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Acute myocardial infarction (AMI) is still a huge danger to human health. Sensitive markers are necessary for the prediction of the
risk of AMI and would be beneficial for managing the incidence rate. N6-methyladenosine (m6A) RNA methylation regulators
have been confirmed to be involved in the development of various diseases. However, their function in AMI has not been fully
elucidated. The purpose of this study was to determine the expression of m6A RNA methylation regulators in AMI as well as
their possible functions and prognostic values. The GEO database was used to get the gene expression profiles of patients with
and without AMI, and bioinformatics assays of genes with differently expressed expression were performed. We establish two
separate m6A subtypes, and relationships between subtypes and immunity were studied. In this study, we identified IGF2BP1,
FTO, RBM15, METTL3, YTHDC2, FMR1, and HNRNPA2B1 as the seven major m6A regulators. A nomogram model was
developed and confirmed. The consensus clustering algorithm was conducted to categorize AMI patients into two m6A
subtypes from the identified m6A regulators. Patients who have activated T-cell activities were found to be in clusterA; they
may have a better prognosis as a result. Importantly, we found that patients with high METTL3 expressions had an increased
level of Activated.CD4.T.cell and Type.2.T.helper.cell, while having a decreased level of CD56bright.natural.killer.cell,
Macrophage, Monocyte, Natural.killer.cell, and Type.17.T.helper.cell. Overall, a diagnostic model of AMI was established based
on the genes of IGF2BP1, FTO, RBM15, METTL3, YTHDC2, FMR1, and HNRNPA2B1. Our investigation of m6A subtypes
may prove useful in the developments of therapy approaches for AMI.

1. Introduction

Heart failure (HF) has become a public health concern
worldwide [1]. Although there has been an increase in the
number of patients who are surviving HF thanks to recent
advances in therapeutic strategies, the mortality rate for
heart failure patients at five years remains within the 50
percent range, indicating that there is a need for additional
focus on the prevention and treatment of heart failure [2,

3]. Acute myocardial infarction (AMI), which is a severe
form of coronary heart disease, is one of the primary factors
that result in the developments of heart failure [4, 5]. On
reperfusion of acutely ischemic myocardium, myocardial
damage and cardiomyocyte death occur due to a number
of variables. This happens for a variety of reasons such as
the opening of the mitochondrial permeability transition
pore, ATP depletion, mitochondrial oxidative stress, and
mitochondrial calcium overload. Medical therapy is the
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Figure 1: Continued.
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most effective treatment, but because there are no symptoms
in the early stages, the prognosis is not good [6, 7]. Growing
amounts of researches suggested that roughly 25 percent of
those who survived an ST-segment elevation myocardial
infarction went on to develop HF. Therefore, the early detec-
tion of AMI patients who are at a high risk of progressing to
HF is essential for lowering the overall incidence of HF.

Growing studies have confirmed that epigenetic repro-
gramming plays a significant part in the developments of
AMI [8, 9]. In recent years, RNA modification has been
recognized as an important focus in epigenetic researches,
and MODOMICS has roughly 172 distinct RNA modifica-
tions. An essential epigenetic change known as N6-
methyladenosine (m6A) takes place when the adenosine base
is methylated at the N6 position [10, 11]. In order for this
modification to take place, the engagement of a large number
of regulatory proteins is required. Significant functions are
performed by regulators of m6A, the most common kind of
RNA modification. These functions include destruction,
translation, localization, transportation, and RNA processing
[12]. The formation of m6A was modulated by three catego-
ries of proteins: readers (CBLL1, RBM15B, RBM15,
ZC3H13, VIRMA, WTAP, METTL16, METTL14, and
METTL3), 2 erasers (ALKBH5 and FTO), and 15 readers
(IGF2BP1, ELAVL1, RBMX, IGFBP3, IGFBP2, IGFBP1,

HNRNPA2B1, LRPPRC, FMR1, HNRNPC, YTHDF3,
YTHDF2, YTHDF1, YTHDC2, and YTHDC1). Recent years
have seen a proliferation of research that has shed light on
the role that m6A-modified mRNAs play in the course of
human cardiac disease [13, 14]. For example, ischemia-
reperfusion injury (IRI) and hypoxia/reoxygenation (H/R)
cardiomyocytes in mice have been shown to downregulate
METTL3, whilst the overexpression of METTL3 has been
shown to mitigate the IRI and H/R-induced cells’ death [15].
Overall, evidence suggests that m6A was involved in the
development of cardiovascular disease.

