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Abstract

Abnormal gamma band power across cortex and striatum is an important phenotype of Huntington’s disease (HD) in
both patients and animal models, but neither the origin nor the functional relevance of this phenotype is well
understood. Here, we analyzed local field potential (LFP) activity in freely behaving, symptomatic R6/2 and Q175
mouse models and corresponding wild-type (WT) controls. We focused on periods of quiet rest, which show strong
v activity in HD mice. Simultaneous recording from motor cortex and its target area in dorsal striatum in the R6/2 model
revealed exaggerated functional coupling over that observed in WT between the phase of delta frequencies (1-4 Hz)
in cortex and striatum and striatal amplitude modulation of low vy frequencies (25-55 Hz; i.e., phase-amplitude
coupling, PAC), but no evidence that abnormal cortical activity alone can account for the increase in striatal -y power.
Both HD mouse models had stronger coupling of y amplitude to 6 phase and more unimodal phase distributions than
their WT counterparts. To assess the possible role of striatal fast-spiking interneurons (FSls) in these phenomena, we
developed a computational model based on additional striatal recordings from Q175 mice. Changes in peak vy
frequency and power ratio were readily reproduced by our computational model, accounting for several experimental
findings reported in the literature. Our results suggest that HD is characterized by both a reorganization of cortico-
striatal drive and specific population changes related to intrastriatal synaptic coupling.

Key words: fast-spiking interneuron; gamma; Huntington’s disease

(s N

In Huntington’s disease (HD), functional impairments first impact movement (chorea, dyskinesia) and cognition
(executive functions, abstract thinking). Neuronal dysfunction associated with deficits appear first in cerebral
cortex and striatum, which displays abnormally strong power in the low y band (25-55 Hz). Fast-spiking
interneurons (FSIs) are a neuronal subtype putatively capable of forming networks that resonate at the vy
frequency. Here, we show that FSI networks can implement an early routing bias for more abundant neuronal
subtypes in striatum. Specifically, by analyzing in vivo electrophysiological recordings from HD mice at rest when
v is strong and using computational modeling, we identify coupling changes between cortex and striatum
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Introduction

The inherited neurodegenerative condition Hunting-
ton’s disease (HD) is caused by an excessive number of
CAG repeats in exon 1 of the mutant huntingtin gene
(mHTT; Ross et al., 2014). This gene is a critical player in
broad and important intracellular functions such as endo-
cytosis and trafficking (Velier et al., 1998; Nath et al.,
2015). HD affects ~0.013% of the population of Western
countries (Bates et al., 2015), and age of onset varies, with
a mean of ~40 years. Symptoms appear slowly, include
progressively worsening cognitive deficits and motor dis-
turbances (chorea), and result in a fatal last stage involv-
ing severe and debilitating behavioral dysfunction (Roos,
2010). Postmortem histology and imaging studies re-
vealed substantial cortical thinning owing mainly to a loss
of cortical output neurons, and a drastic reduction in
striatal size and weight (Cepeda et al., 2007).

Although no single animal model fully captures HD
symptomatology and progression, two transgenic mouse
lines reflect the wide phenotypic range and are currently
used to assess mHTT’s mechanisms of action and test
therapeutic strategies (Leuchter et al., 2017; for review,
see Rangel-Barajas and Rebec, 2018). The R6/2 mouse
line, which contains exon 1 of mHTT, has been most
widely investigated. Symptoms in this model show early
onset (approximately two months of age) and progress
over the next few months to immobility and death (Man-
giarini et al., 1996; Li et al., 2005). The Q175 mouse line is
a knock-in model that expresses mHTT in its proper
genetic context and shows symptoms with onset in adult-
hood (more than five months of age) that progress rapidly
in homozygous (HOM) but more slowly in heterozygous
(HET) animals (Menalled et al., 2012).

Electrophysiologically, both R6/2 and homozygous
Q175 mice show increased low-frequency y power (25-50
Hz) in dorsal striatum (Hong et al., 2012; Rothe et al,,
2015), which when coherent with cortical oscillations, has
been implicated in motor decisions and cognitive learning
(Berke et al., 2004; Pennartz et al., 2009; Popescu et al.,
2009). As the primary input structure of the basal ganglia,
the striatum receives topographically ordered afferent
connections from all areas of cortex (Hintiryan et al.,
2016). Although the role of the striatum in integrating
cortical states for downstream behavioral processing
through multiple parallel pathways has been heavily in-
vestigated (Steiner and Tseng, 2016; Jaeger and Kita,
2011; Kreitzer and Berke, 2011), the functional implica-
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tions of striatal y are still poorly understood. Some
evidence suggests that y emerges from fast-spiking in-
terneurons (FSls) within the striatal microcircuit and sup-
ports fast action-selection by biasing the circuit from
adversarial to automatic behavior selection (Gage et al.,
2010; Berke, 2011).

In addition, other frequency bands in brain areas that
interact with striatum are also disrupted in HD. For exam-
ple, 6 band (0.5-4 Hz) and « band (8-12 Hz) EEG powers
are increased in cortex of HD patients, and the relative
anteroposterior gradient is lost (Hunter et al., 2010). Here,
we investigate the relationships between different fre-
quency bands and the circuit disruptions that might ex-
plain them. By analyzing data from experimental mouse
models and simulating a neuronal network of FSls in a
computational model, our aim was to inform striatal circuit
modifications in HD that might also explain changes in the
behavioral phenotype.

We hypothesized that disruptions giving rise to abnor-
mal power in striatal frequency bands emerge from one or
more of the following changes: (1) abnormal cortical ac-
tivity, (2) abnormal cortico-striatal integration and/or cou-
pling, and (3) disruptions to intrastriatal circuitry. We
aimed to test each hypothesis by first analyzing phase
relationships between and within channels recorded si-
multaneously from electrode bundles chronically im-
planted in both motor cortex and dorsal striatum of R6/2
mice and dorsal striatum of hetero- and homozygous
Q175 mice. We examined phase-amplitude coupling
(PAC) between cortical & and striatal y oscillations using a
signal processing routine for extracting transient in-
creases in y band power (i.e., “y events”). We then cre-
ated a computational network model of FSls inspired by
the work of Traub et al. (2001) and subjected it to the
same analysis as our experimental data to investigate
striatal y. We used experimental  band cortical local field
potential (LFP) time series, shown to be unchanged be-
tween HD and wild type (WT), as inputs to our striatal FSI
network and constrained by connectivity statistics and
synaptic time constants from current literature on mouse
striatal FSIs (Cepeda et al., 2013). Either WT or HD & band
cortical driving inputs resulted in HD v statistics by vary-
ing gap junctional coupling between FSls, intra-FSI syn-
aptic conductances, or cortico-FSI synaptic strength.

Materials and Methods

Experimental procedures

Data were obtained from two HD models and their
respective WT background line littermate controls, each
obtained from The Jackson Laboratory. R6/2 mice
(B6CBA-TgN [HD exon 1] 62Gpb), a truncated HD model,
express an expanded CAG repeat in exon 1 of the human
HD gene. In Q175 mice (C57BI/6), a knock-in HD model,
the expanded CAG repeat is “knocked into” its proper
genetic context. Only male mice were used. All mice were
genotyped to confirm CAG repeat length as determined
by PCR from tail tissue samples as previously described
(Miller et al., 2008). For both models, CAG repeat lengths
ranged between 125 and 185. Both models were symp-
tomatic at the time of recording: 8—10 weeks of age for

eNeuro.org


mailto:kozloski@us.ibm.com
https://doi.org/10.1523/ENEURO.0210-18.2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

R6/2s (Mangiarini et al., 1996) and 30-45 weeks of age for
Q175s (Menalled et al., 2012). Animals were housed under
controlled temperature and humidity conditions in an
AAALAC-approved facility in the Psychology Building at
Indiana University, Bloomington. Mice were maintained
on a 12/12 h light/dark cycle with lights on at 07:30 A.M.
and with free access to food and water. Testing occurred
around the mid-point of the light phase. Animal use was in
accord with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals and approved by the
local Institutional Animal Care and Use Committee. All
efforts were made to minimize suffering and the number
of animals used in these experiments.

Details of the experimental procedures have appeared
elsewhere (Hong et al., 2012). For R6/2 experiments, each
electrode bundle consisted of four recording micro-wires
(each 25-um diameter insulated stainless steel) and one
ground wire (50-um diameter uninsulated stainless steel).
Each wire was friction-fitted to gold-plated pin connectors
in polyphenylene sulfide insulators. Two sets of insulators
were glued together to record simultaneously from pri-
mary motor cortex (M1) and dorsal striatum; one micro-
wire bundle was cut to 0.5 mm in length, while the second
was cut to 3.0 mm. For Q175 experiments, one electrode
bundle with eight recording micro-wires and one ground
wire targeted dorsal striatum. Cortical channels are refer-
enced to cortical reference electrode and striatal channels
are referenced to striatal reference electrode (both refer-
ence electrodes are connected to the recording system’s
amplifier ground). In all cases, the head-mounted assem-
bly was designed to be lightweight and well tolerated by
the mice (Miller et al., 2008; Hong et al., 2012).

