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Abstract
The present study explored the interrelations between a broad set of appraisal ratings and five physiological signals, including
facial EMG, electrodermal activity, and heart rate variability, that were assessed in 157 participants watching 10 emotionally
charged videos. A total of 134 features were extracted from the physiological data, and a benchmark comparing different kinds of
machine learning algorithms was conducted to test how well the appraisal dimensions can be predicted from these features. For
13 out of 21 appraisals, a robust positive R2 was attained, indicating that the dimensions are actually related to the considered
physiological channels. The highest R2 (.407) was reached for the appraisal dimension intrinsic pleasantness. Moreover, the
comparison of linear and nonlinear algorithms and the inspection of the links between the appraisals and single physiological
features using accumulated local effects plots indicates that the relationship between physiology and appraisals is nonlinear. By
constructing different importance measures for the assessed physiological channels, we showed that for the 13 predictable
appraisals, the five channels explained different amounts of variance and that only a few blocks incrementally explained variance
beyond the other physiological channels.
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The cognitivist revolution during the 1960s, an intellectual
movement replacing behaviorism that had dominated psy-
chology in the first half of the twentieth century, also led to
new developments in affective science (Scarantino & de
Sousa, 2018). Led by Arnold (1960) and Lazarus (1966), the
emotion formation process, neglected in earlier behavioristic
approaches to emotions, came to the fore of research and
formed the basis for the new tradition of appraisal theories.
These conceive emotions as an evaluative process in which
the meaning of a stimulus to the individual is determined—the
relevance of a stimulus for one’s well-being is appraised in
respect to personal values, needs, attachments, and goals
(Moors, Ellsworth, Scherer, & Frijda, 2013). In contrast to
other conceptualizations of the emotion process (e.g.,
Schachter & Singer, 1962), appraisal theorists place this

cognitive component at the beginning of an emotional epi-
sode, resulting in bodily, motor, and motivational changes
and potentially in the subjective perception of a feeling
(Moors, 2009). An emotion is hence understood as a multi-
componential process, integrating the cognitive appraisal with
its subsequent constituents. To understand the complex emer-
gence of emotions, much research has been conducted to learn
how these components interact with each other. The main
focus has been to understand how specific appraisal patterns
map onto the subjective perception of emotions. Prototypical
appraisal patterns for different emotion classes have been de-
rived from both theoretical assumptions (e.g., Frijda, 1986;
Roseman, 1984; Scherer, 2001; Smith & Ellsworth, 1985)
and empirical data (e.g., Israel & Schönbrodt, 2019;
Meuleman & Scherer, 2013). Another important objective is
to examine the link between cognition and bodily changes,
showing how different appraisal outcomes lead to changes
in the motor system or the autonomic nervous system (ANS).

Furthering our knowledge on the connection between cog-
nition and the body in affective states is not only fundamental
to understanding emotions as a whole, but could also help in
developing better tools to measure the cognitive appraisal pro-
cess. To the present day, the majority of research on this topic
has to rely on the use of questionnaires (e.g., Meuleman &
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Scherer, 2013; Scherer, 1993b, 1997; Scherer & Meuleman,
2013). Using this type of offline assessment, only constant
appraisal ratings can be obtained that cannot depict potential
changes in appraisal during an emotional situation. Further,
the appraisal process is always evaluated in retrospect, often
with a large temporal distance to the event of interest (e.g.,
Geneva Appraisal Questionnaire by Geneva Emotion
Research Group, 2002), which potentially affects the reliabil-
ity of the ratings. This demonstrates the need for the develop-
ment of more indirect continuous measurement tools in the
future. Before this can be achieved, though, we need to gain
more insight into the relationship of bodily changes and self-
reported appraisals—investigating which physical changes
are predictive for which appraisal dimensions.

The link between appraisals and physiology

The Component Process Model (CPM) by Scherer (1984,
2001, 2009), one of the best-known realizations of the apprais-
al theory, differentiates between five emotion components: the
cognitive appraisal component that regulates the appraisal
process, a motivation component that initiates action tenden-
cies, a feeling component that comprises the subjective per-
ception of an emotion, and two bodily components—the phys-
iological component connected to efferent effects in the au-
tonomous nervous system, and the expression component
controlling motor expressions such as gestures, mimic, and
voice. When investigating the relationship between cognition
and bodily changes within the appraisal framework, the rela-
tion between the appraisal component and the two bodily
components has to be considered. Therefore, the present study
investigates several physiological measures, including facial
electromyography (EMG), electrodermal activity (EDA), and
heart rate variability (HRV). The latter two can clearly be
associated with the physiological component of the model,
while facial EMG is also used as an indicator for facial ex-
pression and can hence be associated with the expression
component as well. However, as all three measures assess
physiological responses, and as we are interested in the overall
relationship between appraisals and bodily changes, we will
hereinafter refer to them as physiological measures without
this differentiation. It should be kept in mind, however, that
the CPM theoretically assigns facial expressions to a separate
bodily component.

Scherer (2001, 2009) assumes 16 different appraisal di-
mensions. For 10 of these dimensions, Scherer (2009) makes
elaborate predictions on how they relate to response patterns
in the physiological and the expression component. The CPM
predicts, for example, that in the evaluation of the intrinsic
pleasantness of a stimulus, a higher pleasantness leads to
physiological changes such as heart rate deceleration, pupil-
lary dilatation, and parted lips with pulled up corners, while an

unpleasant stimulus should result in an opposite reaction with
a heart rate acceleration, pupillary constriction, and lip corner
depression (Scherer, 2009). As these theoretical predictions
are rather speculative, different studies have tried to investi-
gate these theoretical links in experimental settings. Van
Reekum et al. (2004) induced pleasant and unpleasant as well
as goal-conducive and goal-constructive events in a computer
game while measuring several physiological reactions during
the game. A higher skin conductance response for pleasant
compared to unpleasant events was found, and obstructive
events led to higher skin conductance, a stronger increase in
heart rate variability, and higher pulse transit times compared
to conducive events. Aue and Scherer (2008) varied the same
two appraisal dimensions in a performance task in which
pleasant and unpleasant pictures were presented. During the
task, pictures would increase or decrease in size, where an
increase in a pleasant stimulus was considered goal-
conducive and a decrease in the same picture as goal-
obstructive (the converse logic was applied to unpleasant pic-
tures). The authors reported an increase in heart rate and
higher activity of the zygomaticus major muscle for pleasant
pictures, and higher corrugator muscle activity for unpleasant
pictures. Higher zygomaticus response, higher heart rate, and
higher skin conductance were found for the conducive condi-
tions, and higher corrugator activity for the obstructive ones.
Similar studies that induced appraisal outcomes in an experi-
mental setting have been conducted by Aue, Flykt, and
Scherer (2007), Delplanque et al. (2009), Gentsch,
Grandjean, and Scherer (2013), Kreibig, Gendolla, and
Scherer (2012), and Lanctôt and Hess (2007), as well as by
Scherer, Dieckmann, Unfried, Ellgring, and Mortillaro
(2019), who used encodings of facial expressions from video
recordings instead of muscle activity.

Even though studies like these provide important insights
into the relationship between appraisal and physiology, very
few appraisals were able to be tested at a time. As the majority
of these studies also used very small sample sizes, the reliabil-
ity of their results can be questioned. Moreover, there was
little control over whether the experimental conditions actual-
ly induced the respective appraisal, as a specific stimulus
might not be pleasant, relevant, or goal-conducive to all par-
ticipants, depending on their personal context. Another impor-
tant downside of the experimental induction of appraisals is
that not all dimensions can be analyzed, as some appraisals,
such as compatibility with self-image and internal norms (an
appraisal that has been proposed within Scherer’s, 2009
CPM), can hardly be induced in an experimental setting.

