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Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We

use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the

population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky

(100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population

could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify

the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their

emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the

cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and

generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation

systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge

for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling

systems.

KEY WORDS: Cooperation, digital evolution, models/simulations, patch lifecycle, population shape, population structure,

prisoner’s dilemma, public good.

Evolution is often perceived as being “red in tooth and claw” and

its processes interpreted through some variation of the “survival

of the fittest” principle (Russe 1999). And yet, nature teems with

instances of seemingly altruistic acts: organisms help one another,

paying a direct energetic or reproductive cost without receiving

an obvious or immediate benefit (Axelrod 1984; Dugatkin 1997;

Rankin et al. 2007). Given that each vampire bat that regurgitates

blood to a nest mate effectively challenges one of the basic tenants

of modern evolutionary theory, it is no wonder that the evolution of

cooperation remains a popular and contentious topic (Wingreen

and Levin 2006). Additionally, instances and theories of coop-

eration in nature can easily inspire reflections concerning hu-

man society, maintaining both scientific and public interest (West

et al. 2011).

Currently, a large fraction of empirical research on coopera-

tion is conducted using microbial systems (Crespi 2001; Velicer

2003; West et al. 2006; Chuang et al. 2009; Dimitriu et al. 2014).

Microbes exhibit a stunning variety of complex social interactions,

such as punishment and spite (Kiers et al. 2003; Inglis et al. 2009),

but remain relatively easy to perpetuate and manipulate. Although

the evolution of cooperation never fully disappeared from the

research focus, it is currently going through a renaissance be-

cause of bacteria such as Pseudomonas (Rainey and Rainey 2003;

Griffin et al. 2004; Kümmerli et al. 2009; Popat et al. 2012). Al-

though prisoner’s dilemma tournaments motivated much of the

research in 1980s and early 90s (Axelrod 1984; Nowak and May

1992), modern cooperation work is largely driven by the obser-

vations and experiments on microbial communities. At the core
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of our understanding of the evolution of cooperation is its first

formal explanation, the succinct but powerful Hamilton’s rule:

rb > c (Hamilton 1963, 1964). Simply, cooperators will prosper

if the relatedness between the interacting individuals (r), multi-

plied by the benefit experienced by the cooperators (b), is greater

than the cost they pay for performing the cooperative action (c).

Hamilton’s rule continues to motivate research into quantifying

the costs and benefits of cooperation (Brown and Taddei 2007),

ways to measure relatedness (Pepper 2000; Damore and Gore

2012), and specific conditions that may hinder or aid its applica-

bility (Lehmann and Keller 2006; Chuang et al. 2010). In our study

we rely on mechanistic explanations, but do measure relatedness

and show it is consistent with the phenomena we observed.

In parallel with, and as a result of theoretical and exper-

imental advancements, many properties and processes favoring

or disfavoring the evolution of cooperation have been identified.

For example, we know that population viscosity generally fa-

vors cooperation (Kümmerli et al. 2008, 2009), that diffusion and

degradation of the public good nonlinearly affect public good

production (Misevic et al. 2012), and that costs and benefits of

cooperation are affected by public good durability (Kümmerli

and Brown 2010). Sometimes helping, at other times hindering

the growth of the field, the passionate debate on the relative im-

portance of group versus kin selection (Nowak et al. 2010; Abbot

et al. 2011) frames all the work on the evolution of cooperation,

but remains unresolved. Here we examine a typically overlooked

parameter, the physical shape of a population, which reveals un-

expected evolutionary dynamics specifically when coupled with

cooperation.

Much has been made out of the importance of population

structure for the evolution of cooperation, both in theory and ex-

periments (Nowak and May 1992; Kümmerli et al. 2008, 2009;