For electrode implantation, mice received meloxicam (1
mg/kg; s.c.) followed by anesthesia with a mixture of
chloral hydrate and sodium pentobarbital (chloropent: 170
mg/kg chloral hydrate and 40 mg/kg sodium pentobarbi-
tal) administered intraperitoneally at 0.4 mil/100 g body
weight. Mice were secured in a stereotaxic frame, and
following a midline scalp incision, a hole was drilled +0.5
mm anterior and =1.5 mm lateral to bregma (Paxinos and
Franklin, 2001). Two additional holes in the contralateral
hemisphere were used for placement of stainless-steel
anchor screws. Electrode bundles were lowered into M1
and/or dorsal striatum (0.5 and 3.0 mm ventral to brain
surface, respectively). Dental acrylic fixed the electrode
assembly in place on the skull. Mice were allowed one
week of recovery before testing, which continued at reg-
ular intervals (weekly for the R6/2 experiments and
monthly for the Q175 recordings). On LFP recording days,
male gold pins attached to a lightweight flexible wire
harness equipped with field-effect transistors were in-
serted into the head-mounted electrode assembly. The
harness was attached to a swivel to allow free movement.
LFPs were routed through preamplifiers with 1000X gain
and 0.7-170 Hz filters (Plexon). Mice were placed in an
open-field arena (25 X 18 cm with outwardly angled walls
17 cm high) housed in a sound-attenuating and electri-
cally shielded recording chamber. After a 5- to 10-min
habituation period, data were collected for 20 min. Open-
field behavior was videotaped and synchronized with
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electrophysiological recording. Behavioral episodes were
time-stamped and categorized as quiet rest, grooming, or
exploration based on visual observation of episodes sus-
tained for at least 3 s as previously reported (Hong et al.,
2012). Videotapes were coded by independent observers
blind to genotype.

Data analysis

All datasets were archival when shared with research-
ers from IBM, and no new experiments were suggested,
designed, or performed based on these analyses. The first
dataset contained simultaneous recordings for 12 R6/2
mice and 13 corresponding WT mice. All mice in this
dataset had electrodes implanted in dorsal striatum and
motor cortex. The behavioral states of the animals were
time-stamped as “quiet rest,” “grooming,” or “explora-
tion,” based on visual observation of the sustained state
for at least 3 s. Figure 1A shows the proportion of time in
each state for each animal of a specific type, and time not
labeled according to any of the three behavioral states
caused proportions to sum to less than one for each
animal.

The second dataset contains 8 homozygous Q175
mice, 34 heterozygous Q175 mice and 41 corresponding
WT mice. Fewer periods of quiet rest for the heterozygous
Q175s and WTs were compensated by the larger number
of animals than those in the first dataset (Fig. 1A).

Amplitude, frequency, and phase modulations

Phase and amplitude modulations were computed
based on the analytic phase and analytic amplitude de-
rived from the Hilbert transform (Freeman, 2004a,b, 2007)
for the 6 band activity. The LFP signal was adjusted to
have zero mean then low pass filtered with 4 Hz cutoff
frequency (Fig. 2A). We used a 4th order Butterworth
zero-phase forward and reverse filter to avoid phase dis-
tortion. The derived § band signal (x%) was Hilbert-
transformed (#) resulting in a representation of the signal
in the complex plane from which we could extract the
analytic amplitude and phase. (Note that & does not sym-
bolize the Kronecker 8, a commonly used input-response
function in signal processing, but instead the & band of
the signal of interest.)

The analytic amplitude A, of electrode j is computed as
the square root of the sum of squared real and imaginary
parts of the Hilbert transform:

A® = VRe((®))? + Im(H()))?

For each animal, we normalized the squared analytic
amplitude of each channel by the averaged squared an-
alytic amplitude over channels: A2(t)]| = AZ(t) | 2 AA().

J

The measure of amplitude modulation in time (over the
whole quiet rest period) for one channel is then given by
the SD of the normalized squared analytic amplitude
SD-(j) = SD(|A?(t)Il), and we used the average of those SD
s across channels as a global measure of temporal am-
plitude modulation for each animal. (The error bars in Fig.
3 are then the SD of SD; across channels.)
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Figure 1. Proportion of time spent in each labeled state and corresponding relative power spectra during quiet rest for each animal
type. A. Proportion of time spent in each of the three labeled states, normalized by total recording time. Behavioral states needed to
be sustained for at least 3 seconds to be labeled. B. Power Spectrum Density (PSD) of cortical (blue) and striatal (red) recordings
during quiet rest, averaged over all animals (SD shown by shaded region). Each channel’s PSD was normalized by its total power over
the beta (15-20 Hz) frequency band so that the average spectrum was not biased toward higher amplitude channels. C. Same as B

with each channel normalized by 1/f2.

The analytic phase P, of electrode j is computed as the
arctangent of the ratio of the imaginary over the real part
of the Hilbert transform:

Im(F(x>t)
Pt = tan”’ (—( U )))
Re(#(x?®))

The arctangent was calculated using the four-quadrant
inverse tangent function (atan2 in MATLAB), which takes
values between — w and w and, when reaching m, falls to
— a once in each cycle (Freeman, 2007). The resulting
time series P((t) is not continuous (a saw tooth curve). to
evaluate the phase slip of a single analytic phase time
series over large recording periods, the disjoint phase
sequences were first straightened by adding 2= to the
arctangent function at each jump to get the unwrapped
analytic phase p,(t). The slope of the ramp, computed by
the instantaneous derivative D,(t), then gave the mean
frequency over the duration of the time interval when fitted
to a straight line.

D = |p®d|—|pt — D]

The deviation from this mean frequency indicates a
phase slip, such that a higher SD of D, across the time
series indicates stronger phase modulation in channel .
The mean frequency averaged across cortical channels
for each animal is shown in Figure 3 and the averaged
phase modulation across channels is indicated by error
bars.

The phase difference at time t between any pair of
electrodes is calculated by subtracting the instantaneous
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phase P(t) of signal x(f) by the instantaneous phase
P,(t) of signal x(t):

Extraction of y events

Analysis was restricted to periods of quiet rest (Hong
et al.,, 2012), the most frequently observed behavioral
state among WT, R6/2, and Q175 HOM mice (Fig. 1A),
during which significant increases in y power reliably
occurred. These recordings X were zero-centered by sub-
tracting the mean signal <X) and bandpass filtered (BPF)
within the low vy frequency range (25-55 Hz), then full-
wave rectified.

X' = ||BPFys_ 55X — XD

The resulting signal was low-pass filtered (LPF) at 15 Hz
cutoff to yield the envelop of the y band signal xXf(t):

XEP®) = LPF,_s(|x®]).

Both steps used a 4th order Butterworth filter with
zero-phase forward and reverse filtering to avoid phase
distortion.

Finally, the envelope signal xf was z-score normalized:
XE® = xF — (xF)[sd(xF) where sd(xf) is the standard
deviation of variable x~.

Epochs during which the normalized signal exceeded a
threshold (2.5 SD from the mean) were considered vy
events, the peaks of which were among the highest 0.6%
of detected peaks and marked the exact timing of each
strong fluctuation in LFP y power:
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Figure 2. Time series analysis and delta band phase difference during quiet rest. A. Time series analysis. Raw LFP simultaneous
recordings from 2 electrodes (X, X,) are processed separately. X, is band-pass filtered at 25-50 Hz to extract low-gamma signal vy,
and gamma events (red circles) are extracted from the envelope of this gamma signal (green trace). X, is low-pass filtered at 4 Hz
cutoff to extract the delta band activity (8,), of which the instantaneous phase is extracted using the angle of the Hilbert transform
(H(8,)). The phase thetai at which gamma events occur on the delta oscillation is derived from the value of H(8,) at the time of the event
ti. Traces taken from WT animal #1 for illustrative purpose. B. Example of projections onto the unit circle of all delta phases at which
gamma events occur, for one pair of channels. Each red circle indicates the phase of the event. The distribution of phases at which
gamma events occur is shown in a polar histogram (orange). The arrow pointing from the origin represents vector strength of
phase-locking (length) and mean phase of gamma events (orientation). Left: channel with strong gamma event delta phase-locking.
Right: channel without gamma event delta phase-locking. Sample phases from time series in A) are denoted in purple. C. Circular
distributions of delta phase difference across channels located in cortex only (Ctx-Ctx, blue), in cortex and striatum (Ctx-Str, green)
and in striatum only (Str-Str, red). Animal types are denoted by different line types (legend inset). Delta phase difference between two
white noise signals is shown in gray. 0° stands for zero phase difference i.e. synchronization of delta rhythm oscillations across

channels.

Yevent(toear) = Max (XE(D)re, XE(D € (XE) > 2.5)7¢,

where T represent the set of time points at which xE(t)
exceeds 2.5, and XE(T) is the value of the z-scored y
envelope at those points. It is important to note that the y
event extraction algorithm depends on a statistical
threshold of the given time series, and therefore detects
events regardless of the overall signal power in the vy
band. An exclusion criterion was applied to exclude
events resulting from broad band power increases by
selecting only vy events that do not co-occur with transient
power increase in a (8-12 Hz), B (13-24 Hz), and high y
(>60 Hz) bands. In the case of a flat power spectrum with
weak power in the vy range (Fig. 1B,C, WTs), the extracted
v events may only represent noise fluctuations, but when
v power is stronger (Fig. 1B,C, R6/2 and Q175 HOM), the

November/December 2018, 5(6) €0210-18.2018

events additionally capture transient and significant (with
respect to other frequency bands) increases in y power.
There were no qualitative differences by visual inspection
between vy events across the different mouse strains.

o0 Phases at y events

We determined the distribution of 6 phases at which vy
events occur using the exact time of a y event, 0,,(t,.)
and the corresponding phase derived from the value of
the imaginary part of the Hilbert-transformed 8 signal (Fig.
2A). The resulting distribution of y event phases describes
how vy events phase-locked to the slower 6 oscillation. A
circular normal (von Mises) distribution indicates phase-
locking with strength proportional to its kurtosis (Fig. 2B,
left), whereas a uniform distribution denotes the absence
of phase-locking (Fig. 2B, right). Statistical significance of
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Figure 3. Delta phase and amplitude modulations are comparable across cortex and striatum. Top: Phase modulation computed as
the slope of the unwrapped analytic phase in the delta band, averaged over cortical (blue squares) and striatal (red circles) channels
for each animal. Larger symbols on the right indicate the mean slope, corresponding to the mean frequency of the filtered signal (note
that 1Hz = 27 rad/s). The degree of phase modulation resides in deviations from the mean, indicated by error bars. Bottom: Amplitude
modulation (AM) computed as the standard deviation (SD) of the squared analytic amplitude in the delta band for each cortical (blue
squares) and striatal (red circles) channels. Larger symbols on the right indicate the averaged SD across cortical channels per animal
(see Methods), a value close to 0 indicates weak AM and deviation from 0 indicates stronger AM signals. Note that some animals do
not have channels in every structure (no symbols), or have only one channel per structure (zero SD).

non-uniformity of the phase-locking distribution was as-
sessed using a Rayleigh test. Statistical tests for unimo-
dality versus multimodality of the phase distribution was
performed using Hartigan’s Dip test (Hartigan and Harti-
gan, 1985), of which the p value p — 1 when the distri-
bution is unimodal and p — 0 /A dip = 0.1 when the
distribution is multimodal. Channels with <50 vy events,
due to quiet rest periods being too short, were dismissed
from the analysis. Circular statistics were performed using
the CircStat MATLAB toolbox (Berens, 2009).

