable locations is 
even higher (90%) between mouse and human. In each of the 
three species the smaller mRNA variants form by splicing of 
type III repeats just after the fifth repeat. In mouse, the 
potentially differentially spliced fragment comprises five 
type IN repeats, numbers 6-10 (residues 1,072-1,526). In 
chicken, the differentially spliced fragment is smaller, where- 
as the human fragment is the largest of the three (Fig. 3). Se- 
quence comparison reveals that certain of the repeats in the 
differentially spliced sequence of chick and mouse can be 
aligned with specific repeats of the spliced segment of the hu- 
man tenascin sequence (Fig. 3). 

Glycosylation 

Like the human tenascin sequence (Gulcher et al., 1989) the 
mouse sequence shows a high number of potential ASn- 
glycosylation sites (Marshall, 1972). It is noteworthy that no 
less than 10 out of 19 of these sites occur within the differen- 
tially spliced segment. The spacing of these glycosylation 
sites is remarkably well conserved between mouse and hu- 
man (Fig. 3). Our data from cultured mouse embryonic 
fibroblasts suggest that these sites are used in the embryo. 
Digestion with endoglycosidase F, which removes Asn-linked 
carbohydrate chains, reduced the molecular mass of the 
larger form of mouse tenascin from Mr 260,000 to ",,Mr 
230,000 (Fig. 4). This value agrees very well with the size 
of an unglycosylated polypeptide backbone predicted from 
the primary sequence (Mr 221,842). 

Deduced Mouse Tenascin Sequence Lacks 
Arg-Gly-Asp Tripeptide 

Both chicken and human tenascin contain the tripeptide se- 
quence Arg-Gly-Asp in the third fibronectin type l/I repeat 
(Jones et al., 1989; Spring et al., 1989; Gulcher et al., 1989) 
and this sequence has been implicated in cell-tenascin inter- 
actions (Friedlander et al., 1988; Bourdon and Ruoslahti, 
1989). Yet, in the first found mouse clone that covered the 
third fibronectin type 1II repeat (M20/1) no such sequence 
could be found. In view of the postulates that tenasein binds 
to cells via an RGD sequence the result was highly unex- 
pected. Four independent eDNA clones covering this region 
were therefore isolated. The clones, isolated from three 
different eDNA libraries, invariably showed the same nucle- 
otide sequence coding for the tripeptide Arg-Val-Asp rather 
than Arg-Gly-Asp. Furthermore, no Arg-Gly-Asp sequence 
was found in any other parts of the mouse tenasein sequence 
(Fig. 1). 

Differential Splicing Gives Rise to Two Major Mouse 
Tenascin mRNAs 

Previously performed immunoprecipitation with monoclo- 
nal antitenascin antibodies suggested that mouse embryonic 
fibroblasts can synthesize two polypeptides of Mr 260,000 
and 210,000, whereas mouse B16 melanoma cells did not 
synthesize any of these polypeptides (Aufderheide and Ek- 
blom, 1988). Our current data suggest that these two major 

polypeptides form by differential splicing. The insert of 
clone M20/1 detected two species of mRNA of ,x,6 and 8 kb 
in total RNA from primary mouse embryo fibroblasts (Fig. 
5, lane a), and in accordance with the protein data no signals 
could be seen in total RNA from B16 mouse melanoma cells 
(Fig. 5, lane b). To further verify that the two RNA species 
in fibroblasts are splice variants, Northern blots of RNA 
from fibroblasts were performed with the insert of clone 
03'-23, which according to the sequence data should be 
specifc for the larger mouse tenascin variant (Fig. 1). As ex- 
pected, only the larger 8-kb signal was seen in the fibroblast 
with eDNA clone 03'-23 (Fig. 5, lane c). 

Differential Expression of  the Two Tenascin mRNAs 
during Organogenesis In Vivo 

Although cultured primary embryonic fibroblasts isolated 
from the head synthesized both major mRNA variants, in 
vivo some embryonic mesenehymal cells seem to produce 
only one of the two major variants. In kidneys from newborn 
mice only the 8-kb mRNA was prominently expressed, 
whereas the 6-kb mRNA was expressed only very weakly 
(Fig. 6). However, during postnatal development, the ex- 
pression pattern changed drastically. In kidneys of 2-wk 
postnatal mice the 6-kb message was more predominant 
whereas the 8-kb mRNA was undetectable (Fig. 6). 

A different expression pattern was observed during devel- 
opment of the intestine. Whereas the small mRNA species 
was more predominant in intestine from 13-d-old embryos, 
the ratio was reversed in intestine from newborn mice (Fig. 