Perc et al. 2013). The discourse typically focuses on increased as-

sortment (relatedness), the elevated probability that cooperators

will encounter each other rather than noncooperators (Dimitriu

et al. 2014). Significantly less attention is given to the exact lo-

cation of the interacting individuals in the physical space and in

the population they constitute. By default, starting with the early

evolution of cooperation literature, everything was always hap-

pening on a square lattice grid (Nowak and May 1992). There are

some exceptions, including, for example, the work on honeycomb

(hexagonal) grids, which were shown to promote cooperative pris-

oner’s dilemma strategies more often than square ones (Hauert

and Szabo ́ 2003). However, such setups were treated primarily as

interesting but nonessential extensions of the basic, square grid

models and simulations. The game theory studies of coopera-

tion have also considered one-dimensional and three-dimensional

populations (Nowak et al. 1994a), but few general results ex-

ist. For example, in a very specific case of prisoner’s dilemma

with only two strategies (all defect and tit for tat), Nakamaru and

colleagues claim that “two-dimensional lattice model behaves

somewhat in between the one-dimensional model and the com-

plete mixing model” but also show that dimensionality does not

matter when using the mean field approximation (Nakamaru

et al. 1997). More recently, increased computational power al-

lowed some simulations to consider continuous, rather than dis-

crete space, further adding to the biological realism of the in silico

cooperation system (Nadell et al. 2010). Perhaps the most inter-

esting extension is based on graph theory, where each individual

is represented by a vertex and the potential interactions between

individuals by edges connecting those vertices. Although not a

new concept (Myerson 1977), it has the potential to connect and

extend spatial models of different dimensionality, by adding more

connections between individuals (Vukov et al. 2008). As real net-

works of interactions are starting to be fully mapped in nature

(Salathé et al. 2010), graph theory is quickly becoming a promis-

ing methodology for analysis of cooperation dynamics (Ohtsuki

et al. 2006; Szabo and Fath 2007). In this work, we consider

differently shaped two-dimensional lattices in three distinct com-

putational models of varying complexity. In spite of the extensive

literature on cooperation in space, to our knowledge, there have

been no studies directly addressing the effect of the population

shape on the dynamics and outcome of the evolution of coopera-

tion. Given a variety of sizes and shapes occupied by natural coop-

erative system, this study has potential to inform and affect a broad

range of the theoretical and experimental studies of cooperation.

Material and Methods
Our approach to studying the evolution of cooperation rests

on the foundations of both social microbiology and biological

modeling. We use three different simulations systems: Aevol

(public good-based cooperation, complex genetic), Aevol-lite

(public good-based cooperation, single binary locus genome),

and CAevol (simple probabilistic cellular-automata model of

cooperation based on prisoner’s dilemma). We fully describe the

relevant properties all three models here, and provide additional

details in the Supporting Information.

AEVOL EXPERIMENTAL SYSTEM

Aevol is an open-source simulation platform that uses the genetic

algorithm approach to individual-based modeling of evolutionary

processes. Digital organisms that cooperate in the Aevol in silico

system have double-stranded genomes and nontrivial genotype–

phenotype maps (Misevic et al. 2012; Frénoy et al. 2013). Al-

though certainly less complex than even the simplest bacteria,

they go well beyond cooperate/defect strategies in capturing the

natural evolutionary processes. Cooperation in Aevol is based on

a costly public good that diffuses and degrades in a spatially struc-

tured environment. The interactions among organisms occur over
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both ecological and evolutionary time scales, and our experiments

span tens of thousands of generations of evolution via natural se-

lection. Inspired by experimental microbial evolution research,

Aevol is capable of investigating scenarios and regions of param-

eter space that may be important in nature but are unattainable in

the laboratory (Hindré et al. 2012). Additional information and

the program files can be found at www.aevol.fr as well as in the

previous publications that have used this platform (Knibbe et al.

2006, 2007; Misevic et al. 2012; Frénoy et al. 2013). Aevol is

an abstract instantiation of evolution and specific features of its

in silico biology are not meant to directly model any particu-

lar organism but are inspired and motivated by known properties

of microbial genetics. We treat it as an experimental system in

its own right and analyze all the data accordingly (Peck 2004).

Aevol is well suited for this study because it captures not only

the dynamics of cooperation phenotypes, but also the genetic-

level interaction between cooperation and metabolic traits. These

interactions have recently been shown to strongly influence the

evolution and maintenance of cooperation (Morgan et al. 2012;

Frénoy et al. 2013)

Genotype–phenotype fitness mapping
Each digital organism has a genotype consisting of a double-

stranded binary number string, typically 5–10,000 bases long.