A different approach for examining the relations between
the appraisal component and the physiological/expression
component was presented by Meuleman, Moors, Fontaine,
Renaud, and Scherer (2019). The authors reanalyzed a large
cross-cultural data set collected with the so-called GRID tool
by Fontaine, Scherer, and Soriano (2013). The data contain
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ratings of 24 culturally shared emotion words and their
semantic meaning with regard to features of the five emotion
components proposed by the CPM. Meuleman et al. (2019)
assessed seven appraisal, three physiology, and five expres-
sion factors from the data set and were able to demonstrate that
the physiology and expression factors were predictable, to
varying degrees, from the attained appraisal factors. They also
reported the type of relation for selected dimensions, such as a
positive relation between the suddenness appraisal factor and
the jaw drop factor. The study demonstrates the advantages of
observational designs that allow for the simultaneous assess-
ment of larger sets of appraisal dimensions, in contrast to the
previously discussed empirical studies. However, it must be
considered that the study does not use any actual physiologi-
cal measures. The transferability of the results is therefore
unclear.

Altogether, there are rather incomplete theoretical assump-
tions and a lack of empirical evidence on the relations between
appraisal and physiology. For many appraisal dimensions, we
have no predictions at all about their relation to bodily re-
sponses (either from theory or from empirical studies). In
fields of research where a strong theoretical background is
missing, exploratory methods can be very useful for generat-
ing new knowledge and filling in the gaps.

Exploring the physiology–appraisal link

The goal of the present study is to take a more holistic ap-
proach to investigate the interrelations between a whole set of
appraisals and measured physiological reactions by applying
exploratory and data-driven methods based on machine learn-
ing on a larger sample. Machine learning modeling with fea-
tures extracted from physiological data has gained popularity
not only in the field of medical diagnostics (Magoulas &
Prentza, 2001) but has also been applied in emotion recogni-
tion (for an overview, see Jerritta, Murugappan, Nagarajan, &
Wan, 2011). Studies focusing on the latter induce emotional
states using auditory, visual, or audiovisual material during
which different physiological signals are assessed, and partic-
ipants can name their perceived emotional state afterward.
Subsequently, different features characterizing the signals
are extracted from the data and used to predict the emotional
output using different machine learning algorithms. The eval-
uation of these models can then tell how well emotion cate-
gories can be predicted from this kind of data and validate the
assumed link between the perceived feeling and bodily re-
sponses during an emotional situation. Furthermore, it can
be assessed which features are most important in predicting
an emotion category.

To establish the link between physiological responses and
appraisal, the same approach can be applied. For this purpose,
we presented emotionally charged video material to

participants while measuring HRV, EDA, and EMG on three
facial sites—the zygomaticus major site, the corrugator super-
cilii site, and the frontalis muscle site. All five channels have
been identified as affect-related and have been used previous-
ly in the prediction of emotions (e.g., Haag, Goronzy,
Schaich, & Williams, 2004; Kim & Andre, 2008; Rigas,
Katsis, Ganiatsas, & Fotiadis, 2007). The three measured
EMG sites are physiologically connected to the motions of
smiling (zygomaticus major), frowning (corrugator super-
cilii), the raising of eyebrows, indicating expressions of sur-
prise (frontalis; Murata, Saito, Schug, Ogawa, & Kameda,
2016), and many other facial expressions. They are known
to enable the identification of the valence of a stimulus and
the detection of mental stress (Egger, Ley, & Hanke, 2019).
The CPM marks several facial responses as outcomes of spe-
cific appraisals (for a detailed description, see Table 1 in
Scherer & Ellgring, 2007), and the discussed empirical studies
substantiate this interrelation (Aue et al., 2007; Aue &
Scherer, 2008; van Reekum et al., 2004). EDA, the measure
of skin conductivity, is also known to be related to affective
reactions, especially eccrine glands measured on the palms
that decrease during relaxation and increase during phases of
exertion (Egger et al., 2019). A link between EDA and differ-
ent appraisals such as conduciveness, goal relevance, novelty,
and pleasantness of stimuli has been reported in several em-
pirical studies as well (Aue & Scherer, 2008; Scherer, 2009;
van Reekum et al., 2004). As changes in heartbeat are modu-
lated by the sympathetic and parasympathetic system
(Rainville, Bechara, Naqvi, & Damasio, 2006), HRV, which
measures changes in beat-to-beat intervals, has been used ef-
fectively for the detection of emotional arousal (Egger et al.,
2019). Several theoretical relations between ECG features and
appraisals have been predicted by the CPM, also implying a
connection between the cognitive evaluation of a stimulus and
heart rate (Scherer, 2009). Consequently, all physiological
measures collected in the present study are closely interlinked
with affect and are presumably predictive for different ap-
praisal outcomes.

After the measurement of the physiological responses to
each video, we assessed 15 different appraisal dimensions that
have been proposed by the CPM: suddenness (How sudden
does an event occur?), familiarity (How familiar is the event?),
predictability (How predictable was the occurrence of an
event?), intrinsic pleasantness (How pleasant was an event?),
goal/need importance (How relevant is an event for the
achievement of current goals?), cause agent (Who or what
caused an event?), cause motive (Was an event caused inten-
tionally?), outcome probability (Can potential consequences
of an event be determined?), discrepancy from expectation
(Did an event contradict previously built expectations?),
conduciveness (Does an event help to attain personal goals?),
urgency (Is it urgent to react to an event?), control (Can the
outcomes of an event be controlled?), adjustment (Is it
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possible to adjust to the outcomes of an event?), compatibility
with external and internal standards (Is an event compatible
with social norms and laws or self-image?). See Scherer
(2001) for a more thorough description of the appraisals. For
the assessment of these appraisal dimensions, a modified ver-
sion of the Geneva Appraisal Questionnaire (GAQ; Geneva
Emotion Research Group, 2002) was used. We extracted 134
features from the five assessed physiological channels and
predicted each appraisal dimension using both a tree-based
and a linear machine learning model, reporting the overall
cross-validated model performance for each dimension. If a
link between the measured physiological signals and an ap-
praisal dimension exists, an adequate model should be able to
predict the appraisal outcome to some degree. The observa-
tional design of the study does not allow us to investigate the
causal direction between appraisal and physiological features.
For this reason, and because we use a large number of features
for each physiological channel1, we modeled the appraisal–
physiology link in the reverse direction (i.e., physiology pre-
dicts appraisal, although theory mainly proposes the reverse
causal direction). We also constructed two different impor-
tance measures depicting the significance of each of the five
physiological channels in the appraisal predictions and exem-
plarily analyzed the type of relationship between the appraisal
dimensions and selected features.

With this data-driven approach, we are, in contrast to ear-
lier studies, able to investigate a whole set of appraisals at once
and also do not rely on uncertain appraisal inductions. We are
able to analyze the appraisal–physiology link for several di-
mensions that have not yet been tested empirically—many of
which cannot be tested in a classical experimental design. In
addition, we consider not only nonlinear relations in our data
but can also account for complex interactions. Moreover, as
all performance and importance measures are computed on
out-of-sample data, our results and the derived conclusions
can be considered as more robust against overfitting and there-
fore as more generalizable. With the exploratory analysis of
the appraisal–physiology link, we hope to generate new
knowledge in a rather fragmented section of emotion research.

Method

Reproducible scripts, open data, and openmaterials (including
codebooks and video stimuli) are provided via our OSF re-
pository at https://osf.io/pbt9r/.

Participants

A total of 172 participants were recruited for the present study
that either received a payment or a participation certificate.
The sample size was based on available funding. As each
participant viewed and rated 10 videos, 1720 observations
resulted from this data collection. Due to technical problems
such as signal interruption or corrupted files that caused one or
more of the physiological signals to be missing (EMG, EDA,
or RR data), several observations and participants had to be
excluded. The final sample consisted of 157 participants (fe-
male = 95) and 1556 observations. The majority of subjects
(94%) were students at the Ludwig-Maximilians-Universität
München (32% of whom were psychology students), with an
average age of 25.47 years (range = 19–62).

