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Abstract

INTRODUCTION: To detect early cognitive impairment in community-dwelling older

adults, this study explored the viability of artificial intelligence (AI)-assisted linear

acceleration and angular velocity analysis during walking.

METHODS: This cross-sectional study included 879 participants without dementia

(female, 60.6%; mean age, 73.5 years) from the 2011 Comprehensive Gerontology

Survey. Sensors attached to the pelvis and left ankle recorded the triaxial linear accel-

eration and angular velocity while the participants walked at a comfortable speed.

Cognitive impairment was determined using Mini-Mental State Examination scores.

Deep learningmodelswere used to discern the linear acceleration and angular velocity

data of 12,302walking strides.

RESULTS: The models’ average sensitivity, specificity, and area under the curve were

0.961, 0.643, and 0.833, respectively, across 30 testing datasets.

DISCUSSION:AI-enabled gait analysis can be used to detect signs of cognitive impair-

ment. Integrating this AI model into smartphones may help detect dementia early,

facilitating better prevention.
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Highlights

∙ Artificial intelligence (AI)-enabled gait analysis can be used to detect the early signs

of cognitive decline.

∙ This AI model was constructed using data from a community-dwelling cohort.

∙ AI-assisted linear acceleration and angular velocity analysis during gait was used.

∙ Themodel may help in early detection of dementia.

1 BACKGROUND

The early detection of cognitive decline in older individuals is of

paramount importance given that many therapies used to delay its

development are most efficacious when begun in the early stages of

decline.1 Traditional screening tools for cognitive decline, such as the

Mini-Mental State Examination (MMSE) and the Montreal Cognitive

Assessment (MoCA), require skilled professionals and are time con-

suming to implement.2,3 Moreover, these tools have a learning effect.4

Given the accelerated rate at which populations are aging in devel-

oped countries, there is an urgent need to create convenient cognitive

screening tools that can be used remotely and on a large scale to facil-

itate the early detection of cognitive decline without the need of a

skilled professional.5–10

Walking is the strongest predictor of a decline in instrumental activ-

ities of daily living;11 therefore, a decline in walking ability may be an

early sign of a decline in cognitive function. Previous epidemiological

studies demonstrated a relationship between cognitive function and

walking.12–15 However, those studies did not establish a threshold that

can be used to screen for cognitive decline or the threshold validity

(sensitivity and specificity). Therefore, further studies are warranted

to determine whether walking can be used as a screening tool for the

detection of dementia and cognitive decline.

The recent advances in the field of artificial intelligence (AI) and

the widespread use of wearable devices have facilitated the identi-

fication of subtle changes in walking. Moreover, their utility in the

screening of degenerative neurological diseases, including dementia,

has been established.16 Consequently, this form of gait analysis is

now considered a potential screening biomarker that can be used

to detect neurodegenerative diseases.17–19 The development of digi-

tal biomarkers, along with the development of clinical biomarkers, is

expected.20,21

At present, a variety of studies exist using either AI or machine

learning algorithms in the analysis of gait as a method to detect cog-

nitive impairment in older individuals. Zhang et al.22 used AI-powered

video camera analysis to detect early-stage dementia with an accu-

racy of 0.741. Using a computerized walkway and a support vector

machine learning model, Ghoraani et al. were able to detect mild cog-

nitive impairment (MCI) and Alzheimer’s disease with an accuracy of

0.86.23 Although these studies demonstrate the utility of AI in the anal-

ysis of gait to detect cognitive impairment in older participants, their

use for the detection of these changes on a large scale is limited as

they either require specialized equipment that is not commonly avail-

able in most clinics or cannot be used remotely. A more promising

technological advance is the use of accelerometers and gyroscopes in

combination with AI models to detect cognitive impairment in older

adults. Jeon et al.24 were able to differentiate patients with MCI from

healthy controls,with an accuracy ranging from0.74 to0.73, during the

performance of complex walking using a machine learning model and

data acquired from accelerometers and gyroscopes. Although these

studies suggest that the analysis of gait using some form of AI can

distinguish between individuals with and without dementia or cogni-

tive decline, they have certain limitations that make it unclear whether

their methods can be used to screen for cognitive impairment in

community-dwelling individuals on a large scale.