What sets Aevol apart from other frequently used in silico sys-

tems, such as Avida (Adami 2006), is the bioinspired genotype–

phenotype fitness map. The phenotype of an organism is a result of

transcription and translation of its genes, based on locating within

the genome, the predetermined promoter sequence, followed by

the consensus Shine–Dalgarno sequence, the gene itself, and the

palindromic terminator sequences. More broadly speaking, the

phenotype of a digital organism is a collection of traits and their

values. Traits are arranged on a trait axis and associated with real

numbers between 0 and 1. We thus represent a protein as a trian-

gle resting on the trait axis, and the organism’s phenotype as the

sum of all proteins encoded in its digital genome (Fig. 1). Each

protein targets a particular trait, but also affects the neighbor-

ing traits, to a lesser degree. Genetic code, including start, stop,

and six other triplet codons, specifies the (mean, height, width)

triplet that describes the size and location of a protein triangle (see

Fig. S1). Mean determines the trait that is most affected by a pro-

tein, height the value of that trait, and width the most distant trait

on the axis that this protein contributes to. Traits that are close in

the phenotypic space are not necessarily close in the genotypic

space and there are many possible ways to encode same or similar

proteins. However, each gene has only one possible translation

into a protein.

The full phenotype is composed of two types of traits, re-

lating either to metabolism or secretion. Metabolic traits affect

fitness directly, thus changing the probability of the organism’s
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Figure 1. Schematic representation of phenotype and fitness in

Aevol. (A) All proteins of an organism, each represented by a trian-

gle. A protein is numerically defined by three values, m (location of

the triangle on the phenotypic axis, the primary trait this protein

affects), h (triangle height, level at which it affects the trait), and w

(width of the triangle, representing the pleiotropy with neighbor-

ing traits). Depending on its location on the phenotypic trait axis,

a triangle either contributes to organism’s fitness directly (blue)

or modifies the amount of the public good secreted (orange). (B)

Gaussians used to describe the best possible phenotype, the tar-

get phenotype, colored by the location on the phenotypic axis. (C)

Organism’s phenotype, the jagged black line, which is the sum of

triangles from (A), and the target phenotype, which is the smooth

curve calculated as a sum of Gaussians from (B). The difference

between metabolic proteins and the target protein levels (area

shaded blue) is a direct component of individual fitness, whereas

the same difference for secretion proteins (area shaded orange)

determines the amount of public good individual secretes (see

methods and Supporting Information for the numerical formula

and more details on genotype to phenotype to fitness mapping.)

offspring populating the next generation. Secretion traits deter-

mine the amount of the public good molecule that is secreted

by an organism. Intuitively, the direct fitness contribution of the

metabolism is inversely proportional to the distance between the

organism’s phenotype and the target phenotype. The target phe-

notype is an arbitrarily chosen collection of traits and their values,

that is, the optimal phenotype for the environment (Fig. 1B, C). It

is specified by adding the functions of the form y = H exp(−(x −
M)2/(2W2)), where (H,M,W) = {(0.2, 0.3, 0.04), (0.3, 0.2, 0.02),

(0.2, 0.7, 0.02), (0.3, 0.8, 0.04)} and was constant and identi-

cal across all the experiments (see Supporting Information for
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discussion of the parameter choice). The amount of secreted pub-

lic good is inversely proportional to the distance between the target

secretion phenotype and the phenotype curve formed by all secre-

tion traits encoded in the organism’s genome. The metabolic and

the public good portion of the fitness are combined multiplica-

tively. Precisely, the fitness of a digital organism is calculated as

Wmet × (1 + PG – C × S), where Wmet is organism’s metabolic

fitness, PG is the amount of the public good molecule present

in the organism’s grid cell, C is the cost of secreting a unit of

public good, and S is the amount of public good molecule that

the organism secretes. Additionally, Wmet = e−aGm and S = e−aAs

– e−aGs, where Gm is the area of the gap between the target

phenotype and organism’s phenotype for metabolism (Fig. 1C,

shaded blue), Gs is the gap between the target phenotype and

organism’s phenotype for secretion (Fig. 1C, shaded orange), As

the area under the secretion part of the target phenotype, and a

the selection pressure constant set to 0.7 for all the experiments

(see Supporting Information for additional discussion of fitness

calculation and ranges for parameters and variables). The fitness,

amount of secretion as well as diffusion, degradation, and other

parameters are reported in dimensionless, arbitrary units. In prin-

ciple, using various constants we can adjust the units and report

fitness as energy, in joules, or secretion as the number of public

good molecules, but this could be interpreted as a superficial and

ultimately unnecessary modification.