Stimulus material

To produce different appraisal outcomes and physiological
reactions, emotional video sequences were used to induce
various emotional states. Videos marked with a Creative
Commons CC-BY license, which allows modification and
redistribution of the content, were gathered during an exten-
sive online web search on the video-sharing service YouTube
(YouTube, n.d.). To create variance in the video content,
videos were broadly chosen by their potential emotional effect
on the viewer—fitting to the four emotion terms fear, sadness,
disgust, and joy. To control for culture and language effects,
only German or language-free videos were included. Video
sequences were cut to not exceed a maximum length of 30 s.
In an online study, a selection of 20 videos was pretested. The
videos were presented in randomized order to 28 participants
(female = 17), who were asked to rate the intensity of their
emotional experience during the observation and answer a
questionnaire constructed to assess the 16 appraisal dimen-
sions implied by the CPM (see Procedure section for a
detailed description of the questionnaire). Participants were
also asked to label the videos with an emotion term—these
emotion labels were, however, not considered in the further
video selection. In total, 211 video ratings were collected in
the pretest, with 7–15 ratings per video. To predict the apprais-
al dimensions from the physiological data, the ratings of each
appraisal had to show a sufficient amount of variance. In ad-
dition, the video content had to be intensive enough to elicit a
measurable physiological reaction. Based on these two
criteria, a set of eight videos was selected, showing both high
variance in the appraisal ratings and high affective intensity.
Even though all positive videos were rated as less intense and
showed lower appraisal variance, two positive videos were
also included to balance out the valence of the data set.
Overall, 10 emotional videos with a mean length of 24.8 s
(range = 10.5–30.5) were included. All videos are provided
in our OSF repository at https://osf.io/pbt9r/.

1 As several different features need to be extracted from each signal to char-
acterize it sufficiently, the reduction of features to a single outcome variable
(that would be needed to model the appraisal–physiology link in the theoret-
ically implied direction) leads to a large loss of information and subsequently
to an underestimation of the investigated links.
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Apparatus

For the measurement of the EMG and EDA signals, pre-gelled
disposable electrodes with a .8 cm Ag/AgCl detection surface
were used. For common-mode rejection, all sites were mea-
sured using a bipolar recording scheme. EMG electrode place-
ment for corrugator, frontalis, zygomaticus, and ground elec-
trode was conducted following the guidelines by Fridlund and
Cacioppo (1986). Electrodes for the bipolar skin conductance
measurement were placed on the thenar and hypothenar emi-
nences of the non-dominant hand of the participants (Fowles
et al., 1981). A fixture on the non-dominant hand was con-
ducted to prevent any interferencewith the electrodermal mea-
surement during the tasks. The skin was prepared by cleaning
the measurement sites with alcohol wipes (70% isopropanol)
and applying an abrasive electrode gel to lower the skin
impedance.

For data collection, a Biopac BioNomadix MP160 data
acquisition systemwith two wireless two-channel EMG trans-
mitters and one wireless PPG and EDA transmitter was used
(Kremer, Mullins, Macy, Findlay, & Peterlin, 2019). Channel
calibration and data acquisition were conducted using the cor-
responding AcqKnowledge software (version 5.0.2; Kremer
et al., 2019). In accordance with the Nyquist theorem, which
indicates that a sinusoid signal should be sampled at least at
twice its frequency for correct reconstruction, signals were
sampled at a frequency of 1000 Hz (De Luca, 2003). For the
HRV measurement, a Polar H10 heart rate sensor and a Polar
V800 heart rate monitor were used, which have been proven
to be consistent with measures derived from an ECG system
(Giles, Draper, & Neil, 2016). The experimental program to
present the videos and assess the subsequent rating of the
appraisal dimensions was implemented using E-Prime 2.0
software (Schneider, Eschman, & Zuccolotto, 2012). To syn-
chronize the physiological data collected with AcqKnowledge
and the videos presented in E-Prime, Observer XT (version
14.1.1121; Zimmerman, Bolhuis, Willemsen, Meyer, &
Noldus, 2009), a software for behavioral coding and event
logging, was used to control and integrate the two data
streams. The preliminary questionnaire sent to the participants
was provided via the FormR survey framework (Arslan, Tata,
& Walther, 2018).

Procedure

Each participant received a randomized code consisting of
four numerals to use as identification throughout the two-
part study. First, participants completed an online question-
naire from home. In this preliminary survey, subjects were
informed about the study and gave their consent to participate
and to the publication of their fully anonymized data.
Subsequently, all relevant demographic information and fur-
ther variables not included in the present study (e.g.,

personality, motives, emotional sensitivity2) were collected.
For the second part of the study, each participant was invited
to a laboratory. After receiving a brief introduction, the subject
was asked to put on the Polar strap with the heart rate sensor.
The investigator then prepared the subject’s skin, applied the
electrodes as described, and affixed the two EMG transmitters
to the head and the EDA transmitter to the wrist of the non-
dominant hand of the participant.

Before the start of testing, a calibration of the EMG and
EDA transmitters was conducted, duringwhich the transmitter
leads were connected to the electrodes. Participants were
instructed to perform different facial movements to test wheth-
er contractions would result in peaks in the respective signals.
During this test phase, the investigator avoided using any
emotion-related terms such as smiling or frowning, in order
to bias the subject as little as possible. If a reliable signal was
detected, the participant was seated in front of a computer
screen and the heart rate measurement and the experimental
program was started. To prevent subjects from feeling that
they were being observed, the investigator monitored the
physiological signal from a separate area during the following
testing, intervening only if noise occurred or when electrodes
needed to be reattached. Subjects were advised to place their
non-dominant hand with the EDA transmitter on the table and
move this hand as little as possible, answering and navigating
through the study using their dominant hand on a keyboard in
front of them. The participants followed a standardized in-
struction provided to them on screen, starting with a baseline
measurement of two minutes, in which participants were
instructed to close their eyes and relax. Afterward, the 10
videos were presented in randomized order, each followed
by a questionnaire for the assessment of the appraisal dimen-
sions. In addition, subjects were asked to label the emotion
they felt during the video and answer items relating to their
immersion during the viewing of the video—these ratings had
no relevance to the present study.

The presented appraisal questionnaire was based on the
German version of the GAQ (Geneva Emotion Research
Group, 2002). The GAQ was developed to assess through
recall and verbal report as much information as possible about
the appraisal process during an emotional episode. The origi-
nal questionnaire, consisting of 26 items, asks respondents to
recall an arbitrary moment in the past when an intense emotion
was experienced and to rate the respective experience on the
16 appraisal dimensions of the CPM (e.g., At the time of
experiencing the emotion, did you think that the event hap-
pened very suddenly and abruptly?). For the purpose of the
present study, one item for each of the appraisal dimensions
was selected from the questionnaire and altered slightly to fit
the video rating context (e.g., Did you think that the events in

2 For the full set of assessed variables, see the codebook of our preliminary
questionnaire at our OSF repository.
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the video happened very suddenly and abruptly?). Only the
dimension cause agent, which identifies who the agent of an
evaluated event is, was assessed using three different items,
identifying whether the protagonist of a video, a person dif-
ferent from the protagonist, or natural forces caused the
events. Furthermore, we constructed an additional item for
each of the four dimensions goal/need importance,
conduciveness, urgency, and adjustment, that asked the par-
ticipant to rate the respective dimension from the perspective
of the protagonist in the video (e.g., Can you live with, and
adjust to, the consequences of the displayed events? Do you
think that the protagonist can live with, and adjust to, the
consequences of the events?). As the participant’s goals and

actions were probably not strongly affected by the passive
viewing of the mostly fictional video content, we suspected
that for these dimensions, the assumed effect on the protago-
nist (e.g., the potential outcome of the event with regard to the
character) might be more relevant to the emotional evaluation
of the video then the evaluation of the effect on the partici-
pants themselves—especially if the viewer felt strongly in-
volved. The dimension power, which evaluates the degree to
which the rater can influence a situation himself, was excluded
from the questionnaire. All items were rated on a five-point
scale ranging from not at all, moderately to extremely. In
addition, participants were able to indicate that a question
did not apply to the content of the video. Participants were