Infiltrating cells have a distinct geographical and tempo-
ral distribution and activity pattern, while at the same time,
they are actively and continuously participating in cross-talk
with one another and with other heart cells called cardio-
myocytes [16, 17]. This results in the formation of a very
complicated regulation pattern, which is an essential compo-
nent in the normal recovery process of the heart following
AMI [18, 19]. Inflammatory processes can also contribute
to cardiac damage such as hypertrophy, fibrosis, and other
forms, which can then lead to heart failure. The aseptic
inflammation that results from AMI is characterized by the
recruitment and activation of cells from both the innate
and adaptive immune systems [20, 21]. Therefore, immuno-
regulatory treatment possesses a significant amount of
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Figure 1: A comparison of the landscape of the m6A regulators that are dysregulated in AMI samples with normal samples. (a) A heat map
comparing the levels of expression of the seven m6A regulators in samples from patients with AMI and normal patients. (b) Histogram
comparing the dysregulated levels of the seven m6A regulators found in AMI samples with normal samples. (c) Locations on each
chromosome of the 26 different m6A regulators.
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Figure 2: m6A regulators in AMI’s correlation with one another. (a, b) Associations between erasers and writers in AMI.
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potential for enhancing left ventricular remodeling and
expediting cardiac healing following AMI [22, 23]. Discover-
ing the time dynamics of immune cell buildup during AMI
is crucial in order to locate the most effective immunoregu-
latory treatment [24, 25]. In previous research, immunohis-
tochemical techniques were used to investigate immune cells
[26]. These techniques relied on a single marker to recognize
a particular subset of immune cells; however, the results
cannot meet the clinical needs.

In this research, we investigated in a methodical manner
the functions that m6A regulators play in the administration
and classification of AMI. Our group developed a gene pro-
file for the prediction of occurrences of AMI and found that
treatment decisions based on this signature could be benefi-
cial to patients. Additionally, we studied the association
between two m6A subtypes and the infiltrating immune cell.

2. Materials and Methods

2.1. Microarray Data. The microarray data of GSE48060
were downloaded from the Gene Expression Omnibus data-
base in NCBI, which were obtained based on the GPL570
platform of the Affymetrix Human Genome U133 Plus 2.0
Array. In order to develop an expression profiling method,
a total of 52 blood samples from the periphery of the body
were collected. These samples came from 31 patients who
had suffered their first AMI within 48 hours of the event,
and 21 samples came from controls who had no history of
cardiac disease and had normal echocardiograms. Patients

diagnosed with AMI had an average age of 53 (range: 38-
65), while normal control subjects had an average age of
56 (range: 33-65). The 26 m6A regulators included 9 writers
(CBLL1, RBM15B, RBM15, ZC3H13, VIRMA, WTAP,
METTL16, METTL14, and METTL3), 2 erasers (ALKBH5
and FTO), and 15 readers (IGF2BP1, ELAVL1, RBMX,
IGFBP3, IGFBP2, IGFBP1, HNRNPA2B1, LRPPRC, FMR1,
HNRNPC, YTHDF3, YTHDF2, YTHDF1, YTHDC2, and
YTHDC1).