This study aimed to determine whether AI analysis of acceleration

and angular velocity gait patterns using readily available inertial

motion sensors can be used to detect cognitive impairment in a cohort

of community-dwelling older adults. This method, if proven accu-

rate, could serve as an alternative to commonly used tests to assess

cognitive decline. Furthermore, it may facilitate objective assess-

ments without the learning effects associated with traditional testing

methods.

2 METHODS

2.1 Participants

A total of 879 community-dwelling older adults who had participated

in the 2011Comprehensive Gerontology Survey (Otassha Study) were

included in the present study. The Otassha Study is a comprehensive

gerontological survey that is conducted once a year to assess phys-

ical, oral, psychological, cognitive, and social functions. In addition,

medical conditions, including a diagnosis of dementia, were identified

via interviews. The interviews included questions regarding the med-

ical history of hypertension, stroke, heart disease, and diabetes but

did not include questions about the history of medications, history of

depression, and neuromuscular abnormalities. Cognitive impairment

was defined as a score < 24 on the MMSE (positive case); a score

≥ 24 was defined as an absence of cognitive impairment (negative

case).
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RESEARCH INCONTEXT

1. Systematic review: Previous studies have demonstrated

a relationship between cognitive function and walk-

ing and have identified thresholds for cognitive decline

screening. However, they did not assess the validity of

those thresholds. To detect early cognitive decline in

community-dwelling older adults, we explored the viabil-

ity of artificial intelligence (AI)-assisted linear accelera-

tion and angular velocity analysis during walking. Cog-

nitive decline was determined using Mini-Mental State

Examination scores. Deep learning models were used to

discern the linear acceleration and angular velocity data

of 12,302walking strides.

2. Interpretation: AI-enabled gait analysis can be used to

detect early signs of cognitive decline. If this AI model is

integrated into smartphones, it could represent a signifi-

cant step towardearly preventivemeasures for dementia.

3. Future directions: Given that the degenerative changes

responsible for cognitive decline develop relatively early

and require early management, larger studies using AI

models capable of predicting cognitive decline early are

needed.

2.2 Measurement of linear acceleration and
angular velocity during walking

From a static standing position, the participants were asked to walk

along a 16-m gait path at their comfortable walking speed twice while

triaxial sensors attached to the pelvis and left ankle recorded the lin-

ear acceleration and angular velocity of the lower leg and pelvis at a

sampling rate of 1000 Hz (Figure 1). The triaxial sensors comprised

a general-purpose three-dimensional accelerometer and gyroscope

(MVP-RF8-BC, MicroStone Corp.). The initial and last three steps of

each walking trial were excluded from further data analysis.

The linear acceleration was measured as the linear acceleration

in a Cartesian coordinate system on the sensor. The angular velocity

was defined as the vector representing the rotational velocity around

each axis of the Cartesian coordinates on the sensor. The measured

data were not subjected to any pre-processing such as filtering. Each

walking trial consisted of approximately seven strides. A dataset was

created by extracting the linear acceleration and angular velocity data

for each stride.

3 DATA ANALYSIS

3.1 Data structure

A dataset was created by collecting 12,302 strides of linear accel-

eration and angular velocity from 879 participants. Each sample

comprised 12 features, including the triaxial linear acceleration and

angular velocity of the pelvis and lower leg during walking. In addition,

the stride timeswere recorded and added to the 12 features, yielding a

dataset comprising 13 features (six linear accelerations and six angular

velocities with one time feature).

3.2 Data preparation

The time required to complete each stride was recorded. In addition,

the average linear acceleration and angular velocity along and about

each axis were determined for each stride. These values were used as

representative values for the stride. The averages of the linear acceler-

ations and angular velocities over each walking stride from the larger

original dataset and stride times were used subsequently to create a

new dataset for AI analysis. The feature set comprised 13 variables,

including one stride time, as well as three linear acceleration and three

angular velocity measurements for the pelvis and lower legs. Training

and testing datasets were created by randomly splitting the dataset in

an 8:2 ratio. The training and testing sets comprised 9838 and 2464

samples, respectively. The allocation of samples from individual partic-

ipants was performed with care to ensure that there was no overlap

between the training and testing datasets in terms of participant data.