Table 1 Features extracted from EMG, EDA, and HRV channels

Features EMG EDA HRV

Mean absolute value X X

20% trimmed mean value X X

Mean absolute value attenuated with a moving-window-20%-trimmed-mean filter X X

Simple square integral X X

Variance X X

Absolute value of the 3rd – 5th spectral movement X X

1st – 4th order autoregressive coefficients X X

Root mean square X X

Log detector X X

Percentage waveform length X X

Average amplitude change X X

Difference absolute standard deviation value X X

Percentage zero-crossings X X

Percentage zero-crossings (.005 mV threshold) X

Percentage slope sign changes X X

Myopulse percentage X X

Percentage Wilson amplitude X

Median frequency of the amplitude spectrum X X

Mean frequency of the amplitude spectrum X X

Median frequency of the frequency spectrum X X

Mean frequency of the frequency spectrum X X

Peak frequency X X

Mean power X X

Total power X X

1st – 3rd spectral movement X X

Standard deviation of RR intervals X

Root mean square of RR intervals X

Percentage of successive RR intervals differing more than 50 ms X

Ratio of the power of the low and high-frequency bands X

Triangular interpolation of the discrete distribution of the RR intervals X

Ratio of the standard deviation along the identity line and the standard deviation of the perpendicular axis of the Poincaré plot X

Total number of RR intervals divided by the number of intervals in the modal bin X

Total number of relative RR intervals divided by the number of intervals in the modal bin X
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also asked to indicate whether they experienced an emotion
during the viewing of the video and to rate the intensity of
their emotional experience on a five-point scale (if an emotion
was present).

All items of the appraisal questionnaire (both the original
German ones and their English translation) and the respective
appraisal dimensions can be found in the codebook of our data
set in our electronic appendix.

Data preprocessing

The preprocessing and all further analyses were conducted in
R (version 3.4.2; R Core Team, 2018). For each participant,
the physiological signals (EMG, EDA, HRV) during the
viewing of each video were extracted using E-Prime
timestamps, indicating the onset and offset of each video dur-
ing the experiment. All data points assessed during other
phases of the experiment were discarded except for the base-
line measurement. To determine the noise contamination in
the EMG data, frequency spectra were calculated using the
spec function from the seewave package (Sueur, Aubin, &
Simonis, 2008). The signals showed high noise contamination
due to movement artifacts in the frequency range below 40 Hz
as well as electromagnetic noise at 50 Hz. Therefore, a
Butterworth high-pass filter with a cutoff frequency of
40 Hz was applied using the highpass function from the
biosignalEMG package (Guerrero & Macias-Diaz, 2018).
To filter out electromagnetic noise, a notch filter with a width
of .5 Hz was applied at the respective frequency using the
bwfilter function from the seewave package (Sueur et al.,
2008). In line with the recommendations of Fridlund and
Cacioppo (1986), we also applied a low-pass filter at 250 Hz
using the lowpass function from the biosignalEMG package
(Guerrero & Macias-Diaz, 2018). In addition, a baseline cor-
rection using the mean level of activation during the baseline
measurement was applied to the EMG channels using the
dcbiasremoval function from the biosignalEMG package
(Guerrero & Macias-Diaz, 2018). As some residues of move-
ment artifacts remained in the data, and because these artifacts
might influence features based on the amplitude of the signal,
we added two more robust amplitude features containing a
20% trimming of the signal (see next section) to the feature
set. To remove the tonic level from the EDA signal, a high-
pass filter at .5 Hz was applied to the data, as recommended by
Braithwaite,Watson, Jones, and Rowe (2013), again using the
bwfilter from the seewave package (Sueur et al., 2008).

Physiological features

For the description of the different physiological signals, sever-
al sets of features were implemented. For the characterization of
the EMG signals time and frequency domain, 32 different fea-
tures were calculated (see Table 1 for an overview of all

features). The specific computation of these features is based
on the formulas provided by Phinyomark, Limsakul, and
Phukpattaranont (2009) and Phinyomark, Phukpattaranont,
and Limsakul (2012). Where necessary, features were normal-
ized to make them independent of the length of the time series.
While most of these features are used for the characterization of
time series data in general, some of them are more specifically
applied to EMG data. As only the percentageWilson amplitude
and the zero-crossing percentage (with the .005 mV threshold)
yielded zero variance on the EDA data, however, all other
features were deemed appropriate to describe the skin conduc-
tance signal as well. For the analysis of the heart rate variability
data, we implemented a different set of features based on the
recommendations of Vollmer (2015). Overall, 134 features
were calculated—32 for each of the EMG channels, 30 for
the EDA data, and 8 for the heart rate variability data. See the
R scripts provided in our electronic appendix for a formal de-
scription of the feature set.

Machine learning modeling

Benchmark Most appraisal dimensions were assessed by a
single item in our questionnaire. For the dimensions assessed
withmore than one item, we calculated inter-item correlations.
As all correlations were low (all r < .4), we refrained from
aggregating the items and included each of them as a separate
appraisal dimension (for a similar approach, see Scherer &
Meuleman, 2013). All negative poled items were reversed.
For each of the 21 appraisal dimensions, we constructed a
regression task using the 134 physiological features as predic-
tors. In each task, we excluded all observations with a missing
rating (does not apply answer) in the respective appraisal di-
mension. Hence, the different tasks compromised data sets of
different sizes that ranged from n = 1556 for pleasantness to n
= 948 for internal standards (M = 1337.6). For each of the 21
tasks, a benchmark experiment was conducted that compared
a baseline model, a featureless learner (FL) that predicted the
mean, to a linear ridge regression model (RIDGE) and a ran-
dom forest model (RF), able to represent complex interactions
and nonlinearity, using the mlr package (Bischl et al., 2016).
For all models, the default hyperparameter settings were
used.3 To evaluate the performance of the models, we con-
ducted a 20 × 5 cross-validation and report the aggregated R2.

3 For the RF, the ranger learner from the ranger package (Wright & Ziegler,
2017) was used. Per default, the number of trees to grow (ntree) is set to 500,
the number of variables considered in each split (mtry) is set to

ffiffiffi
p

p
(rounded

down, where p is the number of features in the model; in our case,ffiffiffiffiffiffiffiffi
134

p
is roughly 11), the tree depth (max.depth) is unlimited, and the

minimum node size (min.node.size) is set to 5. For the RIDGE, the
cvglmnet learner from the glmnet package (Simon, Friedman, Hastie,
& Tibshirani, 2011) was used. To perform a ridge regression instead of
a lasso regression, the alpha parameter was set to 0. Per default, the
lambda parameter is tuned in a tenfold cross-validation to find the op-
timal value for the penalty term.
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As our data set contained several observations per subject, we
blocked the samples by subject within each fold to take into
account the nested structure of the data.4 As the preprocessing
of the physiological data might not be sufficient to fully elim-
inate artifacts in our data, and because the linear model used in
the benchmark seemed to be strongly affected by outliers in
the data, we added an additional preprocessing step for the
RIDGE model.5 First, an outlier analysis was conducted on
the 134 features, eliminating all values that were more than
three standard deviations away from the mean of the feature.
These missing values (1.2% of the data) were subsequently
imputed within each fold by using random numbers drawn
from the remaining empirical distribution of the feature. The
RFmodel that reached the highest performance for all apprais-
al dimensions was selected for all further analyses. To deter-
mine for which appraisal dimensions the RF was able to ro-
bustly reach a positive R2 and hence was able to explain var-
iance in the appraisals, we looked at the variation of R2 scores
within the 100 cross-validation folds. To consider an appraisal
as robustly predictable, we determined that at least 85% of the
attained R2 values should be positive (i.e., the 15% quantile
should lie above 0).

Blocked feature importance

In a second step, we analyzed how strongly the physiological
channels contributed to the prediction of the appraisal dimen-
sions that attained a positive R2 in the previous analysis. For
this purpose, we constructed two blocked permutation impor-
tance measures also based on the R2 that could quantify the
impact of each of the five physiological signals (zygomaticus,
corrugator, frontalis, EDA, and HRV) summarizing all fea-
tures of the respective channel.