Correlation between y events

The temporal correlation of y events was computed
across pairs of recordings. For this correlation analysis, y
events previously represented as single time points cor-
responding to amplitude maxima in the y band-passed
envelope were transformed into a binary time series by
computing the z score and thresholding the envelope at
2.5 times the SD:

1 X&(D >0

YorordT) {O otherwise

Therefore, temporal correlations of y events between
channels were computed from continuous periods of el-
evated y power in contrast to the single timestep ¢,
described in the previous section. Pearson correlation
coefficients between pairs of electrodes’ binary time se-
ries were computed using MATLAB’s built-in corr func-
tion.

Spectral analysis

Power spectral densities were computed using Thom-
son’s multi-taper power spectra estimate in MATLAB.
Briefly, the multi-taper method uses multiple windows
(tapers) chosen based on their statistical independence to
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estimate spectral density. In contrast, the standard Welch
method uses averaged periodograms constructed from
multiple overlapping segments of the signal to reduce
variance of the spectral density estimate. This introduces
redundancy and is more computationally intensive. Fou-
rier coefficients were computed between 0.5 and 100 Hz
at intervals of ~0.5. Power line artifact at 60 Hz was
removed by choosing an increment close to but not equal
to 0.5, such that the amplitude of the Fourier coefficient at
exactly 60 Hz was not computed. Finally, coefficients
were normalized (unless otherwise specified) to the aver-
age amplitude of the g frequency band (f, = [15-20] Hz;
Fig. 1B), which is not modulated in animals at rest,
thereby removing any bias resulting from constant energy
over the whole frequency spectrum (see Discussion).
Spectra with a 1/f normalization are shown in Figure 1C
to emphasize the peak in the low vy frequency band.

Time-frequency transformations (i.e., spectrograms)
were performed by convolving the signal s(t) with a Morlet
wavelet w(t) as described in Tallon-Baudry et al. (1996)
and von Nicolai et al. (2014):

v, H = s®OQw, N .

The complex Morlet wavelet has a Gaussian shape both
in the time (SD ;) and frequency (SD o;) domains around
its central frequency f,:

w(t, fy) = A_ej2'nf0t,e—t2/2zrt2

where A = \/2_1T/Fsa, is a normalization factor, o, =
1/2moy, o, = fy/ g, and g is a constant spectral width of
five cycles. We also used a constant temporal width of 40,
and set f, to span values from 0.5 to 100 Hz by steps of
0.5 Hz. We kept only the wavelet coefficient by removing
the imaginary part of the output:
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Complex coherence

We computed the complex coherence based on the
cross spectral density estimates S, (Hbetween channel i
and channel j for the frequency band corresponding to
low-v: fe[25,55]Hz

S, = (XDX* D)

where X,() and X(f) are the discrete Fourier transforms of
time series of channel i and j, respectively, * means
complex conjugation and () denotes mean expectation
value. The coherence is then defined as the cross spec-
trum normalized by the square root of the products of
auto-spectra:

\/S, (DS,

and is complex valued for each frequency value f if chan-
nels i and channel j are phase shifted at this frequency.
Expectation values of spectral densities were estimated
during periods of quiet rest when a y event occurred in at
least one of the two channels.The projection of the com-
plex valued coherence onto the unit circle in polar coor-
dinates is done using Euler’s identity, where the norm r is
the magnitude of the coherence (1 when signals have
exactly the same frequency content) and angle ¢ is the
average phase shift (0 if signals are perfectly in phase at
frequency f). Re-writing C; ; = a + ib witha = Re((C; ;)) and
b = 1Im((C; ), then

r="Va? + b?

o =tan'(b/a)

Modeling

We aimed to create a model capable of reproducing
electrophysiological properties such as y band rhythmo-
genesis and inter-frequency relationships between y and
d oscillations. These broad validation targets seemed ac-
cessible to several modeling approaches, each of which
were useful for investigating interactions between neural
entities likely necessary to yield these phenomena. Mod-
els ranging from biophysically realistic neuron models
(e.g., the Hodgkin—-Huxley formalism) to mean-field ap-
proximations (e.g., the Wilson-Cowan model) were con-
sidered, and each presented pros and cons (Deco et al.,
2008). We chose a model of intermediate complexity, the
integrate-and-fire (IAF) neuron model of Mihalas and
Niebur (2009), which is well established and known for its
flexibility in reproducing a set of well-defined firing pat-
terns. In addition, this model is formalized in a computa-
tionally efficient implementation, allowing for efficient and
very large network simulations. Finally, our approach of
using networks of point neurons to investigate dynamics
and information transmission in oscillatory networks of
spiking neurons has been used successfully to explain
several complex mechanisms, from neuronal synchroni-
zation (Brunel, 2000) to sensory coding (Mazzoni et al.,
2008).
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Neuron model

We used a generalized IAF model, which previously
reproduced a wide range of spiking dynamics with a small
number of parameters (Mihalas and Niebur, 2009). The
normal form of the equations for ionic currents I,-, mem-
brane potential V and instantaneous firing threshold ® of
a single unit are

d _ K@;j=1,.,N
dt - j 1., - 3 ey

- (1—3(/ £ DO+ DL + L — GVeD) - EL)>
j i

CL—(? = a(V — E)) — b(®® — 0,)

for V(H) < ©,. When V() = 0,

Ity < R + It
Vit) < V,

O®) < max (0, 6,),

Where the subscript r denotes the reset value of the
variable after V() = O, and a spike is elicited, while
subscript j denotes the ionic current (here 2, as in the
original model). The membrane and threshold reset values
were V, = — 0.07V and ©, = — 0.06V. /; and /,,, are
synaptic and gap junctional currents injected from the
network. In the original published model, voltage and
threshold were reset on the time step subsequent to a
spike. Our model holds voltage at threshold for an addi-
tional 1 ms of simulated time after a spike, to approximate
the width of the physiologic action potential and allow
time for current to flow through gap junctions. Coeffi-
cients a and b describe the dependence of the threshold
on the membrane potential and were settoa = 5s~ ' and
b = 10 s~'. Membrane capacitance was set to unity,
C = 1, the leak rate of the membrane to G = 50 s~ ', and
the resting membrane potential (reversal potential of the
leak current) to E, = -0.07 V. The target threshold value
was set to ©, = — 0.05V, the current update constants
R; = 0and R, = 1 as well as all other parameters were set
according to values from the original published model
(Mihalas and Niebur, 2009) for Class 2 excitable neurons.

Coupling

We modeled GABAergic synapses using « functions
(Ermentrout and Terman, 2010) such that inhibitory post-
synaptic currents were:

I = gs:

—s, + 8t — 19

s =
r T,
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s = (—s + s,)’
Tr

where t* denotes the time of a pre-synaptic spike,
7, = 0.8ms, and 7, = 12ms, the rise and fall synaptic time
constants (Taverna et al., 2008).

Gap junctional coupling was modeled as a linear differ-
ence term added to the membrane potential equation
using a scalar factor p, which represents in normalized
arbitrary units the conductance of neuron to neuron cou-
pling. The current flowing into neuron j coupled to neuron
k across their gap junctions is then:

lian® = p(VO=V,(D)
keK
where K is a set of neurons coupled to neuron j through
gap junctions (bidirectionally, see network topology be-

low).

Network structure

FSls were populated evenly on a 3D mesh of dimension
27 X 27 X 27, totaling 19,683 neurons. Neurons were
separated from each other horizontally and vertically by
~113 um in the cubic mesh, such that their density
(693/mm?®) was within the range of experimentally ob-
served striatal FSIs in mice (500-1250 neurons/mm?; Luk
and Sadikot, 2001). Each neuron was connected via a gap
junction to each neighbor within a radius of 120 um with
a probability of 0.35, and via a GABAergic synapse to
each neighbor within a radius of 339 um with a probability
of 0.58 as described in Gittis et al. (2010).

Cortical drive

A set of 27 “cortical units” arranged on a 3 X 3 X 3
mesh, project topographically to the FSI network without
overlap, resulting in each cortical unit driving a set of 9 X
9 X 9 FSls. This drive is implemented using experimental
cortical LFP recordings, which were pre-processed to
approximate the cortico-striatal excitation. Each cortical
LFP was adjusted to have zero mean and then half-wave
rectified, such that only positive signal deflections from
the mean were injected as fluctuating excitatory drive into
the FSI population. Before injection, the signal was low-
pass filtered at 4-Hz-cutoff frequency to isolate the &
frequency band from the rest of the signal, z-score nor-
malized as above, and scaled (by a factor referenced in
the figures as “CtxFSI”) to elicit activity from the FSls. The
logic behind using the filtered experimental signal in the &
band as input to the FSI units is to reflect slow fluctuations
in excitation originating from cortex. Thus, the cortico-
striatal drive into the model FSI network represented a
scaled normalized & signal derived from real cortical LFPs.