3.3 Training dataset

The training set comprised 9236 negative samples from 660 partici-

pants classified as negative cases and 602 positive samples from 43

participants classified as positive cases. However, random sampling

was performed to extract 602 samples from all 9236 negative sam-

ples such that the number of negative and positive samples was equal

because the imbalance between the number of negative and positive

samples in the training dataset can negatively influence the learning

of models. A training dataset comprising 1204 samples was created

by combining 602 randomly extracted negative samples and 602 pos-

itive samples. The random sampling of the negative caseswas repeated

29 times to obtain 30 different training datasets comprising 1204

samples. Additional data augmentation was not performed during the

process.

We attempted to prevent the degradation of model accuracy due

to data imbalance by using several methods, including oversampling

with the SMOTE library. However, we found that the most accurate

model was produced using a method similar to bootstrapping. Accord-

ing to Blagus and Lusa,25 oversampling can lead to overly optimistic

estimates, while undersampling can avoid such optimistic estimates

in machine learning methods that use cross-validation similar to our

method (bootstrapping). Thus,weadoptedundersamplingbasedon the

validity supported by their findings. In this approach, we created 30

training datasets by randomly sampling negative cases from a large

dataset to match the number of positive cases. As discussing which

sampling method is more useful is beyond the scope of this study, we

have omitted detailed comparisons of the samplingmethods.
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F IGURE 1 Attachment positions of the triaxial sensors

3.4 Testing dataset

The testing dataset comprised 2310 samples from 165 participants

classified as negative cases and 154 samples from 11 participants clas-

sified as positive cases. Random sampling of the available negative

sampleswas performed as described in the preceding section as a large

imbalance between negative and positive cases could artificially inflate

the accuracy of the AI model and hinder the evaluation of the model.

In total, 154 samples were extracted from the 2310 negative samples

in the original testing dataset during each random sampling and com-

bined with the 154 positive samples in the original testing dataset.

Thus, a smaller butmore balanced testing dataset comprising 308 sam-

ples was created. Random sampling was performed 30 times to yield

30 new testing datasets that differed from each other. These sets were

used to validate the classificationmodel.

3.5 Deep learning model

The model comprised the channel attention mechanism, multilayer

perceptron, and SoftMax (Figure 2A). The 13 feature datasets (13

channels) were the input, and the probability of being classified into a

class (presence or absence of cognitive impairment) was the output. A

F IGURE 2 Deep learningmodel used in this study. A, Structure of
themodel and (B) the internal structure of sublayers 1 and 2

fully connected layer was placed before the SoftMax layer. Figure 2B

depicts the internal structure of the sublayer, comprising a linear layer,

GELU activation function, and Batch Norm 1D layer. The internal
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TABLE 1 Parameters of the deep learningmodel.

Parameter Setting

Optimizer AdamW

Learning rate 1.E-03

Betas (0.9, 0.999)

Eps 1.E-08

Weight decay 0.01

Max epoch 1000

Dropout 0.2

Label smoothing 0.2

structures of the two sublayers in themultilayer perceptronwere iden-

tical. Sublayers1 and2consistedof 8 and4units, respectively. The liner

layer consisted of 2 units.

Python (version 3.7.16) and PyTorch (version 1.10.2) were used to

test the proposedmodel. The PyTorch seedswere set at 100 during the

experiment. AdamWwas used as the optimizer during training, and the

learning rate was set to 1e-3. The remaining parameters were main-

tained at their default values using PyTorch. The number of epochs

was set to 1000 during training, the model dropout was set to 0.2, and

label smoothing was set to 0.2 as a regularization method to suppress

overfitting. To address the concern about overfitting and the choice of

parameters, we conducted experiments using grid search with vary-

ing values for label smoothing and dropout rate. Specifically, we tested

the following three conditions: [0,0], [0.1,0.1], and [0.2,0.2]. Table 1

presents the details of the learning parameters.

3.6 Statistical analysis

Differences in demographic characteristics between the negative and

positive groupswere assessedusing the t test and chi-squared test. The

dimensions of the features were reduced to two using principal com-

ponent analysis (PCA), and a scatter plot was drawn for each dataset

to determine whether the characteristics of the training and testing

datasets were identical. In addition, the accuracy, F1 score, sensitivity,

specificity, false negative and positive rates, and positive and nega-

tive predictive values were calculated for each testing dataset. The

means, standard deviations, and ranges of these measures were cal-

culated subsequently. The positive predictability of each sample was

determined using the final output of the SoftMax function in the AI

model. The areas under the curve (AUCs) of each testing dataset were

calculated. The overall receiver operating characteristic (ROC) curve

was created using 2464 samples in the testing dataset. All statistical

analyses were performed using SPSS version 27 (IBMCorporation).