2.1.1. Construction of a Random Forest Model and Support
Vector Machine Model. The “limma” R program was applied
to examine the dysregulated m6A methylation regulators
between AMI samples and normal samples [27]. The crite-
rion for screening differential genes was set at P < 0:05,
and the expressions of the genes were compared. Analyses
of differential m6A methylation regulators were conducted
with the use of Pearson correlation coefficients (r > 0:3, P
< 0:05). In order to develop a training model for distin-
guishing AMI samples from normal samples, the SVM and
RF approaches were chosen. In order to determine whether
or not the model was accurate, we made use of tools such
as the ROC curve, “boxplots of residual,” and “reverse
cumulative distribution of residual.” The RF approach was
utilized on the dysregulated m6A methylation regulators in
order to screen AMI samples as opposed to normal samples,
and the calculations were carried out by utilizing the “ran-
domForest” library from the R programming language.
Here, mtry and ntree were set to 3 and 500, respectively.
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Figure 3: The development of both the RF model and the SVM model. (a) For the purpose of illustrating the residual distribution of the
SVM and RF models, the reverse cumulative distribution of residual was presented. (b) Boxplots of residual were presented in order to
illustrate the residual distribution of both models. (c) The correlation between the total number of decision trees and the error rate. (d)
In light of the RF model, the significance of the seven m6A regulators is shown. (e) ROC curves showed that both the RF model and the
SVM model were accurate.
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Figure 4: Continued.
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In the 10-fold cross-validation process, the ntree that
produced the fewest cross-validation errors was chosen as
the best option. We used the best ntree to determine the
relevance of differentially expressed m6A methylation
regulators.

2.1.2. Construction of a Nomogram Model. The “rms” pack-
age was applied to build a nomogram model that was pred-
icated on the identified potential m6A regulators in order to
make a prediction regarding the prevalence of AMI patients.
The calibration curve was utilized in order to determine the
degree to which our projected values were consistent with
reality. Decision curve analysis (DCA) was performed, and
a clinical impact curve was plotted to assess whether
decisions based on the model were beneficial to the patient.

2.1.3. Identification of Molecular Subtypes Based on the
Significant m6A Regulators. The procedure known as con-
sensus clustering is used to determine the number of each
member’s subgroup as well as check the clustering algo-
rithm’s reasonableness through the usage of resampling.
Using the “ConsensusClusterPlus” package in R, a procedure
known as consensus clustering was carried out in order to
discover different m6A patterns.

2.1.4. m6A Cluster Assays and Assessment of Immune Cell
Infiltration. Based on m6A methylation regulators, consen-

sus clustering was utilized to find m6A clusters based on
m6A methylation regulators. This was accomplished with
the help of the “ConsensusClusterPlus” R program. After
that, ssGSEA methods were utilized to analyze the
abundance of 23 immune cells in AMI in order to further
examine the link, and a bar plot was built in order to
illustrate the characteristics.

2.1.5. Calculation of the m6A Score for Each Sample. Consid-
ering the individual differences, principal component analy-
sis (PCA) algorithms were applied to calculate an m6A score
for each sample to examine the m6A patterns. The PCA
algorithm prioritizes the greatest group of closely connected
(or unrelated) gene blocks in the set and deemphasizes the
contributions of genes that are not tracked with other
members of the set.

2.1.6. Statistical Analysis. The entire statistical analysis was
completed via R program 4.0.2. T-tests and Wilcoxon
rank-sum tests were used in the analysis of quantitative var-
iables, depending on the type of data. In order to determine
the nature of the connection between m6A regulators, linear
regression analyses were carried out. We used Kruskal-
Wallis tests to determine whether or not there was a
significant difference between the clusters. The P value less
than 0.05 was considered to have statistical significance.
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Figure 4: The diagnostic model of AMI that was developed using the random-forest method is presented in graphical form. (a) A
nomogram model was constructed based on the seven candidates for m6A regulators. (b) Abilities of the nomogram model to make
accurate predictions as shown by the calibration curve. (c) Patients suffering from AMI may benefit from decisions made using the
nomogram model. (d) Evaluation of the clinical impact of the nomogram model using the clinical impact curve.
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3. Results

3.1. Landscape of the 26 m6A Regulators in AMI. Analysis of
the dysregulated expressions of 26 m6A regulators between
AMI samples and normal samples was performed using the
“limma” package in the R programming language. IGF2BP1,
FTO, RBM15, METTL3, YTHDC2, FMR1, and HNRNPA2B1
were the seven major m6A regulators that were identified and
depicted by the use of a heat map (Figure 1(a)) and a histo-
gram (Figure 1(b)). Using the “RCircos” software tool, the
chromosomal locations of the 26 m6A regulators were
mapped out and exhibited (Figure 1(c)).