LFP reconstruction

Modeled LFPs were reconstructed by applying a 3D
Gaussian kernel (K, ) to a specific region of the striatum
centered on a recording point (electrode) with coordinates
(Xes Yo Zo) and computing the kernel-weighted conduc-
tance of extracellular medium within or nearby that region:
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1 n — Xe)2+(Yn — Ye)2+(Zn — Zg)2
e 2

V2o 2o

where (x,,, ¥, Z,,) are the coordinates of unit n from the set
of neurons N, located within a distance of ~1.5mm (13
spatial units on the mesh) from the recording point, and o
is the SD of the spatially weighted field recorded by the
electrode (we used o = ~300 um or 2.65 mesh units). We
used a 4 X 4 X 4 3D grid of 64 recording electrodes to
reconstruct LFPs from across the striatal FSI network.
Electrode grid points were spaced by ~750 um in each
dimension, allowing some overlap between the sources
from which recorded signals were reconstructed. Spatial
scales of integration represented an upper bound (in-
formed by Buzsaki et al., 2012; Einevoll et al., 2013) and
were consistent with other theoretical point-neuron dis-
crete reconstructions of the LFP (Mazzoni et al., 2015).
We also computed the LFP including active membrane
currents (rather than synaptic only) without qualitative
difference using our model.

Our approach so far is simpler, but phenomenologically
equivalent to the formulation of extracellular field potential
reconstruction U used for Current Source Density Analy-
sis of LFP and EEG (Nicholson and Freeman, 1975), in
that it also assumes isotropic point-current sources:

1 l;
U= mzt—f,

/

where r; is the distance between a current source /; and
the electrode, and o is the conductivity of the homoge-
nous neural medium.

Finally, to account for the lack of specific spatial orienta-
tion of neuronal populations in the striatum (in contrast to
cortical pyramidal cells for example), we also computed the
modeled LFPs acknowledging for directions’ heterogeneity
of the electrical fields generated by each neuronal unit
(termed volumetric unit’s field). Each volumetric unit’s field
was given a random orientation in 3D space by creating a
point in spherical coordinates with zenith p€[0, w[ and azi-
muth ¢€[0, 2« drawn from a uniform distribution. The sin-
gle neuron’s electric field was then represented by a unit
vector pointing in this random direction, and its contribution
to the nearby electrode was scaled both by the 3D Gaussian
kernel described above and its orientation affinity to the
electrode. The orientation affinity scalar &, of neuron n was
derived from subtracting the distances from the electrode of
the origin (d,) and the tip (d,) of the unit vector representing
the volumetric units’ field emanating from the neuron.

Kieple,n) =

gn:do_ds

where d, = \/(x,,—xe)2+(yn—ye)2+(zn— .)?> and
d; = \/ (X,0S p,SiN ¢, —X,)*+ (¥, 5N p,SiN .=y, )2+ (2,08 p,—2,)?
The LFP signal reconstructed for electrode e then reads:

Vie(e, 0 = > £ K rple, Ml

neN
where [, are synaptic currents, K, is the extracellular
conductance kernel, and &, is the orientation affinity of the
neuron with respect to the electrode e.
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Code accessibility

The computational model was implemented in IBM
Model Graph Simulator, which is the core parallel pro-
cessing architecture for model description (using the
Model Description Language, MDL) and resource alloca-
tion (using the Graph Specification Language, GSL) of the
Neural Tissue Simulator (Kozloski and Wagner, 2011). The
Model Graph Simulator software is experimental. Readers
are therefore encouraged to contact the authors if inter-
ested in using the tool. A single simulation of ~20,000 FSI
units for 100 s took ~2 h of computing time on a local
Lenovo P910 desktop machine (2 Ghz, 64 bit, 14 cores, 2
threads/core, 64 Gb of RAM). Scripts written in MDL and
GSL are hosted by eNeuro.

Results

We analyzed phase and amplitude relations across &
and vy frequency bands among signals recorded simulta-
neously from multiple electrodes in motor cortex and
dorsal striatum. Recordings occurred in HD models at
ages when both were symptomatic (8-10 weeks for
R6/2s) and (30-45 weeks for Q175s) and at comparable
ages in corresponding WT background controls. We fo-
cused on periods of quiet rest because they are evident in
sufficient numbers in both HD models and abnormal
cortico-striatal y bands had been identified in R6/2 mice
at rest (Hong et al., 2012). We assessed phase differences
across channels in the 8 frequency band, and then the
relationship between the distribution of transient in-
creases in y power (y events) and the phase of the &
oscillation. y Events occurred at a preferred phase of the
& oscillation, indicating functional coupling between the
two frequency bands (Hyafil et al., 2015), and we found
this coupling to be exaggerated in HD mouse models. We
next assessed inter-y event distributions and correlations
between events across electrodes to provide insight into
physiologic processes that may account for excess vy
genesis in dorsal striatum. Finally, we report on results
from simulations of a network model of striatal FSls that
reproduces many features of the analysis. We used the
model to investigate varying cortico-striatal and striato-
striatal interactions that are not experimentally accessible,
examining their role in several possible origins of striatal .
Our analysis focused on periods of quiet rest (Fig. 1A).
Note that striatum refers to dorsal striatum for experimen-
tal analysis as it corresponds to electrodes location. The
computational model is however agnostic of striatal phys-
iologic heterogeneity, and therefore, we do not explicitly
distinguish between striatal subfields.

Cortical 6 band statistics do not explain HD
phenotype
6 Phase and amplitude modulations are comparable
across cortex and striatum

We computed measures of amplitude and phase mod-
ulation based on the analytic amplitude and phase recon-
structed from the Hilbert transform of the filtered cortical
recordings in the & band (see Materials and Methods and
references therein). The results of these measurements
are shown in Figure 3, where a measure of amplitude
modulation is the SD of individual channels’ analytic am-
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plitude normalized by their mean, and a measure of phase
modulation is the SD of the instantaneous derivative
(slope) of the unwrapped analytic phase. These statistics
extracted from cortical channels in R6/2 animals were not
different from their corresponding WT background, sug-
gesting that cortical § oscillations are not affected by the
disease in animal models. Comparisons of the means of
distributions of WT and R6/2 amplitude and phase mod-
ulations were performed using a two-sample Kolmogoro-
v-Smirnov test (K-S test) and differences were rejected
with respective p values (amplitude/phase) 0.49/0.94 for
WT Ctx versus Str, 0.99/0.82 for R6/2 Ctx versus Str,
0.11/0.25 for WT Ctx versus R6/2 Ctx, and 0.41/0.65 for
WT Str versus R6/2 Str. Comparisons were also per-
formed for WT versus Q175 animals (results not illus-
trated), and K-S tests gave p values (amplitude/phase
modulation) 0.42/0.29 for WT versus Q175 (heterozy-
gous), 0.81/0.04 for WT versus Q175 (homozygous), and
0.73/0.63 for Q175’s homozygous versus heterozygous.
This overall suggest no difference in amplitude modula-
tion for & band signals recorded in cortex and striatum,
and little difference if any in phase modulation.

o Band synchrony is strong within and between
cortex and striatum

Synchronization between & band signals in motor cor-
tex and dorsal striatum was assessed by comparing the
phase differences between channels. The phase differ-
ence distribution shows a strong peak around zero (Fig.
20C), indicating zero-lag synchronization across all elec-
trodes in the 6 band, whether within motor cortex, within
dorsal striatum, or between structures. Corticocortical
and striato-striatal synchrony is stronger than cortico-
striatal synchrony in WT and R6/2 mice (Fig. 2C, green
lines). For Q175 mice, striato-striatal synchrony in the 6
band is also strong (Fig. 2C, red solid line; only Q175
HOM are shown for clarity), and in the Q175 WT back-
ground is comparable to the R6/2 WT. For comparison,
and as the null hypothesis, phase difference between
random time series generated from Brownian motion do
not show synchronization in the low frequencies (Fig. 2C,
gray line). While 6 band synchronization was observed,
note that much of the 6 band signal observed in striatum
likely originated from cortex and was therefore recorded
via volume conduction. This point is further developed in
Discussion.

v Events occur at preferred phases of the 6 cycles
in HD animal models

The distribution of 8 phases at which y events occurred
were compared for each channel pair and revealed stron-
ger phase-locking of y events to 6 in HD animal models
(Figs. 4, 5). Specifically, a unimodal circular normal distri-
bution (i.e., a von Mises distribution) of 6 phases at which
v events occur resulted in a large vector strength (Fig. 2B,
left). The orientation of each vector represents the center
of the y-to-6 phase-locking and the length of each vector
represents the probability that events occurred at or near
the preferred & phase. If all events from channels were
perfectly phase-locked to the & oscillation, the resultant
phase vector average would have a norm of one and the
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Figure 4. Phase-locking of gamma-events to delta rhythm in WT and R6/2 animals. Mean phase and strength of gamma-event phase-locking
to delta oscillations is displayed in a polar plot for each pair of channels (one arrow/pair) across WT (left, 13 animals) and R6/2 (middle, 12 animals),
drawn from an average total of 4 channels/animal. The mean vector across animals from the same strain is shown in black, and its norm is
magnified by 10 to appear clearly with respect to individual pairs. Polar histograms show the distribution of all gamma events from all channels.
Color-coded arrows represent the vector strength and orientation for each pair of channels, with statistically significant vs. insignificant (o < 0.05
vs. p > 0.05) phase-locking indicated by colors blue vs. cyan (Ctx-Ctx), green vs. yellow (Ctx-Str) and red vs. magenta (Str-Str). (Short arrows from
insignificant vectors are nearly invisible). Inset histograms on top of each polar plot show (left) statistical tests for unimodality of the distribution (Uni)
and the concentration of the distribution (K), and (right) the multimodality of the distribution (Multi) using the Hartigan’s Dip test (see methods).
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Figure 5. Phase-locking and inter-gamma events statistics in WT and Q175 animals. Same statistics as Fig. 3 and 4, computed for
the Q175 animal strains. Left: Distribution of delta phases at each gamma event occurrence. Total number of gamma events extracted
shown above polar plot as n. Histograms on sides of the polar plot indicate p-value of the statistical test for uni-modality (with
concentration K) and multi-modality of the distribution, as computed by the Hartigan’s Dip Test (see methods). The mean vector
across animals from the same strain is shown in black and its norm is magnified by 5 to appear clearly with respect to individual pairs.
Middle: Mean probability distribution function (PDF) of inter-gamma events intervals across all electrodes from all animals. Standard
deviation is indicated by error bars and a negative exponential is given as reference in black. Right: Correlation between gamma
events for each electrode pairs (black circles) and mean (red circles) for each animal. Mean (open circle) and standard deviation (red

bar) across animals from the same lineage are shown on the right-most of the x-axis.