Cooperation in Aevol
The cooperative trait in Aevol, secretion of public good molecules,

is continuous, unlike in classical game-theoretical models of co-

operation (Axelrod 1984). We thus consider the average amount

of secretion, rather than a proportion of cooperators in the pop-

ulation, as the measure of the level of cooperation. Public good

diffuses at the rate of 0.05, meaning that at each generation 5% of

the public good molecules present in a cell diffuses into each of

the neighboring cells. At the same time, public good degrades at

a rate of 0.1, meaning that in every generation, 10% of the pub-

lic good present in each population location degrades. After both

processes, 54% of the original amount of public good remains at

that location for the next generation. The cost of secretion was

0.03, meaning that for secreting S units of public good that may

increase the fitness of its offspring and their neighbors in the next

generation, an organisms pays immediate fitness cost equal to

0.03S, as detailed in the fitness formula in the section above. Pre-

vious work with Aevol demonstrates that this setup does create

the classical evolutionary dilemma of cooperation (Misevic et al.

2012; Frénoy et al. 2013).

Population structure
All populations contained 10,000 individuals positioned in a

quadrilateral grid. As there is no explicit death of individuals

during a generation, all positions in a gird are occupied, only

to be effectively all emptied during the reproduction step in the

lifecycle. Each digital organism has exactly eight neighbors (the

classical 3 × 3 Moore neighborhood, Fig. S2). Other plane tes-

sellations, based on anything from regular hexagons to Escher’s

lizards, are of course possible, but the grid of squares persists as a

default setup due to its intuitive simplicity. To avoid edge effects,

our digital world is folded onto itself, becoming a torus. Depend-

ing on the dimensions of the starting grid, the resulting toroidal

world may be akin to a bulky doughnut or a slender bicycle

tire.

Aevol lifecycle
Generations are nonoverlapping in Aevol and each consists of

seven steps performed in order: fitness evaluation, secretion, dif-

fusion, degradation, selection, and reproduction with mutations.

A generation starts with evaluating the fitness of all organisms,

as described above. Only afterwards do individuals deposit in

their grid-cell location an amount of public good determined by

their genotype and, in turn, their phenotype. The public good then

degrades and diffuses as already described. Due to this order of

steps, an organism cannot directly benefit from its own secretion.

Selection starts by ranking the organisms in each 3 × 3 Moore

neighborhood (Fig. S2) based on their fitness, where the fittest

organism receives the rank 9 and the least fit the rank 1. An indi-

vidual with the rank R has (a – 1) × a9 − R / (a9 – 1) probability of

reproducing into the central position of the neighborhood, where

a is the selection pressure constant and in these experiments is

set to 0.7. Put differently, the individual populating the location i

in generation n + 1 is an offspring of one of the nine individuals

in the neighborhood of i in generation n, the parent having been

selected based on the probability of reproduction. The benefit of

a rank-based regime is that even small fitness differences result in

significant selection pressures, extending the period during which

a population is continuously adapting. The strength of selection

decreases with higher values of a. During reproduction, the binary

sequence of a new individual changes randomly, with a fixed prob-

ability. Specifically, the mutation rates were 10−5 per base pair

for base pair substitutions and small insertions/deletions (less than

6 base pairs), and 10−6 for inversions, translocations, and large

insertions/deletions (see Supporting Information for discussion

of the parameter choice). Reproduction with mutations completes

the cycle of a single generation in Aevol.

There are no cooperators at the beginning of the simulation.

For each replicate simulation, we repeatedly generate 5000 long

random strings of 0’s and 1’s, until one of those strings contains

a functional metabolic gene (see Genetic Encoding in Aevol sec-

tion in Supporting Information). The initial population consists

of 10,000 clonal replicates of this randomly generated organ-

ism. Finally, in our main experiments, the lifecycle is repeated
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50,000 times, which directly corresponds to 50,000 generations

of evolution.