4 RESULTS

Of the participants analyzed, 346 were men and 533 were women.

The analysis included 825 healthy individuals (negative case) and 54

individuals (positive case)with cognitive impairment. The demographic

characteristics of the participants in the positive and negative groups

are shown in Tables 2 and 3. Participants were significantly older in the

positive group than in the negative group, and normal walking speed,

maximum walking speed, and MMSE scores were significantly higher

in the negative group than in the positive group. The proportion of

women was significantly higher in the negative group than in the pos-

itive group. The prevalence of hypertension was higher in the positive

group than in the negative group.

The PCA plots of the training and testing datasets were similar

(Figure 3). Using grid search, we experimented with the hyperparam-

eters of label smoothing and dropout at values of [0,0], [0.1,0.1], and

[0.2,0.2] (Figure 4). We observed excessive overfitting in the [0,0] con-

dition (no label smoothing and no dropout). The training accuracy was

significantly higher than the testing accuracy, indicating that themodel

was not generalizing well to unseen data. In the [0.1,0.1] condition,

there was still noticeable overfitting, but to a lesser extent compared

to the [0,0] condition. The gap between training and testing accu-

racy persisted, suggesting that the regularization was insufficient. In

the [0.2,0.2] condition, the overfitting was considerably reduced. The

training and testing accuracies were more aligned, indicating better

generalization. Therefore, we adopted this setting for our final model.

Table 4 presents the basic statistics of the accuracy measurements for

the 30 testing datasets. The mean accuracy, F1 score, sensitivity, and

specificity of the 30 testing datasets were 0.802, 0.831, 0.961, and

0.643, respectively. The mean AUC was 0.833. Figure 5 presents the

ROC curve for the total of 2464 testing dataset samples.

5 DISCUSSION

This study underscores the efficacy of using linear acceleration and

angular velocity data acquired during one comfortable walking stride

to distinguish community-dwelling older adults with and without cog-

nitive impairment. Notably, a high average sensitivity of 0.961 was

observed, indicating that most individuals with cognitive impairment

were correctly identified. However, the study’s specificity, at 0.643,

was low, indicating a moderate false positive rate. Nevertheless, the

positive predictive value, at 0.736, was moderate, and the negative

predictive value, at 0.941, was particularly robust, underscoring the

reliability and use of this AI model as an initial screening tool.

Ruengchaijatuporn et al. used the AI interpretations of the clock-

drawing test to differentiate between individuals with and without

MCI and reported F1 scores of 0.74 to 0.84.26 The model developed

in the present study yielded comparable results, with F1 scores of

0.736 to 0.928. The model used herein may be a more suitable initial

screening tool for cognitive impairment than the method proposed by

Ruengchaijatuporn et al.26 as it is simple, and the data can be collected

non-intrusively. Our method, if it can be deployed using a cell phone

or other wearable technology (watch), does not require the patient to

make changes in their daily routine. Theydonot have to visit a clinic but

can bemonitored remotely.

The significance of the model developed herein lies in its accu-

racy and applicability. Unlike themodels developed in previous studies,
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TABLE 2 Demographic characteristics of the study participants.

Negative (n= 825) Positive (n= 54) Overall (N= 879)

Mean SD Mean SD Mean SD

Age, years 73.3 4.97 76.7† 4.65 73.5 5.02

Height, cm 155.6 8.39 156.2 8.07 155.6 8.37

Weight, kg 55.5 10.22 54.9 9.41 55.4 10.17

Grip strength, kg 25.6 7.88 24.8 8.16 25.5 7.90

Normal walking speed, m/s 1.4a 0.22 1.2 0.29 1.4 0.23

Maximumwalking speed, m/s 1.9a 0.33 1.6 0.39 1.8 0.34

MMSE score 28.1a 1.60 21.1 2.64 27.7 2.39

Abbreviations:MMSE,Mini-Mental State Examination; SD, standard deviation.
aSignificantly higher than the other group (paired t test, P< 0.05).

TABLE 3 Sex distribution and the prevalence of selected chronic diseases among the participants.