length of the figure arrow would be maximized. Instead, a
uniform distribution of phases results in scattered event-
to-phase mappings and weak vector strength, with an
arrow length close to zero (Fig. 2B, right). All circular
distributions of y events were assessed for non-uniformity
using Rayleigh’s test and vectors corresponding to p >
0.05 are displayed more prominently (see Fig. 2B legend).

Cortico-cortical and cortico-striatal phase-locking distri-
butions are narrower and unimodal in R6/2 animals
while multimodal in WT

R6/2 phase-locking in cortico-cortical channel pairs
(Fig. 4, blue) showed subtle differences compared to WT.
The polar histograms revealed a multimodal distribution of
phase-locking in WT with a peak at w/2 (corresponding to
the downsweep of the & oscillation) and another peak
between — w/2 and  (corresponding to the early upsweep
of the & oscillation) which disappeared in R6/2. This dif-
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ference was more prominent within cortex and striatum
(Fig. 4, green). Channel-pair phase-locking was stronger
(longer arrows) and more preferentially directed to the
downsweep of the & oscillation. Statistical tests for uni-
modal versus multimodal distribution confirmed this ob-
servation (bar histograms on upper corner of polar plots).

Striato-striatal phase-locking is stronger in HD animals
than in WT background and its distributions more uni-
modal than multimodal

WT mice showed weak vy event phase-locking to &
phases in striatum, indicated by short, randomly directed
vectors in Figure 4, red, bottom left. This likely reflects the
absence of strong y power in these animals and a possi-
ble noise source for detected y events. Although stronger
phase-locking is observed in some channel pairs re-
corded from R6/2 striatum (Fig. 4, red, bottom right), the
absence of a clear peak in the distribution shown by the
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Figure 6. Gamma events have highly variable correlation across channels and brain regions. Left: Pearson correlation coefficients between
gamma events from each pair of channels (black) within cortex (squares), between cortex and striatum (triangles), and within striatum
(circles). The mean correlation within an animal across channel pairs is color-coded (blue for Ctx-Ctx, green for Ctx-Str, red for Str-Str).
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gamma events (same color code as above), averaged over the low gamma frequency band 25-55 Hz and projected in polar coordinates
from the complex plane (see Methods). Scattered points showing spread in phase from 0 rule out volume conduction at gamma frequency.
Right: Probability density function (pdf) of inter gamma event intervals in a log-log scale for each cortical (blue) and striatal (red) channels

are plotted for WT (top), R6/2 (bottom). Black line represent exponential distribution for reference.

polar histogram indicates a lack of a preferred population
direction across animals. However, the stronger y-to-6
phase-locking is clearly present in the Q175 compared to
WT mice (Fig. 5). Here, the population of phase-locked
distributions was strongly unimodal and centered around
0 ( = /2 radians) corresponding to the positive peak of
the & cycle and constantly captured by the statistical test
(bar histograms aside polar plots).

Inter-y events intervals indicate a random process

Having shown that y events in striatum preferentially
arise at specific phases of the cortical § oscillation in HD
model animals, and at a specific phase among the entire
Q175 population, next we measured the regularity of
striatal y events (e.g., if they occur on every & rhythm cycle
or only randomly on some cycles). Note that this measure
relates also to the uniformity of the distribution of levels of
peak power in the fluctuating y band-passed envelope.
We assessed the regularity of y events by inspecting the
distribution of intervals between them, for each channel
recording, across all animals. The inter-y event interval
distribution, for each animal model, and each recording
region, falls between an exponential and a power-law
distribution (Figs. 5, 6). An exponential distribution indi-
cates a random Poisson process for event generation,
whereas to generate a power-law distribution, the inten-
sity of the Poisson process is not constant (see Chapter
8.1.7.2. in Croarkin et al., 2012) and results in a linear
affine transformation on the log-log scale.

Temporal correlation between y events is higher
within than between structures

The above analysis informs us that (1) & oscillations
occur on average at zero-lag phase differences across
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recorded brain regions; (2) striatal y events in HD mouse
models occur at a preferred 8 phase, and across the Q175
population preferentially during the positive upsweep of
the 6 cycle; and (3) y event genesis derives from a sto-
chastic process. To test whether y events depend on one
another in their timing, we next computed the temporal
correlations between vy events across channels from
within and between cortex and striatum (Figs. 5, 6). Both
high and low y event correlation coefficients were ob-
served between pairs of electrodes within and between
cortex and striatum in all categories of animals, but on
average, correlations within a structure were higher than
between structures (Figs. 5, 6, mean, green triangles vs
blue squares and red circles). These differences suggest
that y events in striatum are not strictly co-occurring with
cortical y events, although there exist previous examples
of y range oscillations being volume conducted several
millimeters into the striatum from the piriform cortex
(Berke, 2009; Carmichael et al., 2017), and 6 oscillations
from the hippocampus (Lalla et al., 2017). To further in-
vestigate this aspect, we computed the coherence be-
tween channels within cortex, within striatum, and across
both regions (Fig. 6, middle panel). The imaginary part of
the coherence shows non-zero values for a large number
of channel pairs, indicating that low vy signal recorded
from dorsal striatum and motor cortex may derive in part
from endogenous mechanisms in each structure (al-
though we observed that the imaginary coherence values
approached zero when computed for strong vy events
only). We also observed that the SD of the distribution of
correlations is higher among HD than WT background
mice. Differences between the distributions of correlation
coefficients among electrode pairs in striatum (Figs. 5, 6,
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Figure 7. Computational model of FSI network and cortical drive. A. Schematic of cortico-striatal FSI network model system. 27
cortical input are set in a 3 x 3 x 3 grid topographically projecting to a 27 x 27 x 27 grid of FSI units. FSI-to-FSI connectivity via gap
junctions and GABAergic synapses is distance dependent (inset) and constrained by connection probabilities reported in the literature
(Gittis et al. 2010). Extracellular fields are reconstructed by a modeled microelectrode array forming a grid of 64 channels (4x4x4)
where each channel is spatially separated by ~750um. B. Example of single FSI unit membrane potential time series (left), distribution
of inhibitory synaptic weights (center) and an exemplar time-series of a single IPSP (right).

red circles) among WT, R6/2, and Q175 mice were further
assessed by a two-sample K-S test (p = 0.05 between
WT and R6/2; p = 0.00005 between R6/2 and Q175
HOM), which indicates these distributions were signifi-
cantly different. These differences, together with the ob-
served distribution of y event intervals following a trend
between the power-law and exponential distributions,
suggested stochastic independent processes were con-
tributing to vy events across recordings. We next aimed to
account for these differences in a computational model,
surmising that differences in cortical 6 oscillations may
differentially drive inputs to striatum required for y gene-
sis. In this case, the observed higher SD among correla-
tion coefficients across channels can be interpreted as an
indicator of more heterogeneous sources of excitation
from cortical regions, modulated more independently in
HD animals than in WT.

Introducing electrotonic coupling via gap junctions
in a striatal FSI network model is sufficient for y
genesis

We built a FSI spiking neuronal network (Fig. 7) with the
assumption that the increase in y power observed in the

November/December 2018, 5(6) €0210-18.2018

HD striatum is not exclusively derived from MSNs firing,
although MSNs make up 90-95% of the striatal neuronal
population. We reasoned that MSNs are less likely to
participate in generating high frequency population oscil-
lations because of their low intrinsic firing rate and slow
membrane kinetics (Mahon et al., 2006; Miller et al., 2008).
In contrast, FSIs are known to exhibit very high firing
frequencies (Berke, 2011) and are connected to each
other via gap junctions (Hjorth et al., 2009; Planert et al.,
2010). Gap junctions are extremely fast conducting and
have been shown to enhance synchrony both experimen-
tally (LeBeau et al., 2003; Hestrin and Galarreta, 2005) and
in studies of detailed network models of inhibitory neu-
rons (Traub et al.,, 2001; Kopell and Ermentrout, 2004;
Bartos et al., 2007). We implemented a network model of
FSls (see Materials and Methods) to assess which mech-
anisms might play a role in the observed y band power
increase and the vy event phase-locking to cortical &
rhythm.