The first channel-based importance measure, R2
B; aims to

quantify how well a physiological channel can predict an ap-
praisal dimension in general. To this end, we selected only the
features calculated from the physiological channel of interest
(e.g., all corrugator features) and trained the RFmodel on 60%
of the data using only the selected feature subset.
Subsequently, the R2 was assessed on the remaining 40% test

sample. The performance was calculated 100 times using dif-
ferent random splits and subsequently averaged (in order to
avoid hold-out test sets that were too small and unstable, we
chose a 40% test set instead of the previously applied 20% test
set):

R2
B ¼ ∑100

i¼1R
2
B;i

100

where

B is the block that contains all variables of the
physiological channel of interest, and

R2
B;i is the out-of-sample R2 of the model trained with only

the variables of B in the ith repetition.

R2
B shows how much variance can be explained by the

variable block in the absence of any other information, and
hence can be considered as a kind of “main effect” of the
physiological channel, representing the overall variance that
can be explained by the predictors of the channels and all
interactions within the feature block.

The second channel-based importance measure, ΔR2
B, aims

to quantify the variance that can be uniquely explained by the
channel beyond all other channels. For the computation, we
again randomly split the data set into a training set holding
60% of the data and a test set holding the remaining 40%.
First, the RF is trained with all the available features and the
out-of-sample R2 is assessed. In a second step, the out-of-
sample performance of the model trained with all features that
do not belong to the physiological channel of interest (e.g., all
frontalis, zygomaticus, EDA, and HRV features but not the
corrugator features) is assessed. To quantify the importance of
the variable block of interest, the difference between the two
R2 values is calculated. For a more robust assessment, the
calculation is again repeated over 100 iterations and aggregat-
ed subsequently, as shown in the following formula:

ΔR2
B ¼

∑100
i¼1 R2

i −R
2
:B;i

� �

100

where

B is the block that contains all variables of the
physiological channel of interest,

R2
i is the out-of-sample R2 of the model trained with all

features in the ith repetition, and
R2
:B;i is the out-of-sample R2 of the model trained without

the variables of block B in the ith repetition.

As the second model is trained and validated with all fea-
tures except the variable block of interest, R2

:B;i represents the
variance that can be explained by all other variables and all

4 To handle themultilevel structure of the data, we compared blocking the data
in training and test sets by subjects to an approach in which the features were
subject-mean-centered to remove individual biases. The two methods yielded
very similar results, with a high correlation of r = .98 in their performance over
all 21 appraisal tasks. The blocking method, though, showed slightly lower
performance on average (the mean deviation from the residualized model was
R2 = .026). Hence, the blocked method was chosen as the more conservative
one in this context.
5 The decision to conduct this additional preprocessing step for the linear
model was based on the observation that the model’s performance strongly
decreased due to extrapolation when outliers were not excluded.
Consequently, we deemed the linear model to be not competitive with the
random forest model without addressing its sensitivity to outliers. The perfor-
mance of the nonlinear random forest model proved to be robust to outlier
exclusion.
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their interactions. The difference in R2 between the complete
model and the partial model consequently represents the var-
iance that can be explained by the block of interest (and its

interactions with other blocks) beyond all other variables. ΔR2
B

hence represents the incremental variance that is uniquely ex-

plained by the physiological channel, while R2
B also includes

the shared variance that can also be explained by other blocks.
A similar importance calculation has been recommended by
Yarkoni and Westfall (2017). For the calculation of both im-
portance measures, observations were again blocked for sub-
jects. In addition, we again applied a robustness measure by
only reporting the importance of dimensions for which the
attained R2

B or ΔR2
B were positive in at least 85% of the

iterations.

Accumulated local effects plots As the R2 feature importance
only gives information about the relevance of the feature
blocks but not about the direction and type of the relations
between the appraisals and the physiological channel, we also
report accumulated local effects (ALE) plots that visualize for
given values of the feature the effect on the prediction of the
outcome variable (i.e., appraisal dimension; Molnar, 2019).
As this additional step was conducted to gain more insight
into the machine learning models, we focus on features that
are easy to interpret from both a mathematical and a physio-
logical perspective. The most straightforward interpretation
can be attained by looking at features describing the amplitude
height (i.e., mean absolute value, simple squared integral, root
mean squared signal, absolute value of the 3rd–5th spectral
movement, and log detector), as these are clearly associated
with muscle contraction for EMG (Day, 2002) and sympathet-
ic activity or arousal for EDA (Benedek & Kaernbach, 2010).
We also considered all time-domain HRV features, as they all
describe the amount of variability in subsequent heartbeat in-
tervals, excluding the high- and low-frequency band ratio and
the nonlinear measure based on the Poincaré plot. We calcu-
lated the feature importance for each related amplitude as well
as the HRV features and selected the one with the most robust
importance (yielding a positive importance in at least 85 of
100 iterations) for each of the appraisals that yielded a suffi-
cient overall performance. To this end, a feature-based impor-
tance measure similar to the R2

B was used, calculating the R2

for an RFmodel with only the feature of interest as a predictor.
To prevent overfitting in these single-feature models, we re-
stricted the tree depth of the RF to three. We report the ALE
plots of the best feature within each appraisal dimension using
the iml package (Molnar, Bischl, & Casalicchio, 2018). The
plots were again calculated from the RF model with only the
respective feature as a predictor and the tree depth restricted to
three. To prevent extrapolation in regions of sparse data for the
feature, we only plotted data within the 5% and 95% quantiles
of the feature.

Results

Descriptive statistics (mean and standard deviation) of the 21
assessed appraisal dimensions and the 10 videos, as well as
the sample sizes of the appraisal subsets used in the different
appraisal prediction models, are presented in Table 2. The
presented mean appraisal ratings vary between the videos
due to the differences in content. Moreover, a substantial
between-subject variance can be observed for each appraisal
and each video (SD), demonstrating that the videos were still
appraised differently by the participants. In only 30 of the1556
observations in the data set, participants reported that they did
not experience an emotion during the video.

Figure 1 shows the predictive performance of the two ma-
chine learningmodels (RF and RIDGE) and the baseline mod-
el (FL) for the 21 assessed appraisal dimensions sorted by the
maximum averaged R2. The featureless baseline model,
predicting the mean of the respective appraisal, naturally
reached an R2 of around 0 for all dimensions. The tree-based
RF model yielded the best performance for all 21 appraisal
dimensions, while the RIDGE performed consistently worse
than the RF across all appraisal dimensions. Consequently, the
RF was considered the superior model in this context and was
used for all further analysis. The RF performance varied
strongly between the appraisal dimensions, ranging from
−.016 to .407, with pleasantness (R2 = .407) and internal
standards (R2 = .289) yielding the highest performance, and
predictability, outcome probability, control, goal/need impor-
tance (self), and urgency (self) the worst performance, with a
negative R2. To rule out the possibility that the differences in
the performance achieved were simply due to the different
sample sizes between the appraisal dimensions, we calculated
a Pearson correlation between the maximum attained R2 and
the sample sizes used for each model. No significant relation
was detected (r(19) = −.077, p = .739).

The inspection of the performance variation within the
folds of the RF model (Fig. 2) showed that in addition to the
five dimensions yielding an overall negative R2, discrepancy
from expectation (R2 = .033, 15% quantile = −.002), cause
agent (nature; R2 = .021, 15% quantile = −.006), and
adjustment (self; R2 = .019, 15% quantile = −.032) also
yielded a negative performance in at least 15% of the folds.
Consequently, we considered these dimensions as not robust-
ly predictable and excluded them from further analysis as
well.