AEVOL-LITE EXPERIMENTAL SYSTEM

Aevol-lite is a simplification of the Aevol system, implemented

in Matlab. It preserves the full setup and parameterization of

Aevol, but eliminates the underlying complex genetics. Instead of

a double-stranded binary string, which is transcribed and trans-

lated, a genome of an Aevol-lite individual contains a single num-

ber, 0 or 1, which determines whether they are a nonsecretor or

secretor. There are no metabolism traits, and unlike with Aevol,

the cooperation trait is not continuous, but binary. The lifecycle

of fitness evaluation, secretion, diffusion, degradation, selection,

and reproduction with mutations is the same as before. The pop-

ulation size is 10,000 individuals, all of which are nonsecretors

at the beginning of the simulation. Mutation rate between the two

types of individuals is set to 0.005 per generation, meaning there

is a 0.5% chance that a cooperator will mutate into noncoopera-

tor, and vice versa. Diffusion rate was 0.05 and degradation rate

was 0.1, the population shapes were 100 × 100 and 4 × 2500,

as before. Cooperators secreted 0.4 units of public good and their

fitness was calculated as 1 + PG − C, where PG is the amount of

the public good molecule present in the organism’s grid cell, and

C is the cost of secreting, here set to 0.1. For the sake of simplicity,

the fittest organism from each 3 × 3 neighborhood was selected to

reproduce. The broad parameter range we have tested displayed

qualitatively the same evolutionary dynamics and the parameter

values used here are a representative example.

CAEVOL EXPERIMENTAL SYSTEM

CAevol model is a further simplification of the Aevol system,

based on Cellular Automata dynamics (thus the name) and is

implemented in Matlab. The cooperation is encoded by 0 or 1,

marking an individual as a noncooperator (defector) or cooperator,

respectively. However, there is no public good, and cooperation

is instead based on the classic prisoner’s dilemma game. Dur-

ing a generation, each individual interacts with all of its eight

neighbors (found in the 3 × 3 Moore neighborhood, as before),

and collects payoffs according to the following simplified payoff

matrix: (CC, CD, DC, DD) = (1, 0, T, 0), where the letter pair

signifies the organisms interacting (C for cooperator and D for

defector) and the number determines the payoff to the first in-

dividual in the pair. T, typically called temptation, is the payoff

for the defector when interacting with the cheater, and was set to

1.03 our experiments. The fitness of an individual is simply the

sum of its payoffs. In prisoner’s dilemma scenarios, selecting the

fittest individual to leave an offspring in the next generation is

known to produce spatial artifacts (Nowak et al. 1994b; Oliphant

1994) and thus we used stochastic, fitness-proportionate selection,

where the probability to reproduce is proportional to individual’s

fitness. The fitness evaluation selection reproduction lifecycle is

unchanged from Aevol-lite. There are no cooperators at the start

of the experiments, and the mutation rate is 0.005 per generation,

as before.

EXPERIMENTAL DESIGN

Until now we have focused on the general properties of different

systems. Here we present on the specific protocols for the different

experiments.

1. Population shape experiments. In all experiments, using

Aevol, Aevol-lite, or CAevol, the population shapes are de-

rived from and denoted by the dimensions of their unfolded

grids, namely 100 × 100 (bulky) and 4 × 2500 (slender).

Fifty independent populations evolved in Aevol for 50,000

generations at each shape treatment (see Supporting Infor-

mation for the discussion of experiment duration). The num-

ber of individuals was always constant and equal to 10,000,

independently of the world shape (there were no empty po-

sitions in the grid). The shape of an evolving population is

thus a direct consequence of the toroidal grid that it inhabits.

This setup was reused in Aevol-lite and CAevol, but due to

quicker evolution and less variation between replicates, it

was sufficient to evolve 30 populations for 5000 generations

in each Aevol-lite and CAevol shape treatment. We use the

average amount of public good secreted by an individual in

an Aevol population and the proportion of cooperators in

Aevol-lite and CAevol to quantify evolutionary dynamics

and outcomes.