Negative (n= 825) Positive (n= 54) Overall (N= 879)

Number of

participants

Percentage of

participants

Number of

participants

Percentage of

participants

Number of

participants

Percentage of

participants

Women 513 62.2a 20 37.0 533 60.6

Chronic disease

Hypertension 371 45.0 28 51.9a 399 45.4

Stroke 40 4.8 6 11.1 46 5.2

Heart disease 133 16.1 8 14.8 141 16.1

Diabetes 94 11.4 9 16.7 103 11.7

aSignificantly higher than the other group (chi-squared test, P< 0.05).

F IGURE 3 Scattergram of the principal component analysis of the training and testing datasets

the AI model developed herein was constructed using data from a

community-dwelling cohort. AI models rely heavily on training data.

Therefore, they should be constructed using datasets that are faithful

to the classification target.27 Secondary gait disturbances reportedly

become more pronounced as the duration since the dementia diagno-

sis increases.28 Thus, gait differences in these individuals were more

pronounced than those in the community-dwelling cohort data. Sig-

nificant differences in the datasets can enhance the accuracy of the
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F IGURE 4 Results of the experiments using grid search with varying values for label smoothing and dropout rate

TABLE 4 Statistical performancemetrics of the artificial intelligencemodel across 30 testing datasets.

Mean Standard deviation Minimum Maximum Count

Accuracy 0.802 0.063 0.656 0.925 30

F1 score 0.831 0.046 0.736 0.928 30

Sensitivity 0.961 0.000 0.961 0.961 30

Specificity 0.643 0.126 0.351 0.890 30

False negative rate 0.039 0.000 0.039 0.039 30

False positive rate 0.357 0.126 0.110 0.649 30

Positive predictive value 0.736 0.072 0.597 0.897 30

Negative predictive value 0.941 0.012 0.900 0.958 30

AUC 0.833 0.072 0.705 0.976 30

Abbreviation: AUC, area under curve.

AI models; however, the present study demonstrated that the accu-

racy of community-based datasets was similar to or even greater than

that of models developed with traditional case–control datasets. To

our knowledge, this is one of the few studies using community-based

research to effectively assess cognitive impairment using AI, indicat-

ing the potential applicability of our AI model in real-world social

settings.29

Individuals with cognitive impairment are often underdiagnosed, as

demonstrated by comprehensive surveys in our region, which revealed

that many individuals with MCI or dementia remain undiagnosed.30

Thus, by the time they undergo a cognitive function test, they often

present with dementia that has progressed to a point at which inter-

ventions are no longer effective.31 Consequently, an increasing need

exists to develop a method to screen for cognitive impairment in a

healthy state, which can be administered conveniently, thereby facil-

itating the implementation of appropriate interventions on a timely

basis.32 Decentralized clinical trials (DCTs)32,33 are under way to

address these issues. DCTs actively enroll individuals in a research

project at a healthy stage and monitor their cognitive function regu-

larly without them having to attend specialized medical institutions.

Recommendations for further screening tests, such as MMSE, MoCA,

or computed tomography scans, are made if cognitive impairment

is detected. Multilayered screening can help detect early dementia

symptoms and facilitate more efficient medical resource use.34 The

streamlined method used in the present study for daily cognitive

function monitoring may be especially beneficial for screening pur-

poses. Moreover, it can be implemented as part of a multilayer

screeningprocedure. Furthermore, thisAImodel canbe integrated into
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F IGURE 5 Receiver operating characteristic (ROC) curve for the
testing dataset samples

smartphone applications as the sensors used herein (accelerometers

and gyroscopes) are standard smartphone components. Achieving this

goalwill opennewavenues for screening applications, thus highlighting

the greater social impact of our study.

The classification of multichannel time-series signals was devel-

oped by exploring various AI model architectures. Typically, longer

short-term memory-based models35 are preferred as they can han-

dle sequential data; however, these models are prone to overfitting.

Convolutional neural network-based models are often implemented

after converting the data into images via wavelet analysis or similar

techniques.36 However, these AI models could not detect cognitive

impairment with sufficient accuracy in our preliminary analysis. There-

fore, a multilayer perceptron-basedmodel enhanced with an attention

mechanism37,38 was designed using the global average poolingmethod

to achieve high discrimination accuracy with fewer computational

resources. The present study’s findings are promising, demonstrating

moderate classification accuracy with an average F1 score of 0.780.