Figures 3 shows the blocked importance measures of the
different physiological channels for the appraisal dimensions
for which a sufficient overall R2 was attained. For the first
importance measure, R2

B, the zygomaticus and corrugator
channels overall seemed to contribute similarly to the predic-
tion (Mzyg = .110, Mcorr = .108). Frontalis, EDA, and HRV
performed worse, with HRV having the smallest overall
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importance (Mfront = .084, MEDA = .085, MHRV = .044). In 7
out of 13 appraisal dimensions, the zygomaticus channel
showed the highest importance value, only yielding no

importance for cause agent (other person). The corrugator
channel yielded the highest importance for the other six ap-
praisals but did not explain any variance for the familiarity
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Fig. 2 R2 of the random forest (RF) for the 21 appraisal dimensions, with error bars indicating the 15% and the 85% quantiles of the R2 attained within
the 20 × 5 cross-validation folds. Appraisal dimensions are sorted by their overall performance
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appraisal. The frontalis channel did not attain a robust positive
R2
B for the conduciveness (self), the cause agent (other

person), or the familiarity appraisal, while the EDA channel
yielded no robust importance for goal/need importance
(protagonist) or familiarity. The HRV channel robustly ex-
plained variance for only 7 of the 13 dimensions, contributing
nothing to the prediction of cause agent (protagonist), adjust-
ment (protagonist), conduciveness (self), cause agent (other
person), goal/need importance (protagonist), and familiarity.
Naturally, with the decrease in overall R2, the R2

B attained
decreased as well.

In the second importance analysis, the ΔR2
B that represents

the uniquely explained variance of the variable block and its
interactions, the zygomaticus channel, reached the highest im-
portance across appraisals compared to the other physiologi-
cal channels (Mzyg = .012,Mcorr = .004,Mfront = .001,MEDA =
.002, MHRV = .003). The zygomaticus uniquely explained
variance for the appraisals pleasantness, internal standards,
conduciveness (protagonist), external standards, conducive-
ness (self), and familiarity, while the corrugator channel ex-
plained incremental variance for the internal standards, ur-
gency (protagonist), cause agent (other person), and goal/
need importance (protagonist) appraisal. The frontalis chan-
nel only reached robust positive importance for the internal
standards dimension and the EDA channel for cause motive
and cause agent (other person). Even though the HRV block

seemed to have a rather low overall contribution (R2
B ) com-

pared to the other physiological channels, it actually explained
variance beyond the other blocks for four appraisals including
pleasantness, external standards, urgency (protagonist), and
suddenness.

For 5 of the 13 dimensions (i.e., cause motive, urgency
[protagonist], suddenness, cause agent [other person], and
familiarity), no interpretable feature with robust positive im-
portance could be detected.6 Hence, these dimensions were
excluded from the ALE plots. For the remaining eight apprais-
al dimensions, seven zygomaticus amplitude features and one
corrugator amplitude feature were selected. All features
showed a positive feature importance and hence were able to
explain variance in the respective appraisal (M = .044, range =
.017–.084). ALE plots for the selected features are presented
in Fig. 4. Internal standards, conduciveness (protagonist;
self), external standards, cause agent (protagonist), and ad-
justment (protagonist) all showed a tendency towards a posi-
tive relationship with the zygomaticus amplitude (i.e., higher
ratings of the respective appraisal were related with a higher
zygomaticus amplitude). The appraisal goal/need importance
(protagonist), on the other hand, showed a negative relation
with the feature indicating zygomaticus amplitude height.
Lastly, the pleasantness appraisal showed a negative relation

with the corrugator amplitude. For all ALE plots, the type of
link can be described as mostly nonlinear.

Discussion

The present study aimed at exploring how different physio-
logical channels relate to the appraisal dimensions of the CPM
(Scherer, 2009) by investigating whether the dimension can
be predicted using features extracted from the respective phys-
iological signals. The appraisals were assessed by question-
naire after presenting subjects different emotional video se-
quences during which the activation of different facial mus-
cles, EDA, and HRV were collected. We compared two dif-
ferent machine learning models—linear and a tree-based—to
a baseline model, evaluating which type of model was most
appropriate to represent the structure of the data. Moreover,
we analyzed the relevance of each physiological channel by
constructing two different blocked importance measures.
Finally, we took a further step towards making the machine
learning models interpretable by looking at ALE plots that
depict the relation between an appraisal and a single physio-
logical feature.

The benchmark comparing the predictive performance
of the RF and the RIDGE model showed that for 8 out of
21 appraisal dimensions, no robust R2 was attained.
Hence, it can be concluded that the dimensions discrep-
ancy from expectation, cause agent (nature), adjustment
(self), predictability, urgency (self), outcome probability,
control, and goal/need importance (self) were physiolog-
ically related neither to the activity of the zygomaticus,
the corrugator, or the frontalis, nor to EDA or HRV. The
theoretical predictions made by the CPM (Scherer, 2009)
are to some degree incongruent with these results, as it
was theoretically assumed that the control appraisal
would be related to the activity of different facial muscles
such as zygomaticus and corrugator and the predictability
appraisal to all five assessed channels. We were not able
to empirically substantiate these relations in the setting of
the present study, where emotions were induced by
watching videos. Further, it was noticeable that the
adjustment, urgency, and goal/need importance dimen-
sions were predictable, reaching a substantially higher
R2 than the baseline model when appraised from the per-
spective of the video protagonist. This suggests that the
appraisals might be related to the assessed physiological
channels, but that in the passive viewing of a video se-
quence, the appraisal attribution to the protagonist could
be more decisive. This would mean that for the affective
evaluation of a passively experienced event, it is more
important whether one feels that the protagonist of the
event can adjust to the consequences, has to react urgent-
ly, or is influenced strongly by the events, rather than the

6 We also report a large table with the importance of all features that yielded
robust positive importance for all 13 models in our OSF project.
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appraisal of those dimensions from one’s own perspec-
tive. The fact that we were able to predict from the phys-
iological features whether an event was caused by the
protagonist or by a different person in the video plot
(cause agent [protagonist] and cause agent [other
person] appraisals), but not if the event was caused by
natural forces or chance (cause agent [nature] appraisal),
could mean that the three items (intended to measure a
single appraisal or construct) actually constitute separate
appraisals—an assumption that is also supported by the
insufficient correlations of the items. Alternatively, the
appraisal outcome, indicating that an event was caused
by nature rather than by a person, might affect different
physiological responses that were not considered in the
present study.

For the 13 dimensions for which a robust positive R2 was
attained, the RF consistently performed better than the
RIDGE. This comparison clearly shows that the relations be-
tween the physiological features and the appraisal dimensions
cannot be sufficiently represented by a linear model, and are
probably nonlinear. This assumption is also supported by the
single-feature ALE plots, which showed nonlinear links be-
tween appraisal and physiology. Evidence for the nonlinear
relationship between physiological features and the valence
and arousal evaluation of an event has been demonstrated by
Russo, Vempala, and Sandstrom (2013). The authors showed
that both dimensions can be predicted with a cross-validated
R2 of 62.4% (valence) or 82.8% (arousal) from physiological
features extracted from EDA, HRV, facial EMG, and the res-
piration rate of a person when using nonlinear neuronal net-
works. The predictability decreased, however, when a simpler
linear model was applied (valence: R2 = 53.3%; arousal: R2 =
59.3%). Meuleman et al. (2019), who predicted ratings of
hypothetical physiological and expression responses using
different appraisal factors, showed that the performance of
their models increased to some extent when nonlinearity was
added. Hence, a linear model does not seem to provide suffi-
cient complexity to fully display the link between appraisal
and physiology and expression. The use of linear models for
better interpretability and the linear phrasing of relations de-
rived from theory or empirical studies (e.g., Scherer, 2009)
therefore probably constitutes a simplification or could even
be misleading.