3.2. Correlation between Writers and Erasers in AMI. In
order to investigate whether AMI patients who have high
writer gene expression levels also have low eraser gene
expressions, we carried out linear regression analysis. These
assays allowed us to investigate the degree to which writers
and erasers are correlated. We discovered that there was a
significant positive association between the levels of expres-
sion of METTL3 and METTL14 in AMI patients and FTO
(Figures 2(a) and 2(b)).

3.3. Evaluation of the RF Model and SVM Model. Next, we
developed an RF and SVM model in order to select the most
effective m6A regulators from the DEGs described earlier in
order to forecast the occurrence of AMI. The RF model with
the fewest residuals was determined to be the best option

(Figures 3(a) and 3(b)). Then, we decided to use 500 trees
as the variables of the current model. This model showed a
stable error possibility, so we went ahead and used it
(Figure 3(c)). We also found that HNRNPA2B1 and FTO
had a higher priority (Figure 3(d)). In addition, the ROC
curves were constructed in order to evaluate the precision
of these models, and the area under the curve (AUC) results
revealed that the RF model has greater performance in
comparison to the SVM model (Figure 3(e)).

3.4. Construction of the Nomogram Model. The “rms” pack-
age in R was used to develop a nomogram model that was by
the use of the six candidates for the m6A regulator, and it
was used for the prediction of the prevalence of AMI
patients (Figure 4(a)). The predictivity of the new model
was shown to be accurate through the use of calibration
curves (Figure 4(b)). As shown in Figure 4(c), it may be
deduced that judgments made by the use of the nomogram
model may be beneficial to AMI patients. The clinical
impact curve made it clear that the nomogram model
possessed outstanding predictive ability (Figure 4(d)).

3.5. Two Distinct m6A Patterns Identified by Significant m6A
Regulators. Using the “ConsensusClusterPlus” program in R
software, the consensus clustering methods were applied to
discover separate m6A patterns. This resulted in the identifica-
tion of two distinct m6A patterns, which were denoted by the
letters “clusterA” and “clusterB” (Figures 5(a)–5(d)). After
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Figure 5: Clustering according to a consensus of the seven important RNA m6A regulators in AMI. (a–d) Consensus matrices of the seven
significant m6A regulators for k = 2 – 5. (e) Heat map depicting the expression levels of the seven important m6A regulators in both clusterA
and clusterB. (F) Histogram comparing the dysregulated levels of the seven important m6A regulators in clusterA and clusterB. (g) The PCA
of the seven key m6A regulators reveals a striking dissimilarity in the transcriptomes of the two m6A patterns.
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that, a heat map and a histogramwere constructed to highlight
the expressions of the 10 major m6A regulators that can be
found between the two clusters. IGF2BP1 revealed the reverse
pattern, with higher expressions in clusterA than clusterB,
whereas METTL3, RBM15, YTHDC2, FMR1, HNRNPA2B1,
and FTO displayed lower expression levels (Figures 5(e) and
5(f)). According to the results of the PCA, the 10 important
m6A regulators were able to completely differentiate between
the two m6A patterns (Figure 5(g)).

After that, we investigated the association between the
seven important m6A regulators and the immune cells. Our
research showed that METTL3 has positive relationships with
a wide variety of immunological cells (Figure 6(a)). We inves-
tigated whether or not patients with high METTL3 expres-
sions had a different type of immune cell infiltration than
patients with low METTL3 expressions. We found that
patients with highMETTL3 expressions had an increased level
of Activated.CD4.T.cell and Type.2.T.helper.cell, while having
a decreased level of CD56bright.natural.killer.cell, Macro-
phage, Monocyte, Natural.killer.cell, and Type.17.T.helper.cell
(Figure 6(b)). Finally, our group observed that clusterA was
linked to Activated.CD4.T.cell, Gamma.delta.T.cell, and
Type.17.T.helper.cell while clusterB was linked to Natural.kil-
ler.cell and Type.17.T.helper.cell (Figure 6(c)).