We first configured our FSI network model with and
without gap junctions (Fig. 8) and used the preprocessed
experimental cortical LFP (see Materials and Methods) as
input to the FSls. Activity when gap junctions are absent
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Figure 8. Spiking regimes of the modeled FSI network shows gamma-band population spikes embedded in the delta oscillation only
when gap junctions are present. A. Power spectra of striatal LFP from experimental data. B. Power spectra of simulated LFP
reconstructed from ~20,000 fast-spiking neurons (FSIs) with processed experimental cortical LFP, either without gap junctions (green)
or with gap junctions (pink) between neurons. Shading denotes standard deviation. C. Spiking raster plots of neurons in one segment
of striatum (receiving drive from one cortical unit) either with (pink) or without (green) gap junctions.

is shown in a raster plot (Fig. 8C) and reveals an asyn-
chronous mode of population spiking activity as also
described elsewhere (Brunel, 2000; Traub et al., 2001).
The mean individual neuron spiking frequency in this
mode is controlled by the strength of the imposed cortical
drive, which varies irregularly with the timing of positive
fluctuations at the 6 frequency. The power spectra reveal
an absence of y power in the population LFP, computed
using a 3D Gaussian-dependent weighting of IPSPs as
the recorded signal (see Materials and Methods). 6 Power
in the population LFP was wholly a result of cortical drive.

When spatially constrained gap junctional coupling is
introduced into the model (Fig. 7; Materials and Methods),
spike rasters show a synchronous mode of population
spiking activity at the y frequency. While the frequency of
this synchronous activity can depend on network param-
eters, it is only weakly modulated by the strength of the
cortical driving. y Events are initiated by positive fluctua-
tions at the & frequency that exceed a threshold for y
genesis, and an increase in y band power appears in the
spectra due to synchronous spiking activity at this fre-
quency, which slows at the end of each vy event, a phe-
nomenon also observed in a model of transient 6
modulation of y band oscillations (Traub et al., 1996).
Since cortical drive varies slowly at the & frequency but
with irregular amplitude fluctuations, this model generates
robust y events with irregular timing in the striatum. De-
spite its appealing simplicity, we demonstrate here that
this model can account for multiple observations (found in
HD) such as phase-locking of striatal y events to driving &
band LFP.

IPSP strength and total gap junction conductance
determines y frequency peak

We systematically varied FSI-to-FSl inhibitory synap-
tic weights (mean of the distribution) and gap junction
conductance while maintaining the cortical drive from
our experimental recordings as described above (Fig.
9). We found that different combinations of the two
parameters resulted in the network oscillating at differ-
ent frequencies (25-50 Hz). We explored this two-
dimensional parameter space and found regions
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corresponding to R6/2 (y peak at 31 = 3 Hz) and Q175
(y peak at 43 = 3 Hz) animals. In the computational
model, weaker gap junctional coupling combined with
weak inhibitory synapses best reproduces the Q175
experimental data, while stronger gap junctional cou-
pling or weaker gap junctional coupling combined with
strong inhibitory synapses best reproduces R6/2 activ-
ity. Interestingly, a large increase in either gap junction
conductance or inhibitory strength either reduces the
peak frequency of y power (Fig. 9B) or produces very
fast tonic firing activity. We excluded these regimes for
further analysis as the y peak is too broad compared to
the experimental data or the neuronal activity is not
physiologic (i.e., tonic firing at rates >100 Hz).

Cortico-striatal coupling strength alone can explain
low or high y power when synaptic couplings are
fixed

We next used the model to explore whether impairment
or enhancement of cortico-striatal coupling is sufficient to
explain the increase in HD y power. We systematically
varied cortico-FSI coupling (by decreasing or increasing
the gain of the cortical drive) while maintaining the cortical
input statistics, IPSP weights, and gap junctional conduc-
tance constant in the model, at the value indicated by a
white star in Figure 9B. As cortico-FSI drive is increased,
our network transitions from weak to stronger y power
(Fig. 10), reproducing the observation from the experi-
mental spectra (Figs. 1, 8A ). The increase in y power is
correlated with the strength of the cortico-FSI drive for
weak to medium cortico-FSI coupling strengths but fur-
ther increases to the cortico-FSI drive reduce the y power.
The time-frequency analysis applied to an experimental
trace and the model indicate faithful replication of the
observed phenomena (Fig. 11). y Power changes were
consistent in the model regardless of whether the pro-
cessed experimental cortical LFP from WT or HD (R6/2)
animals was used as the network stimulus, or whether we
measured the change at the R6/2 frequency peak (31 Hz)
or Q175 frequency peak (43 Hz). This result argues
against abnormal cortical activity alone being necessary
for the HD phenotype to emerge since the model exhibits
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Figure 9. Gamma-band frequency peak shifts depending on the ratio between gap junction and synaptic coupling. A. Example power
spectra of simulated LFP reconstructed from ~20,000 fast-spiking neurons (FSls), displayed for 3 different combinations of gap
junctions versus synaptic coupling strengths. The peak in the 2 top yellow spectrum corresponds to power spectrum peak of Q175
animals from Fig. 1B, the blue spectra on bottom corresponds to a combination of parameters that does not produce a significant
gamma oscillation. Shading denote standard deviation. The white asterisk (*) denotes the parameter combination used in the
remaining of the paper. B. Map of the parameter space exploration of gap junction coupling strength versus inhibitory synaptic
strength in the FSI network model, where the color code quantifies the spectral peak frequency (>15 Hz). Blue entries corresponding
to “N/A” represent simulations where either no gamma power was detected or the activity of the network was abnormal, e.g.
completely silent or tonically firing at >100 Hz. All values are the mean of 10 simulations with random initial conditions. C. Same as
A) but the spectrum in pink corresponds to that observed in R6/2 animals (Fig. 1B).

WT or HD dynamics with either the WT or HD filtered  12A): (1) all units’ field point toward electrode; (2) all units’

cortical LFP as input. field point in a unique direction; and (3) each units’ field

point to a random direction. Regardless of which of this
v Event statistics in HD, but not absence of phase- composite is used to compute the LFP, we observed that
locking in WT, explained by the simple FSI network our computational model reproduces the y event correla-
model tions observed in HD animal models, and fluctuations in §

To compare simulated results from the computational  band cortical LFPs were sufficient to drive the model to
model to the experimental data, we extracted the same  reproduce inte-revent interval distributions (Figs. 4-6,
statistics reported for the experimental data, i.e., y event  12D). However, phase-locking properties could only be
phase-locking to §, correlation between vy events across  replicated for the HD phenotypes, where inter-electrode
reconstructed LFPs, and the inter-y event interval distri-  phase-locking of y events to specific § phases occurs
butions (Fig. 12). LFPs were reconstructed using a 3D  (Fig. 12C). Inputs strong enough to generate y in our
Gaussian kernel around several points in space repre- model also always produced & phase-locked vy events,
senting the recording electrodes, where the contribution  and as cortico-FSI drive was further increased, the model
of each unit to the field is calculated based on its distance = phase-locking shifted from a peak at ~0 to a peak at — w/2
to the electrode and the orientation of the electrical field it ~ radians. The computational model with weak cortio-FSI
generates (computed as the sum of synaptic and active  drive, therefore, corresponds best to Q175 striatal record-
membrane currents, see Materials and Methods). Since  ings in which y events are phase-locked to the top of the
the neuronal contribution to the LFP is a strong subject of & wave (Fig. 5, bottom). Our model is also compatible with
debate in an open-field system such as the striatum (see = some strongly phase-locked distributions from the R6/2
Discussion), we examined the LFP spectra generated by  phenotype (Fig. 4, right column), although the preferred &
the network composite according to 3 scenarios (Fig. phase distribution differs (experimental R6/2 phase-
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Figure 10. Cortico-FSI coupling strength can transition network from WT to HD gamma phenotype. A. Gamma power (averaged over
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R6/2 (top) and WT (bottom) animal recordings. Bold traces correspond to spectrum shown in B. B. Power spectrum from simulated
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locking distribution peaks at ©/2, i.e., in the downsweep
of the 8 wave, while our model peak at — /2, the upsweep
of the & oscillation). Also, the more uniform distribution at
which y events occur with regards to the & oscillation
observed in WT that could not be reproduced by our FSI
network alone (Fig. 12C). Such discrepancy suggests that
although FSIs may explain the increase in y power ob-
served in HD and some aspects of the phase-locking,
modifications or extensions to the model may be required
to reproduce the full range of electrophysiological pheno-
types in HD and WT. For example, other cell types, phys-
iologic coupling, noisier input, more heterogeneous
neuronal properties, or cell autonomous mechanisms not
captured by our model may contribute to the dispersion of
v events across & phases.

Discussion

Our analysis revealed that 6 band synchronization is
unaffected in HD, but that y events in striatum cluster at
the peak of the 8 wave in contrast to their more uniform or
multimodal distribution over the entire § wave in WT. We
also demonstrate, using our computational model, that
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gap junctions strongly facilitate the generation of -y oscil-
lations in the striatal FSI network.