The out-of-sample R2 of those dimensions that were ro-
bustly predictable varied strongly, ranging from R2 = .054
for familiarity to R2 = .407 for pleasantness. Especially for
the dimensions in the lower end of this range, the assessed five
physiological measures are probably not sufficient to fully
explain their variance. It is likely that those appraisals affect
further aspects of physiology that are consequently needed to
fully predict them. The reliability of our items is unknown, but
our single item measures clearly limit the maximally

attainable R2. Moreover, based on the already mentioned de-
bate on how well automatically processed appraisals can ac-
tually be assessed via self-report (Davidson, 1992; Scherer,
1993a, 2005), the measurement by questionnaire might more
generally be a cause for increased measurement error in the
appraisal data. We nonetheless tried to assess the appraisal
process in a less retrospect way compared to the original
GAQ (Geneva Emotion Research Group, 2002) by asking
participants to rate the appraisal dimensions immediately after
the emotional video was viewed in a controlled laboratory
setting, hoping to minimize potential measurement error and
retrospective biases as far as possible. Due to artifacts and
noise, which cannot be fully prevented, measurement error
was of course also present in our physiological features to
some extent. Considering these assumptions, the performance
achieved seems reasonable.

The first blocked importance measure, the R2
B, that was

implemented to assess how much variance the variables of
each channel and their interactions can explain within the 13
appraisals with a sufficient overall R2, showed that the
zygomaticus and corrugator channels contributed similarly
to the appraisal prediction and overall seemed to be most
important. On average, the frontalis and EDA channels ex-
plained less variance than the zygomaticus and corrugator,
while the HRV seemed to be the least relevant channel. For
the channels that yielded robust positive importance, it can be
assumed that a relation between the respective appraisal and
the physiological channel exists. Some of these links have
already been made by theoretical or empirical work, while
others are somewhat contradictory to previous findings.
Scherer’s (2009) theoretical assumptions for pleasantness,
suddenness, familiarity, conduciveness, and goal/need
importance entail all physiological channels, predicting mod-
ifications in facial expressions and skin conductance, as well
as cardiovascular changes. These predictions are only partially
in line with our findings. All five channels yielded robust
positive importance for the pleasantness, the conduciveness
(protagonist), and the suddenness appraisal; hence all chan-
nels were connected to these three appraisals. For goal need/
importance (protagonist) though, variance was robustly ex-
plained by only the three EMG channels. A relation between
the appraisal and EDA or HRV was consequently not con-
firmed within the present context. In addition, familiarity
seemed to be related to only the zygomaticus channel in our
study. Previous empirical research on the physiological
changes connected to the pleasantness appraisal also demon-
strated relations to zygomaticus (Aue & Scherer, 2008;
Lanctôt & Hess, 2007; Scherer et al., 2019), corrugator
(Delplanque et al., 2009; Lanctôt & Hess, 2007; Scherer
et al., 2019), and frontalis activity (Aue & Scherer, 2008;
Delplanque et al., 2009), as well as to changes in EDA (van
Reekum et al., 2004) and HRV (Delplanque et al., 2009). Van
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Reekum et al. (2004), on the other hand, were not able to find
any effect of pleasantness on either frontalis activity or HRV.
Similarly, Scherer et al. (2019) found no effect on the occur-
rence of facial action units that are connected to the frontalis
muscle. Van Reekum et al. (2004) even cast doubt on whether
pleasantness is at all relevant in affect-related physiology and
whether the dimension influences the ANS. Our results,
though, demonstrate that the evaluation of the intrinsic pleas-
antness of an event is related to changes in both facial EMG
and HRV. A more plausible explanation, which is also recog-
nized by the authors, is that the experimental induction of an
appraisal by using games or other stimuli is not always
effective—this could also be the problem with the study by
Scherer et al. (2019) that used fictitious scenarios that partic-
ipants were asked to imagine in order to induce appraisal
outcomes without a manipulation check. Another problem
could be that both studies use linear multivariate analysis of
variance/analysis of variance (MANOVA/ANOVA) models
to analyze these relations—our results though clearly demon-
strated that the link between pleasantness and physiological
features is substantially better represented by a nonlinear mod-
el. For the conduciveness appraisal, the impact on corrugator
activity (Aue et al., 2007; Aue& Scherer, 2008; Gentsch et al.,
2013; Lanctôt & Hess, 2007), zygomaticus activity (Aue
et al., 2007; Aue & Scherer, 2008; Lanctôt & Hess, 2007),
EDA (Aue & Scherer, 2008; van Reekum et al., 2004), and
HRV (van Reekum et al., 2004) has also been demonstrated in
several empirical studies. Van Reekum et al. (2004), who also
studied the impact of conduciveness on the frontalis muscle,
were again not able to determine a significant effect. Even
though this finding could also be explained by the already
mentioned potential weakness of their design and statistical
analysis, as well as by their very small sample size (n = 33), it
is worth mentioning that the frontalis block in our study also
did not explain any variance for the conduciveness (self) di-
mension that was evaluated from the participants’ own per-
spective, but showed relatively high importance when evalu-
ated from the perspective of the video protagonist—the same
was true for the HRV block. Lastly, the link found between
the goal/need importance (protagonist) appraisal and the
zygomaticus and corrugator activity was also confirmed in
an empirical study by Aue et al. (2007). Kreibig et al. (2012)
reported a medium effect of EDA on goal/need importance,
which we however could not replicate in our study. For the
remaining seven appraisal dimensions, no studies have been
conducted to our knowledge. Even though the CPM by
Scherer (2009) additionally makes predictions for the external
and internal standards dimensions, the physiological chan-
nels analyzed in the present study are not considered as po-
tential outputs. Therefore, we were able to demonstrate here
for the first time that the dimensions internal and external
standards, cause motive, and urgency (protagonist) are also
related to changes in facial EMG, EDA, and HRV, and that

cause agent (protagonist) and adjustment (protagonist) are
related to facial EMG and HRV. Lastly, we were able to dem-
onstrate that the cause agent (other person) appraisal is linked
to both corrugator activity and HRV.

With the ΔR2
B blocked importance measure, we additional-

ly analyzed how much incremental variance a block could
explain beyond the other considered blocks. This analysis
adds to the question of whether a dimension has a unique
contribution to the prediction of an appraisal dimension, rather
than whether the dimension is related to it at all. Therefore, the
results are less relevant for the basic research on the physiol-
ogy of appraisals, but can be used when the most economical
modeling of an appraisal physiology link is the goal. The
importance measure shows that for each dimension, between
one and five channels do not explain incremental variance,
which means that the respective channel can be compensated
by the other four channels in the model and that excluding the
channel from the complete model would not lead to a loss in
performance. For cause agent (protagonist) and adjustment
(protagonist), for example, the variance explained by each
of the five physiological blocks could also be explained by
the other four channels in the model. Moreover, robust posi-
tive channel importance was attained for only 17 of the 65
measures (5 channels × 13 appraisals), which means that in
only 17 cases was a channel able to explain variance beyond
the other predictors in the appraisal model. This shows that the
channels must be correlated to some degree. For 8 of the 13
dimensions, either the zygomaticus or the corrugator block
could be removed if all other dimensions were considered,
as in these dimensions neither of the two physiological chan-
nels yielded robust positive importance. The zygomaticus
channel seems to hold a higher share of incremental variance
overall, even though both channels, zygomaticus and
corrugator, were able to explain a comparable amount of var-
iance in the appraisals in the first importance analysis.
Moreover, the frontalis dimension, which also achieved an
overall substantial R2

B (Mfront = .084), could actually be re-
moved for all appraisals except internal standards without a
loss in performance if the other four blocks were included in
the model. Similarly, the EDA block could be excluded for all
but two considered dimensions. Interestingly, although the