Although our AI model exhibited sufficient accuracy for screen-

ing, its accuracy can be improved further by adding the variance

of each data feature rather than using only their average values as

inputs. Abnormalities in gait rhythm correlate with cognitive function

decline.39,40 The decline in gait speed is more closely related to gait

rhythm rather than stride length.41–43 Moreover, compared to those

in the highest quartile, the participants in the lowest quartile of gait

rhythms were 1.89 and 1.66 times more likely to develop cognitive

impairment and dementia, respectively.43 This rhythmic abnormality

also resulted in a decreased gait rhythm and an increased variability.

Compared to low or moderate variability, high variability in gait was

associated with a 12-fold higher risk of developing MCI in a 4-year

prospective study.19 Gait rate and variability were related to dementia

onset in the study by Darweesh et al.44 Increased variability in walk-

ing rhythm is also associatedwithwhitematter hyperintensity.45 These

studies’ findings underscore the potential for improving the predictive

capabilities of the AI model by addingmeasures of variability.

The present study has certain limitations. The primary concern is

the limited number of individuals with cognitive impairment included

in the study. A bootstrap method was used to statistically estimate the

range of sensitivity and specificity to address this limitation. However,

using a large sample of individuals with cognitive impairment is pre-

ferred for creating a robust AI model. The high sensitivity compared

to the specificity obtained in this study may also be because positive

sampleswere used repeatedly in the training and testing datasets. Cur-

rently, guidelines regarding the sample number required in a dataset

for classification by AI have not been established; however, 54 posi-

tive cases is considered small. In such cases, learningmay not converge,

or overfitting may occur. Fortunately, an accurate model was created

in the present study despite these limitations. Nevertheless, increas-

ing the case number and verifying the validity would be advantageous.

The prevalence of cognitive impairment among community-dwelling

older adults was 6% in the present study, suggesting that ≈ 10 times

the number of participants in the cohort must be enrolled to obtain

enough cases for constructing the AI model. The diagnosis of positive

cases was based on MMSE scores alone. A more detailed diagnosis

may be necessary.We could not examine the detailed demographics of

participants, such as the history ofmedications, depression, and neuro-

muscular abnormalities, in this study. In addition, lowMMSE scores can

be attributed not only to cognitive impairment but also to inattention,

drowsiness due to poor sleeping quality, and uncooperative disposi-

tion, thereby limiting the prediction of future dementia using only one

MMSE test. In this study, we used 10-m steady-state walking data to

develop our model; however, the effects of cognitive impairment may

bemore pronounced during the initiation or turning phases of walking.

We believe further research is warranted to analyze various phases of

walking for improving themodel’s accuracy.

Second, thepresent studyused cross-sectional data to construct the

AI model. Although the AI model could identify individuals with cog-

nitive impairment, it could not predict future cognitive decline. The

current AI model has the potential to be used as a screening tool for

detecting cognitive impairment in older adults. To establish themodel’s

utility as a predictive tool, future studies should use a prospective

design. It would be preferable for an AI model to predict cognitive

decline years in advance to facilitate earlier interventions, given that

the degenerative changes responsible for cognitive decline develop

relatively early.46 Additionally, we did not perform hyperparameter

tuning as we achieved sufficient accuracy with the initial settings in

this study. However, hyperparameter tuning could potentially lead to

slight improvements inmodel accuracy. Further research exploring this

aspect is warranted to optimize the predictive model’s performance.

Because our study aims to explore the potential sensor-based applica-

tion for issuingprecautionary alerts before clinical visits,we limitedour

model to variables that can be obtained using sensors; thus, we did not

account for any covariates or comorbidities. However, future studies

should consider the covariates that can affect walking.

Finally, the AI model developed in the present study was con-

structed to classify individuals with an MMSE score < 24, a threshold

commonly used to detect dementia. Thus, participants in a transitional

state, known as those with MCI, were included in the healthy group.
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These participants may have exhibited a gait pattern similar to that

observed in individuals with cognitive impairment despite possessing

MMSE scores > 24. Owing to our model’s relatively low specificity,

the number of false positives is not insignificant. A web-based cogni-

tive test, Compbased-CAT, has been designed to detect and predict

MCI47,48 in such participants. This secondary screening tool can help

distinguish thepresenceofMCI in patientswhowere initially identified

as false positives.

In summary, the AI analysis of the acceleration and angular veloc-

ity of one stride during comfortable walking used in the present study

could reasonably identify cognitive impairment in community-dwelling

older adults. Fostering andmotivating further research in this fieldwith

other datasets is warranted.
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