Sources of 6 and y band oscillations

We suggest that synchronized cortical sources may be
stimulating the striatum at the & frequency, and that by
this driving mechanism, the striatum may abnormally
“ring” at the vy frequency in HD on particularly strong
cortico-striatal volleys. This view is supported by cortical
evidence that in a slice preparation with NMDA, AMPA/
kainate, and GABA-B receptors blocked, a transient puff
of a mGIuR agonist evokes interneuron network vy activity
(Whittington et al., 1995). In addition, intrinsically bursting
L5 cortical pyramidal neurons are likely responsible for
generating cortical & band oscillations (Carracedo et al.,
2013; Shepherd, 2013). In subjecting our model to the
same PAC analysis as our experimental data, we find that
by decreasing the gain of & cortical input to the FSI
network, absolute y event genesis subsides, albeit still
strongly phase-locked to the peak of the 6 phase. Thus,
motor cortical inputs to a model FSI network alone cannot
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Figure 11. Time-frequency comparison between model and experimental LFP. Wavelet analysis of the LFP from experimental
recordings (left) and reconstructed from the model (right), computed between 0 and 100 Hz (step size: 0.5 Hz) for a random epoch
of 10s of quiet rest. Wavelet coefficients are normalized to sum at 1. LFP experimental time series taken from R6/2 animal 10 striatal
recording, and simulated LFP with scaling factor CtxFSI=1.
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Figure 12. Statistics of the model for different cortical drives and LFP composites. A. lllustrations of different LFP composites (blue
circles: electrodes; gray circle: ground). A1) All units’ fields near electrode point towards it; A2) All units’ field point in the same
direction; A3) Each units’ field orientation is random. B. LFP power spectra for different cortical drives (weak: CtxFSI=0.25; medium:
CtxFSI=1.25; strong: CtxFSI=2.0) for each LFP composite presented in A1-3. C. Delta-to-gamma phase-amplitude coupling of the
computational model with weak (brown), medium (blue), and strong (purple) cortico-FSI drive (see Methods). 0 portrays the top and
—7/2 the upsweep of the delta oscillation. The mean vector across electrodes from the same cortico-FSI drive is shown in bold and
its norm is magnified by 2 to appear clearly with respect to individual pairs. Shown for each LFP composites illustrated in A. D.
Probability density function estimate of the inter gamma events interval distribution of LFPs from the model for increasing cortico-FSI
drive (same color code as in B and C), for each LFP composite from A. Black line indicate exponential distribution for reference. E.
Pearson correlation coefficient between gamma events from different reconstructed electrode signals (one black dot per electrode
pair), for the three combinations of cortico-FSI drive (weak: brown; medium: blue; strong: purple) and LFP composites (E1-3). Mean
and standard deviation for each driving strength are indicated by circle and error bars on the right.

reproduce the more heterogeneous distribution of -y lock-
ing to & phases observed in WT mice.

PAC methodology

We analyzed vy-to-86 phase synchrony and phase-
amplitude relationships in simultaneous brain recordings
of HD mouse models versus WT. Our dataset comprised
multiple channel recordings from the striatum (WT, R6/2,
Q175) and motor cortex (WT and R6/2), with a focus on
periods of quiet rest. We developed a method to extract
transient increases in y power (i.e., y events; Fig. 2) from
a channel, and computed their relation to the instanta-
neous phase of & band oscillations from another elec-
trode. Our technique resembles the one described by
Voytek and colleagues (Voytek et al., 2010, 2013) but
differs slightly from others (von Nicolai et al., 2014; Sey-
mour et al,, 2017) in that we use a single Hilbert-
transformed signal for the phase of slow oscillations
rather than multiple band-passed filtered signals (of width
~1Hz) commonly used when the phase signal is in higher
frequency bands such as a. Also, rather than assessing
the whole range of y amplitudes with respect to & phase,
our method focuses on y power transients by extracting

November/December 2018, 5(6) €0210-18.2018

statistically strongest y power. Extracting such transient y
events from signals’ statistics is advantageous when the y
power is strong over the whole recording (in contrast with
task-related PAC) and thus present at all phases of the
slow frequency (otherwise the <y transients would be
“blurred” by averaging with strong background y power).
On the other hand, our technique suffers the pitfall of
detecting y events even when y power is weak, and thus
less meaningful fluctuations in y amplitude may be inter-
preted as y events. Nonetheless, in the case of y event
signal being pure noise, the distribution of their § phases
would be uniform (i.e., von Mises, as observed more in
WT). Despite weak y power in heterozygous Q175 (Fig. 5),
the technique detects strong phase-locking that is statis-
tically significant (p < 0.05). We showed that y events in
all HD animal models are more strongly phase-locked to
some phases of the & oscillations recorded from dorsal
striatum and motor cortex (Figs. 4, 5), yet do not occur at
every cycle (Fig. 6).

Phase difference in 6 oscillation
We suggest that 6 oscillations observed in striatum are
transmitted as feedforward excitation from cortex be-
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cause, on average, 6 oscillations display zero-lag phase
synchrony across all simultaneously recorded channels in
cortex and striatum (Fig. 2C). However, &6 band phase
differences between motor cortex and striatum in WT and
R6/2 are more widely distributed than within striatum,
suggesting more variability in cortico-striatal 6 phase dif-
ferences than within-cortical and within-striatal 6 phase
differences alone. This observation is consistent with a
previous study using the same dataset for WT and R6/2
mice (Hong et al., 2012) in which near-zero lag synchrony
was observed in R6/2 but not in WT (where phase differ-
ences peak at 20 degrees). In this previous analysis, the
relative phase differences were computed based on mean
coherence, which is performed in the frequency domain
and assumes that the phase difference is stationary over
time. In the present analysis, we compute the phase
differences in the time domain using the instantaneous
phase of the signal given by the angle of the Hilbert
transform of the signal when projected into the complex
place. This measure better captures the non-stationarity
of the phase relationship and is closely related to the
phase-locking value (PLV) first described in Lachaux et al.
(1999), where instantaneous phase synchrony is mea-
sured as the absolute value of the exponential of the
phase difference. The PLV is often averaged across many
trials in cognitive tasks involving the analysis of evoked-
responses to assess the increase/decrease of synchrony
between brain regions as a measure of functional connec-
tivity (Aydore et al., 2013). As our analysis involved only
spontaneous activity during rest, we simply used the
phase difference.

Possibility of y originating from cortex

Our correlation and complex coherence analysis of ex-
perimental recordings also suggests that y oscillations
observed in striatum are unlikely transmitted from cortex
(Fig. 6, green triangles), although some recorded signals
from striatum can overlap spatially with a proximal cortical
source due to volume conduction (Berke, 2009; Carmi-
chael et al.,, 2017; Lalla et al.,, 2017). It is a generally
agreed principle that v is related to local processing ver-
sus lower frequency bands which are more akin to long
distance signaling (Kopell et al., 2000; von Stein and
Sarnthein, 2000). However, y synchronization may also
exist over long distances in some attentional tasks in
humans (Gregoriou et al., 2009) and although our analysis
comprises only electrodes in motor cortex (for WT and
R6/2), cortico-striatal coupling in the y band may exist,
especially in rodents where cortico-striatal projections are
at most 1- to 1.5-mm long and axonal velocities range
from 0.5-3.5 m/s in mice (Swadlow and Waxman, 2012),
Theoretically, this should give rise to only 0.3- to 2-ms
conduction delays in cortico-striatal signaling (well within
the vy period). The high variability of correlation coeffi-
cients and imaginary coherence between channel vy
events suggests either a spatial segregation of variable
patches of neural activity in the y band or distant synchro-
nization between patches (Lindén et al., 2011). For exam-
ple, one could predict either a high correlation among
recordings from close electrode proximity in which two
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distinct channels record the same population of neurons,
or high correlation among distant electrodes in which
distinct striatal (or cortical) regions have very similar ac-
tivity. For the latter, two areas can either receive the same
inputs or share internal constraints limiting them to the
same dynamical regime (assuming similar neuronal sub-
strates for information processing throughout the struc-
ture). In this case, the latter possibility can be further
investigated using the computational model and exploring
the role of synaptic strengths and its effect on the size and
length of spatiotemporal structures formed by the net-
work of FSIs and recorded LFPs. Low correlations and
coherence, whether between proximal or distal elec-
trodes, indicate either different network processes or dy-
namics operating on the same input, or two striatal (or
cortical) regions processing different inputs. Although the
latter seems more realistic in view of the homogeneity of
the neuron types and network structures within the striatal
(or cortical) microcircuitry, the former should not be ruled
out. In the context of cortico-striatal projections, which is
our focus here, regardless of electrode positioning, the
interpretation remains unchanged: on average, y event
correlation is stronger within a structure than across
structures.

Interpretation and modeling of LFP signal

The spatial reach of LFPs is still a subject of debate,
and several recent forward modeling studies have tried to
address the biophysical substrate of those recorded sig-
nals (Lindén et al., 2011; Einevoll et al., 2013; Telenczuk
et al., 2017) albeit mainly focusing on cortical LFPs. In-
deed, the current-source density paradigm to reconstruct
current sinks and sources works best when recorded
regions contain neurons with elongated dendritic trees,
such as L5 pyramidal cells, receiving excitatory inputs on
apical dendrites and a mixture of inhibitory and excitatory
inputs on basal dendrites. Such configuration forms an
open-field structure giving rise to strong dipolar and pos-
sibly quadrupolar LFPs (Pettersen and Einevoll, 2008),
which amplitude decays by 1/r?: the square of the dis-
tance to the current source (Destexhe and Bedard, 2013;
Reimann et al., 2013). In contrast, closed-field structures
such as networks of stellate cells do not have preferred
orientation or spatial pattern of synaptic inputs, giving rise
to smaller monopolar LFP contribution because trans-
membrane currents tend to cancel each other out, and the
field amplitude then decay in 1/r. In this respect, the
striatum would fall in the second category as its neuronal
populations (MSNs, FSls, low-threshold spiking or cholin-
ergic interneurons) each display rather random spatial
orientations of dendrites. This raises questions about the
origin of signal recorded from striatal electrodes im-
planted close to cortex as electric fields most certainly
propagate from neighboring cortical regions or the hip-
pocampus (Lalla et al., 2017), and we think it might be the
case especially for high power low frequency bands such
as 6 and 6 given the low-pass filtering properties of ex-
tracellular medium (Bédard et al., 2004, 2006; Destexhe
and Bedard, 2013).
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The depth of electrode implants may also affect the
interpretation of the recording, as it is known that upper
cortical layers reflect afferent inputs (i.e., thalamic drive)
while electrodes in deeper cortical layers are more dis-
posed to record efferent cortical signals (Buzsaki and
Schomburg, 2015). Artefactual phase-locking in the
high-vy (>80 Hz) band has previously been reported due to
muscle activation using electromyography (Buzsaki et al.,
2012), but we have not considered this contingency since
our analysis is restricted to low-vy frequency bands (25-50
Hz).