HRV block explained less variance (R2
B ) compared to the

other physiological signals (MHRV = .044), it actually unique-
ly explained variance for four dimensions and should there-
fore not be excluded when modeling the respective appraisals.
For the EMG measures, a correlation between two blocks,
which leads to shared variance and hence to their interchange-
ability, could also be caused by crosstalk between facial mus-
cles and does not necessarily imply a true relation—especially
for the frontalis and corrugator muscles that are in close prox-
imity to each other, this has to be considered.
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In our last analysis, we specifically looked at the type and
direction of the relation between each appraisal and the most
important amplitude or HRV feature of the respective dimen-
sion. The complexity of machine learning models that can
account for high-order interactions and nonlinearity is one of
the main benefits of these models, but also constitutes an
obvious downside—their interpretability. ALE plots are one
approach for increasing interpretability by visualizing the in-
fluence of a single feature on the prediction of a model. For
eight appraisal dimensions, an interpretable feature with a ro-
bust positive importance measure was detected. With the
resulting eight ALE plots, we were again able to replicate
some findings of previous empirical research. Like Aue and
Scherer (2008), we found a negative link between corrugator
and pleasantness—a result that is also in line with the theoret-
ical assumptions by Scherer (2009). We further found a pos-
itive relation between both conduciveness dimensions (pro-
tagonist and self) and zygomaticus activity, which has also
been reported by previous studies (Aue et al., 2007; Aue &
Scherer, 2008). The finding that goal/need importance
(protagonist) is negatively related to the activity of the
zygomaticus is partially congruent with the findings of Aue
et al. (2007), who reported lower zygomaticus activity related
to stimuli of cultural threat used to induce goal relevance.
However, the authors also reported increasing zygomaticus
activity in response to stimuli depicting biological threat,
which contradicts our results. As the sample used in this study
was rather small (n = 42), and as only linear relations were
considered, our results might be more reliable. Nevertheless, it
is also possible that the induced goal importance scenarios in
the study actually constitute two different appraisal dimen-
sions, producing different results. The remaining ALE plots
suggest that zygomaticus activity increased overall if events
were rated as more compatible with internal and external
standards, when the protagonist was thought to be able to
adjust well to the consequences of the events shown (adjust-
ment [protagonist]), and when the protagonist of the video
was identified as the cause of events (cause agent
[protagonist]). The ALE plots showed mostly nonlinear rela-
tionships, which again indicates that the use of linear models
and the subsequent linear interpretation of the resulting rela-
tions might be misleading.

Limitations

The present study has several limitations. We were able to
demonstrate that the majority of participants experienced a
rather intense emotional episode during the viewing of the
video, which indicates that an appraisal process was triggered.
Also, a substantial amount of variance was present in the
appraisal ratings both between the videos and between sub-
jects. However, it is possible that the specific selection of
videos might not have induced the full range in all appraisal

dimensions. Also, the use of passive stimuli such as videos or
pictures holds some disadvantages, as they are typically not
action-oriented, which also could have led to decreased vari-
ance in more action-oriented appraisals and hence to de-
creased predictability of these appraisals. We therefore urge
to validate the present results in more action-oriented and less
intense contexts.

Moreover, as wemeasured each appraisal dimension with a
single item, we have to assume rather low reliability of our
measurements, which probably affected the R2 obtained in our
study. The original GAQ (Geneva Emotion Research Group,
2002) from which items were selected also provides single
items for 9 of the 16 included appraisal dimensions, and not
more than three for the other 7 dimensions. This means that
the factorial validity, the underlying measurement model of
the questionnaire, and its reliability also cannot be evaluated.
Moreover, the low inter-item correlations for the cause agent
dimension, which we assessed with all three items from the
original questionnaire, indicate that the three items do not load
on the same latent variable and that these items rather repre-
sent distinct dimensions. For future research, it would be de-
sirable to develop a new self-report measurement tool for the
appraisal process that provides multiple items for each ap-
praisal and allows for an evaluation of measurement quality.
Research on appraisal theories of emotions, which still relies
heavily on self-reported appraisals, would strongly benefit
from such a development. However, as many appraisal dimen-
sions are thought to be processed at least partially in an auto-
mated fashion, appraisal critics and appraisal theorists alike
question whether the appraisal process can be accessed ex-
haustively via self-report alone (Davidson, 1992; Scherer,
1993a, 2005). Hence, the general reliance on self-reported
data for the assessment of the appraisals probably contributes
to measurement error in our data as well. It is an obvious
paradox that when trying to find a way to assess the appraisal
process (or any other contents of cognition) in a more objec-
tive indirect way (e.g., based on measures like EMG or by
neuroscientific approaches), research cannot avoid asking par-
ticipants about their inner states. Even when inducing ap-
praisals in an experimental context, we should somehow ver-
ify how an event is actually evaluated. This validity problem is
unfortunately not fully solvable with currently available mea-
surement tools and the reliability they provide. Measurement
error in the physiological channels due to artifacts, noise, and
crosstalk is also not fully avoidable, even with thorough pre-
processing. Consequently, the model performance in our
study could also be limited by impaired physiological fea-
tures. Potential crosstalk between EMG regions might have
also affected the results of our second importance measure by
decreasing the incrementally explained variance of some
physiological channels.

Because we were only able to assess the appraisal ratings
once by self-report (not continuously), we had to aggregate
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the continuously assessed physiological measurements on a
video level as well. Hence, both measures depict only a sum-
mary of appraisal and physiology during the video—the re-
spective loss of information most likely also affected the per-
formance levels obtained. To analyze the relationship between
appraisals and physiological responses dynamically, and for
the development of a continuous appraisal measurement tool,
appraisal dimensions need to be measured continuously. To
our knowledge, a continuous measurement of subjective ap-
praisal ratings has not been done before in research on apprais-
al theories—most likely because such a study would be meth-
odologically complicated. However, some studies have con-
tinuously assessed valence and arousal ratings of participants
using a joystick-based interface (e.g. Li, Baveye, Chamaret,
Dellandréa, & Chen, 2015; Sharma, Castellini, van den Broek,
Albu-Schaeffer, & Schwenker, 2019)—an approach that
could also be applied in the appraisal context. It has to be
assumed, though, that such a continuous rating would de-
crease the reliability of the appraisal measurement even more.
The method would moreover be restricted to measuring only
one or two appraisals at a time.

As we modeled the appraisal–physiology link in the re-
verse direction compared to the theoretically assumed causal
process, the models did not include variance explained by
interactions between the appraisal dimensions. However,
there is evidence from the study of Meuleman et al. (2019)
that the predictability of some expression factors derived from
semantical emotion ratings increased when interactions be-
tween appraisal factors were considered; however, these ef-
fects were only present for expression factors that were unre-
lated to the measures in our study. Nonetheless, it could be
possible that omitting appraisal interactions could have de-
creased the reported effects in the present study.

Lastly, as the majority of recruited participants were stu-
dents of the Ludwig-Maximilians-Universität München, our
sample is from a rather specific selected population with a
high level of education—this has to be considered when
interpreting the results. A validation of the present results on
a more representative sample (as regards education) would be
desirable.

Conclusion

In summary, we were able to investigate the connection of
several physiological measures to a broad set of appraisal
dimensions by using a data-driven machine learning ap-
proach. The results of the present study are based on a sub-
stantially higher sample size than most of the discussed re-
search on this topic, and all findings were additionally vali-
dated on hold-out data and checked for robustness. We were
able to replicate some findings of previous research and added
new information for those dimensions that had not yet been
investigated. We were able to investigate the appraisal–

physiology link for six dimensions (internal standards, exter-
nal standards, cause motive, urgency, cause agent, and
adjustment) that have not yet been empirically (or theoretical-
ly) analyzed—probably because these dimensions are difficult
to test using the appraisal induction designs typically applied
in this field of research. Moreover, our results indicate that the
links between physiology and affect-related appraisal are non-
linear and that future studies should refrain from using simple
linear models, as the results might be misleading. With these
new insights, we hope to extend the knowledge base on the
appraisal–physiology relation and facilitate further research
on this topic.

By analyzing additional physiological channels and their
links to appraisals, future research should be able to increase
the predictability of appraisal dimensions even more. Overall,
the fact that cognitive categories such as the perceived com-
patibility of an event with laws and social norms (external
standards dimensions) can be predicted (at least to some de-
gree) by physiological measures is impressive. The results
lend support to cognitive theories of emotions, such as the
CPM (Scherer, 2009), that assume that emotions are not sim-
ply the subjective perception of a bodily response to a stimu-
lus, and that the cognitive evaluation of our environment is the
central element in a multi-modal emotion process.
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