Figure 5. Analysis of the size 
of tenascin mRNAs by North- 
ern blots. 10 /zg total RNA 
from primary mouse embry- 
onic fibroblasts (a and c) and 
from B16 mouse melanoma 
cells (b) were hybridized with 
clones M20/1 (a and b) and 
03'-23 (c). Two signals of 
close to 6 and 8 kb are de- 
meted by clone M20/1 in RNA 
from fibroblasts known to syn- 
thesize tenascin but not in 
RNA from B16 cells known 
not to synthesize tenascin pro- 
tein (Aufderheide and Ekblom, 
1988). In contrast, clone 03'- 
23 detects only the 8-kb mRNA 
(c), indicating that the cor- 
responding sequence is found 
exclusively in the large splice 
variant. Autoradiographs were 
exposed for 48 h (a and b) and 
for 16 h (c). The positions of 
28S and 18S ribosomal RNA 
are indicated. 
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Figure 6. Expression of tenascin 
mRNAs in developing kidney. 1/~g 
poly(A +) RNA from kidneys of 
newborn (a) and 2-wk-old mice (b) 
were hybridized to clone M20/1. In 
newborn kidneys the 8-kb mRNA 
species is prominently expressed 
while the 6-kb species is barely de- 
tectable. In the older stage the pat- 
tern is reversed with the 6-kb mRNA 
being expressed much more strongly 
than the 8-kb form. The autoradio- 
graph was exposed for 24 h. 

Figure 7. Expression of tenascin 
mRNAs in developing intestine. 1 #g 
poly(A +) RNA from intestine of 13- 
d-old embryos (a) and newborn mice 
(b) were hybridized to clone M20/1. 
Expression of the tenascin mRNAs 
shows the opposite pattern: while the 
•6-kb mRNA species is prominently 
expressed in 13-d intestine, its ex- 
pression declines during the course 
of development. In the newborn 
stage the *8-kb mRNA is expressed 
much more strongly than the •6-kb 
form. The autoradiograph was ex- 
posed for 4 d. 

7). The mRNA data from intestine match previous protein 
data well. It has been reported that young embryonic intes- 
tine produce predominantly smaller tenascin proteins of Mr 
210,000, whereas larger proteins of Mr 260,000 can be de- 
tected only at later developmental stages (Aufderheide and 
Ekblom, 1988). 

Discussion 

In this study we document some structural characteristics of 
mouse tenascin, a large glycoprotein expressed prominently 
in embryonic mesenchyme. We present the primary struc- 
ture of mouse tenascin as derived from cDNA clones. Bio- 
logically significant parts of the molecules are often con- 
served in evolution, and we therefore here present a 
comparison between the mouse sequence and the available 
chicken (Pearson et al., 1988; Jones et al., 1988, 1989; 
Spring et al., 1989) and partial human sequences (Gulcher 
et al., 1989). It seems clear from the current data that the 
two major isoforms of mouse tenascin polypeptides (Auf- 
derheide and Ekblom, 1988) form by differential splicing. 

As expected from previous data of tenascin polypeptides, 
the overall modular structure of mouse tenascin is similar to 
chicken and human tenascin. The first part of mouse tenascin 
contains a series of contiguous and highly conserved, cys- 
teine-rich repeats with similarity to the EGF repeat (Carpen- 
ter and Cohen, 1979). The spacing of the six cysteine resi- 
dues follows the same pattern as in the chicken and human 
sequence; x4Cx3CxsCx4Cx,CxsC (Pearson et al., 1988). It 
is interesting that the repeats in the same relative position 
seem to be highly conserved between mouse and human; at 
the amino acid level they are '~90% identical, whereas other 
mouse-human combinations show only *60% identity on 
average. The biological significance of the EGF-like repeats 
is unknown at present, but it has been hypothesized that such 
repeats in the extracellular glycoproteins could act as local 
mitogens (Panayotou et al., 1989). The availability of eDNA 
clones that span these tenascin regions should make it easier 
to test this hypothesis experimentally. 

The second part of the mouse contains several contiguous 
repeats with similarity to the type 111 repeat of fibronectin 

described by Kornblihtt et al. (1985). Whereas the mouse 
EGF elements are •60% identical, the fibronectin type III 
repeats show only ~25 % identity among each other at the 
amino acid level. In contrast, a comparison of the repeats be- 
tween different species shows that each individual repeat dis- 
plays a high degree of homology with the same repeat from 
other species. When repeats in similar relative positions are 
analyzed, the homology between mouse and human is 
>90%, and between mouse and chicken still >70%. Previ- 
ous estimations about the size of tenascin polypeptides have 
suggested that the larger chicken tenascin polypeptide is 
smaller than the coixesponding mouse polypeptide, and that 
human tenascin can be somewhat larger than mouse tenas- 
cin. The available sequence data show that these differences 
are largely due to the different sizes of the mRNAs. These 
differences have apparently emerged during evolution by an 
addition of new fibronectin type m repeats. It is interesting 
that the differentially spliced fragment begins after the fifth 
fibronectin type-II repeat in each of the three species. 