Relation to pathophysiology and behavioral states

In case of a purely volume-conducted signal from
nearby cortical regions (such as the sensorimotor cortex),
the interpretation of our analysis would apply to a cortical-
only source of y, most likely generated by the interaction
of pyramidal cells (PY) and interneurons (IN), specifically
via perisomatic inhibition of PY by parvalbumin-positive
(PV) IN (Buzsaki and Wang, 2012). Intriguingly, the con-
sequences of such an interpretation on behavioral as-
pects would be highly relevant to HD pathophysiology:
sensorimotor vy oscillations have been related to active
walking in humans (Seeber et al., 2015), with distinctive
functional processes related to movement initiation and
sustained movement in high (75-100 Hz) and low (35-50
Hz) y bands, respectively, in a visuo-motor task (Crone
et al., 1998). Our data analysis also supports a disruption
in cortically generated vy oscillations (Fig. 1, blue traces;
and Fig. 4, top row), but our computational model archi-
tecture does not explicitly account for excitatory spiking
populations interacting with the FSls. Hippocampal v, on
the other hand, is less likely to occur at rest in healthy
condition, and its cross-frequency coupling is usually as-
sociated with memory recall in goal directed tasks in
rodents (Johnson and Redish, 2007; Tort et al., 2008; van
der Meer et al., 2010), which is not congruent with HD
symptomatology.

Finally, our analysis focused on the electrophysiological
properties of the cortico-striatal system when the animals
were at quiet rest because increased y power is observed
in HD animals as compared to WT in this behavioral state.
Previous studies have also reported altered power spec-
tra in the B band during grooming (Hong et al., 2012) and
sleep (Jeantet et al., 2013) among HD mouse models, but
we speculate that such B disruptions have more to do
with the pallido-thalamo-cortical system than the cortico-
striatal system alone. Indeed, B oscillations have been
implicated in the performance of motor behavior and
evidence has suggested B genesis as strongly related to
thalamo-cortical projections (Sherman et al., 2016) or the
pallido-subthalamic loop (Lienard et al., 2017), supporting
our view that altered B rhythm is best associated with
basal ganglia microcircuitry and its afferent rather than
efferent projections.

Scope and predictions of the computational model
Our computational modeling of an FSI network revealed
that altered cortico-striatal drive to this network is suffi-
cient to explain the power increase in the low y band with
respect to other frequency bands as observed in HD
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mice. The model further predicted that the extent of y
power is correlated with the strength of cortico-striatal
drive, a prediction that is testable experimentally. We
processed experimental LFPs from both WT and HD an-
imals while keeping intrastriatal couplings constant with-
out detecting significant differences. This suggests that
neither stipulating changes in cortical activity nor stipulat-
ing intrastriatal circuit changes are required to increase
striatal y power with respect to other frequencies.

We developed our FSI computational model based on
previous seminal modeling work from four neuronal pop-
ulations within cortex (Traub et al., 2001), and the sup-
porting observation that FSIs are by far the most
prominent neuronal subtype for generating y band oscil-
lations. One could argue that our FSI model lacks realism
due to its simplified membrane dynamics and lack of an
exhaustive set of ion channels known to play a role in
dendritic processing and neuronal excitability. Our choice
of an IAF model, however, derives from the scope of our
study. We aimed to investigate network properties of
inhibitory FSIs and not single-neuron properties, which
rely on dendritic morphologies, ion channel kinetics, and
other intracellular mechanisms. We selected a parameter
range for our modified IAF model that displays type 2
excitability, i.e., exhibiting a jump from zero to a finite
firing frequency (Ermentrout and Terman, 2010; Gerstner
et al., 2014). Additionally, the frequency-current curve (F-I
curve) of our model matches one generated by a much
more detailed FSI model incorporating neuron morphol-
ogy and 127 compartments into a conductance-based
model (Hjorth et al., 2009), further supporting our use of
the greatly simplified model for point neuron network
computations.

Fast and strong inhibition in inhibitory neuronal net-
works, mediated by GABA, synapses via shunting, is a
promising candidate for y genesis (Bartos et al., 2007).
The presence of gap junctions, which are estimated to
affect the cell membrane potential by 2-11% (Hestrin and
Galarreta, 2005), is known to have homogenization prop-
erties at the network level and enhance coherent firing
(Bartos et al., 2007). Field effects also exist in so-called
ephaptic coupling (Anastassiou et al., 2011), which is
instantaneous, although more isotropic when propagat-
ing. An increase in ephaptic coupling would be consistent
with observations of high neural loss in striatum, mediat-
ing stronger field potentials as opposed to a densely
packed neuronal substrate with higher impedance.

Necessity for integrated models of striato-nigro-
pallidal microcircuits

We showed that an increase or decrease in cortico-
striatal drive can account for an increase in low y band
power with respect to other frequency bands and that the
statistics of our model agrees with the experimental data,
but the model could not account for the uniformity or
multimodality of y event-6 phase distributions observed in
WT mice during rest. This suggests that other mecha-
nisms are at play under normal conditions to generate a
uniform/multimodal y event to & phase. Further modeling,
including additional sources of noise and heterogeneity or
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coupling the FSI network model to a model of the MSNs
network (Ponzi and Wickens, 2010, 2012, 2013) might
address these points. In fact, a recent study (Wu et al.,
2017) demonstrated the feasibility of low-y band oscilla-
tions emerging from a network of MSNs alone, and the
presence of FSIs coupled by synaptic and electric cou-
pling amplified those oscillations. Another rigorous study
of FSI-MSNs interactions will add to the picture in a
subsequent publication (Chartove et al., 2017), but note
that to date, even the larger computational models of the
basal ganglia circuitry cannot scale to realistic numbers of
neurons and synapses (Lindahl and Hellgren Kotaleski,
2017) to compute the LFP. Also, there are important
structural and functional distinctions between striatal sub-
fields (Berke et al., 2004; Berke, 2009) that are not ac-
counted for in those current modeling studies. It will be
important to address these differences in future studies.

Finally, McCarthy et al. (2011) showed that 8 range
frequencies up to 20 Hz can be reproduced in a MSNs
network endogenously when non-inactivating potassium
currents (M-currents) are present, shedding light on the
likely importance of rebound spiking mechanisms for the
genesis of abnormal oscillations in purely inhibitory sys-
tems with disrupted dopamine, a conditioned encoun-
tered in Parkinson’s disease. To this respect, we could
not address here any of the question that remains in HD
regarding dopamine abnormalities (Rangel-Barajas and
Rebec, 2018). The classic view that HD pathology is due
to loss of D2- MSNs has been revised in the past years, as
it was demonstrated that D1-MSNs are also affected early
in the disease (André et al., 2011; Galvan et al., 2012;
Chen et al., 2013). The interplay between D1 and D2
MSNs in disease evolution is unclear (Raymond et al.,
2011; Bunner and Rebec, 2016), and its time-dependence
with Glutamate disruption is rather tenuous (André et al.,
2010). What is clear is that dopamine is affected in HD,
but our analysis and modeling cannot address dopami-
nergic components as the focus is on cortico-striatal
fast-slow oscillations and y genesis among striatal FSls
rather than striato-nigral modulation.

Conclusion

Our analysis revealed that cortical 8 band activity alone
is not different between WT and HD animals, but that the
PAC of striatal y events to the 8 oscillation are modified in
HD. Assuming that the main input to the dorsal striatum
originates from cortex, we used experimentally recorded
cortical signals to drive a computational model of striatal
FSI network, and inferred that the strength of cortico-FSI
synapses proportionally account for the y power ob-
served in striatum, while the balance of gap junction
conductance and IPSP strength determine the y peak
frequency.

We suggest that striatal y is a marker of abnormal
cortico-striatal processing which can be interpreted in
two ways. (1) y Genesis is pathologic by itself and causes
the disturbance: the fast striatal y oscillations act to bias
striatal spatiotemporal processing toward pre-defined ac-
tivation patterns which are cortico-dependent. Distur-
bances in these activation patterns results in discordant
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downstream basal-ganglia processes propagating to
thalamo-cortical systems influencing cognitive and motor
operations. (2) vy Genesis is a compensation mechanism
that permits striatal processes to be maintained albeit the
disruptions in cortico-striatal processing: the activity bias
imposed by fast y oscillations in response to stronger
cortical drive emerge to try to keep control of downstream
basal-ganglia circuits, those downstream circuits being
altered in HD and causing cognitive and behavioral oper-
ations.

At the current stage, neither the recorded data nor the
FSI computational models are able to disambiguate be-
tween those two scenarios. A larger circuit model inte-
grating FSIs and MSNs with direct and indirect pallidal
pathways would be required to investigate those two
hypotheses, and new experimental recordings covering
other entities of the basal ganglia nucleus would help in
the disambiguation. Specifically, a recent study using
calcium imaging has confirmed the existence of spatio-
temporal activity patterns in striatum encoding action
space (Klaus et al., 2017), and such technique applied to
HD mice models could shed light on the functional nature
of the activations patterns in striatum related to the pa-
thology. One experiment to test our predictions might
involve selectively blocking MSNs spiking in awake rest-
ing WT and HD mice at symptomatic age. A recent study
by Klaus and Plenz (2016) selectively removed all GABAe-
rgic transmission in striatum, or blocked synaptic excita-
tion onto FSlIs only, then measured consequences of the
pharmacological blockade among cortical spiking statis-
tics (i.e., avalanches), striatal spiking correlation, and
movement initiation. In our proposed experiment blocking
spiking among MSNs only and not FSIs would match
closely the microcircuit model used in our simulations.
Furthermore, in awake animals adding multiunit record-
ings would allow interpretation of spiking statistics with
respect to cortical slow oscillations, and further disambig-
uate volume-conduction versus local microcircuit
sources.
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