3.6. Evaluation of the m6A Gene Signature. The consensus
clustering methods were applied to split the AMI patients

into several genomic subtypes. These subtypes were deter-
mined by the number of DEGs. We discovered that there
are two different m6A gene patterns in existence
(Figures 7(a)–7(d)). The expressions of the 44 m6A-related
DEGs in two groups were exhibited in Figure 7(e). After
that, the dysregulation of the 18 m6A regulators and the
immune cells between the various gene clusters was quite
similar to that of the m6A subtypes (Figures 7(f) and 7(g)).
The reasonableness of the clustering technique was shown
by this result in its application to the subtype. Besides,
Figures 7(h) and 7(i) illustrate the association that existed
between m6A scores, m6A gene clusters, and m6A clusters.
A Sankey diagram was used to illustrate the connection
between the three groups (Figure 8(a)).

3.7. Relationship between m6A Subtypes and Cytokines. In
order to get more detailed research on the connection
between m6A patterns and AMI, we looked into the rela-
tionship that exists between m6A patterns and IL-13, IL-5,
IL-4, IL-33, and TSLP. According to the findings, the expres-
sions of TSLP were found to be greater in gene clusterB than
those found in gene clusterA, but the expressions of IL-5
were found to be smaller in gene clusterB (Figure 8(b)). In
addition, the findings demonstrated that the levels of
expression of IL-5 in clusterB were significantly higher than
those seen in clusterA (Figure 8(c)).
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Figure 6: Comparison of the ssGSEA scores. (a) Infiltrating immune cells and the seven major m6A regulators have been found to have a
correlation with one another. (b) Differences in the quantity of immune cells invading the tissue between groups with high and low levels of
METTL3-associated protein expression. (c) Different patterns of immune cell infiltration were seen in clusterA and clusterB.
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Figure 7: Consensus clustering of the 44 m6A-related DEGs in AMI. (a–d) Consensus matrices of the 44 m6A-related DEGs for k = 2 – 5.
(e) Heat map depicting the expression of the 44 m6A-related DEGs that are members of gene clusterA and clusterB. (f) Histogram depicting
the dysregulated levels of the 7 important m6A regulators between gene clusterB and gene clusterA. (g) A comparison of gene clusterA and
gene clusterB reveals distinct patterns of immune cell infiltration. (h) Score differences on the m6A test between clusterB and clusterA. (i)
Score differences on the m6A test comparing gene clusterB to gene clusterA.
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4. Discussion

Despite significant advances made in early detection and
treatment over the course of the last decade, AMI continues
to be a primary cause of death and disabilities [28]. As a
direct consequence of this, the clinical outlook for patients
diagnosed with AMI is not favorable [29]. Patients who have
AMI frequently do not get the chances to benefit from the
specific treatments because there is not yet a reliable method
for diagnosing the condition early on, which results in poor
outcomes [30–32]. Growing studies have confirmed that
immune cell infiltration was involved in the onset and pro-
gression of AMI. Thus, many investigators are actively look-
ing for potential markers and investigating the components
of immune cell infiltration of AMI, both of which have the
potential to have a significantly beneficial impact on the
long-term survivals of patients with AMI. In recent years,
many studies have reported the potential of mRNAs used
as potentially useful indicators in the field of cardiovascular
illness, specifically AMI. More and more data suggested that
m6A regulators exhibited a regulatory effect on a wide
variety of biological activities. Despite this, very little is
known about the role that m6A regulators play in AMI.
Our research was aimed at studying the functions of m6A
regulators in AMI as the overarching goal.