2. No secretion experiments. To investigate the connection be-

tween shape effect and cooperation, we evolved 50 Aevol

populations in which individuals could not secrete or coop-

erate for 50,000 generations. The phenotype target values

typically associated with secretion (right side of the Fig. 1

panels) remained numerically unchanged, but rather than

determining the amount of public good secreted, they were

considered as metabolic traits and contributed directly to

fitness.

3. Reshaping experiments. In these experiments, we test the

robustness of different cooperation levels to a change in

population shape. The Aevol populations were reshaped by

first unfolding a torus into a flat grid, and then, in the case of

transforming a bulky into a slender population, cutting away

4 × 100 strips of the grid and putting them one next to the

other thus forming a 4 × 2500 grid to be refolded into a torus.

Similarly, for slender populations, we cut 4 × 100 strips that

we then stacked on top of each other to form a 100 × 100 grid

(see Supporting Information for mathematical formulation

of the transformation, and Fig. 2B for an example 4 × 2500

population similarly reshaped for ease of display). Both the
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Figure 2. Within-population diversity in (A) a bulky and (B) slender Aevol population. Each square represents an individual and indi-

viduals that secrete the same amount share the same color. Black lines mark the edges of the population that connect to form a torus.

The slender population is separated into 4 × 100 strips that are stacked onto each other to display it at the same scale as the bulky

population. Based on the amount secreted, there are 579 different organism types in the bulky and 1210 in the slender population. The

colors are assigned at random to better differentiate types with numerically similar secretion.

organisms themselves and the information about the amount

of the secreted molecule present in their respective grid cells

were conserved in the reshaped populations. We compared

the final amount of secretion among 50 populations in each of

the four treatments characterized by the amount of time spent

in each population shape: (1) slender for 70,000, (2) bulky

for 70,000, (3) slender for 50,000 then bulky for 20,000, and

(4) bulky for 50,000 then slender for 20,000 generations.

LIFECYCLE AND DYNAMIC OF COOPERATION

PATCHES

To quantify the mechanism underlying the difference in coop-

eration between bulky and slender populations, we analyzed the

dynamics of a cooperator patch in Aevol-lite. Specifically, we

first ran controlled single patch experiments by placing a single

cooperator in the center of the population of noncooperators and

deposited six units of secretion in the same location, enough for

the expanding patch to be formed. We propagate the population

for 100 generations, branching out separate experiments during it.

At each of those generations, we consider all possible mutations

from single cooperator to a noncooperator. After we introduce

one of the mutations, we propagate the population for an addi-

tional 400 generations, without any further mutations. We used

the symmetrical nature of the expanding patches to examine only

unique scenarios, significantly decreasing the computational load,

but still analyzing thousands of expanding populations. For each

of them, we counted the number of cooperators present thought

the length of the experiment and weighted it by the probability

of the scenario occurring. The scenario probability is simply the

product of the probability of the mutation occurring in that gener-

ation and the probability there have been no previous mutations,

both a function of the mutation rate. We examined 99 mutation

rates evenly spaced between 0.001 and 0.1 in addition to those two.

Because these experiments examine only the lifecycle and

dynamics of single, isolated patches, we wanted to compare

them with regular, unconstrained Aevol-lite populations. We thus

evolved 30 populations for 5000 generations in Aevol-lite, using

the standard setup from the initial population shape experiments,

at seven similar mutations rates, namely 0.001, 0003, 0.005, 0.01,

0.03, 0.05, and 0.1. In this case, we calculate and report the ratio

between the percentage of cheaters and cooperators as a mea-

sure of the difference between slender and bulky populations.

The standard deviation of the ratio for each mutation rate was

calculated as the square root of the variance, approximated as

( E(x)
E(y) )2( Var(x)

E(x)2 + Var(y)
E(y)2 − 2 Cov(x,y)

E(x)E(y) ), where x and y are variables for

the percentage of cooperators in bulky and slender populations,

respectively.