In the third fibronectin type III repeat of both chicken and 
human tenascin the tripeptide Arg-Gly-Asp is found (Jones 
et al., 1988, Gulcher et al., 1989). This sequence is known 
to be an important part of cell-binding sites in a number of 
extracellular matrix proteins (Hynes, 1987; Ruoslahti and 
Pierschbacher, 1987). The involvement of the RGD se- 
quence in cell attachment to tenascin has been postulated, 
but the issue has remained unclear. Friedlander et al. (1988) 
reported that the GRGDS-peptide inhibits the attachment of 
chicken embryonic fibroblasts on tenascin in one attachment 
assay but fails to do so in another assay. Chiquet-Ehrismann 
et al. (1988) could not find a dramatic effect of the GRGDS- 
peptide on the attachment of chicken embryonic fibroblasts 
to tenascin, although they could demonstrate an inhibitory 
effect of this peptide on cell attachment to fibronectin. It was 
also found that a strong cell-binding site is located within 
104 amino acids in the tenth and eleventh type lII repeat of 
chicken tenascin (Spring et al., 1989). This is in good agree- 
ment with the findings suggesting that a cell-binding site of 
tenascin is located within the carboxy terminal end of the 
molecule, far from the fibronectin type HI repeat containing 
the RGD (Chiquet-Ehrismann et al., 1988; Jones et al., 
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1988). However, Bourdon and Ruoslahti (1989) have isolated 
and characterized an RGD-dependent integrin-type tenascin 
receptor from human glioma cells. Attachment of these cells 
to tenascin can be inhibited by the GRGDSP peptide, but 
the isolated tenascin receptor did not bind to GRGDSP- 
sepharose. In view of these apparent discrepancies, it is in- 
teresting that mouse tenascin does not contain an RGD se- 
quence in the third fibronectin type III repeat but instead an 
RVD sequence. The RVD tripeptide was shown to be non- 
functional in promoting cell attachment in the synthetic pep- 
tide RVDSPA (Pierschbacher and Ruoslahti, 1984), which 
strongly suggests that it is also nonfunctional in mouse tenas- 
cin. No RGD sequence was found in any other part of the 
two mouse tenascin molecules either. 

Recently, it was suggested that the tripeptide Leu-Arg-Glu 
(LRE) could be a cell-binding site for s-laminin, a polypep- 
tide of some basement membranes (Hunter et al., 1989). 
LRE occurs in human and chicken tenascin, and we here 
show that this tripeptide is present twice in mouse tenascin, 
starting from either position 136 or 1498. The first one, but 
not the second, LRE sequence is found in the chicken se- 
quence. It remains to be seen whether the LRE sequence 
participates in the binding of tenascin to cells. In light of the 
studies of the group of Chiquet-Ehrismann this is an unlikely 
possibility because the cell-binding site was suggested to be 
located in the tenth or eleventh fibronectin t-ype III repeat 
(Chiquet-Ehrismann et al., 1988; Spring et al., 1989). It 
must be concluded that the location of the cell binding site 
of tenascin is rather unclear at the moment. 

Most of the potential glycosylation sites are found in the 
fibronectin type HI repeats. Most notable was the finding that 
10 of the sites were found in the repeats of the larger tenascin 
form. Since glycosidase F treatment reduced the size of the 
tenascin polypeptides of cultured embryonic fibroblasts by 
~ 3 0  kD, it seems that these sites are used during embryogen- 
esis. At least in the embryonic kidney the larger 8-kd mes- 
sage, coding for the potentially glycosylated larger tenascin 
polypeptide, predominates during embryogenesis. The data 
from the kidney of newborn and postnatal mice raised the 
possibility that the larger tenascin message is an "embryonic" 
form of tenascin and this rule may hold for many tissues 
(Weller, 1990). However, there may be some exceptions and 
we demonstrate here quite a different expression pattern for 
the developing gut. In the gut, the smaller mRNA was pre- 
dominant early and at later developmental stages the larger 
8-kb mRNA appeared. In the gut, a continuous renewal of 
epithelial cells occurs also in the adult stage and one possi- 
bility is that expression of the larger message is controlled 
by factors released by actively growing epithelial cells. Fur- 
ther studies are required to resolve this particular issue, and 
it may be that there are no simple rules for the expression 
of the two major splice variants of mouse tenascin. With the 
available eDNA clones and the sequence data for mouse 
tenascin, these issues can now be studied in detail. 
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