In order to develop a model for the analysis and classifi-
cation of AMI, the genes associated to m6A were subjected
to a random-forest analysis. Both the calibration and the
DCA graphs demonstrated that the model was a very excel-
lent fit for the data. The model demonstrated that methyla-
tion was a significant molecular alteration that contributes
to the progression of AMI. Under the model, the 6 most

important genes were FTO, HNRNPA2B1, IGF2BP1,
RBM15, METTL3, FMR1, and YTHDC2. We also ranked
the 7 DEGs according to their relative gene relevance, and
the results of this revealed that HNRNPA2B1 and FTO
had a higher priority. In addition, we discovered that a
reduction in the expression of FTO and an increase in
demethylation activity led to an increase in the amount of
m6A in RNA. This, in turn, produced a reduction in the
contraction of hypoxic cardiomyocytes, which resulted in
heart failure. It was found that HNRNPA2B1 directly binds
a group of nuclear transcripts and modifies their alternative
splicing in a manner that is analogous to how METTL3, the
“writer” of the m6A gene, does it [33, 34]. Furthermore,
HNRNPA2B1 was found to increase primary miRNA
processing, thereby phenocopying the effects of METTL3
[33]. The potential function of the other important genes
in various diseases was also reported.

The clustering technique allowed for the successful sepa-
ration of 31 patients diagnosed with AMI into two distinct
categories. Both the expression of genes related to m6A as
well as the infiltration of immune cells were distinctly
diverse between the two subtypes. It is important to note
that the m6A-related genes were, on average, expressed at
a higher level in Type A AMI compared to Type B AMI
[35]. Additionally, immune cell infiltration was more com-
mon in Type A AMI. It has also been investigated whether
or if there is a connection between modifications to m6A
and the invasion of immune cells in malignancies. In addi-
tion, we selected METTL3 for further immunological testing
because of its potency. We investigated the possible differ-
ence in infiltration immune cells between patients whose
METTL3 expression levels were high or low. We found that
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Figure 8: The potential ability of m6A patterns in screening AMI. (a) The link between m6A scores, m6A gene patterns, and m6A patterns
is illustrated using the Sankey diagram. (b) The levels of five important factors were shown to be significantly different between clusterA and
clusterB. (c) Comparison between gene clusterB and gene clusterA with regard to the dysregulated levels of five important factors.
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patients with high METTL3 expression has an increased
level of Activated.CD4.T.cell and Type.2.T.helper.cell, while
having a decreased level of CD56bright.natural.killer.cell,
Macrophage, Monocyte, Natural.killer.cell, and Type.17.-
T.helper.cell. Finally, we investigated the differences in
immune cell infiltration that the two m6A patterns exhibited
from one another. We found that clusterA was linked to
Activated.CD4.T.cell, Gamma.delta.T.cell, and Type.17.-
T.helper.cell while clusterB was linked to Natural.killer.cell
and Type.17.T.helper.cell. A previous study has reported
that the degree of infiltration of B cells, CD4+ T cells, and
CD8+ T cells was shown to have a negative correlation with
the risk score, but the level of neutrophil, macrophage, and
dendritic cell infiltration was found to have a positive
correlation with the risk score.

The majority of researchers, as of right now, are of the
opinion that a dysfunction in the Th cell subsets may be a
significant connection in the process of the pathogenesis of
AMI [36, 37]. When an external allergen enters the body,
it is first identified and absorbed by antigen-presenting cells.
The differentiation of Th cells regulated by IL-33 and TSLP
was observed to result in an immune imbalance. In order
to get more detailed research of the connection between
m6A patterns and AMI, we looked into the relationship that
exists between m6A patterns and IL-13, IL-5, IL-4, IL-33,
and TSLP. We observed that the expressions of TSLP were
increased in gene clusterB than in gene clusterA. In addition,
we found that the expressions of IL-5 were distinctly
increased in clusterB.

Our study contains a few caveats that need to be taken
into consideration. First, this m6A-related gene signature
was only verified in a select group of individuals. To further
investigate and verify the results of this research, we recom-
mend conducting a randomized controlled trial with a larger
number of participants. Second, it was necessary to conduct
additional experimental validations in order to investigate
the molecular mechanism underlying m6A alterations in
the progression of AMI.

5. Conclusions

In total, the current study selected five candidate m6A regu-
lators (IGF2BP1, FTO, RBM15, METTL3, YTHDC2, FMR1,
and HNRNPA2B1) and established a nomogram model that
accurately predicts the prevalence of AMI. Collectively, our
research may be able to provide further details for a better
understanding of the functions that m6A plays in AMI,
which may lead to a fresh perspective on the identification
of biomarkers for the treatment and diagnosis of AMI.
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