RELATEDNESS METRICS

In a digital system such as Aevol, it would be in principle pos-

sible to record the full pedigree of an organism and extract the

exact degree of relatedness or similarity between any two organ-

isms. However, given the population size, length of evolution,

and number of replicates, neither the storage nor analysis of such

exhaustive data is technically possible. Instead, based on previ-

ous work (Taylor and Frank 1996; Pepper 2000; Damore and

Gore 2012), we compute the coefficient of correlation as a simple

and intuitive relatedness metrics using data on the relevant trait,

the public good secreted by each organism. For each population,
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Figure 3. The difference in cooperation between populations that evolved in bulky (100 × 100) versus slender (4 × 2500) populations

in (A) Aevol, (B) Aevol-lite, and (C) CAevol. Cooperation was quantified at the final generation of the experiment as the average amount

of public good secreted in Aevol and the percentage of cooperators present in the population in Aevol-lite and CAevol experiments,

which are represented here by boxplots. The horizontal line is the median, the box edges are the 25th (q1) and the 75th (q3) percentile,

the whiskers mark the most extreme data points still smaller than q3 + w(q3 − q1) and larger than q1 − w(q3 − q3), where w = 1.5.

Differences between shapes in each panel are significant (see main text).

we compute the correlation between the amount of public good

secreted by an individual and the average amount secreted by

individuals in its 3 × 3 Moore neighborhood. The higher values

of the correlation coefficient indicate higher level of relatedness

among organisms in a population.

POPULATION CLUSTERING

Although just two organism types exist in Aevol-lite and CAevol,

the number of cooperator types is much larger in Aevol popula-

tions, due to the continuous nature of the public good secretion.

To examine the population composition and patchiness, we iden-

tify the clusters of similar individual using the Markov Cluster

Algorithm, MCL (Van Dongen 2008). MCL considers an Aevol

population as a graph in which individuals represent the vertices

and edges are drawn between each two neighboring organisms.

The weight of an edge is 2|s1−s2|
max(s) , where s1 and s2 are the amount

of public good secretion for two organisms connected by the edge

and max(s) is the maximal amount of secretion by any organism

in the population. MLC has a single tunable parameter, inflation

(R), which determines the rescaling of the stochastic matrix of

the Markov process used to identify the clusters in the graph. It

primarily affects the granularity of the clusters, with higher values

of R producing smaller clusters than lower values. In preliminary

tests, we varied the inflation parameter, before settling on 1.5

based on comparison of clustering of populations that evolved

for 50,000 generations and their randomized versions. We apply

a random permutation to the organism location indices to derive

a randomized population from the regular one. For each popu-

lation we recorded the number and size (number of vertices) of

clusters calculated by MCL. For R = 1.5, the number of clusters

was smaller and they were larger in regular than in randomized

populations, which was an internal control for our methodology:

when the number of clusters is smaller in regular than in shuffled

populations, the reported clusters represent a meaningful group-

ing of individuals.

STATISTICS

The statistical analysis was done using the Matlab software pack-

age. For each comparison between different treatments, we first

test the null hypothesis that the data are coming from a normally

distributed population, using Lilliefors test. The details of the test

and P values are reported in the Supporting Information. We used

Wilcoxon rank sum test when the hypothesis of normality was

rejected and two-sample Student’s t-test for data when it could

not be rejected. The exception was the comparison of clustering

results between regular and shuffled populations where Wilcoxon

sign-rank test for related samples was used, due to the shared

ancestry of the populations being compared.

Results
POPULATION SHAPE EXPERIMENTS

We start by quantifying the central result of this study: there is

more cooperation in bulky than in slender populations. The first

data we look at are from Aevol experiments with populations of

two different shapes, namely 100 × 100 (bulky) and 4 × 2500

(slender). We find a significant difference in the evolved secretion

amount between the two shapes (Wilcoxon rank sum, P < 10−12,
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Figure 4. Example of a full lifecycle of a cooperator patch in (A) a bulky and (B) slender Aevol-lite population. Each square represents

an individual, with cooperators drawn as dark and noncooperators as white cells. Each square in panel (A) and rectangle in panel (B)

represents a snapshot of a portion of the population, with the red number in the top left corner indicating the generation. In both panels

a cooperator patch can be tracked from its appearance, through initial expansion, the appearance of noncooperator, cheater patches

within it, and until it disappears by being completely taken over by the cheater patches.

Fig. 3A). Similar results are obtained for Aevol-lite (Wilcoxon

rank sum, P < 10−12, Fig. 3A) and CAevol experiments (Fig. 3C,

Wilcoxon rank sum, P < 10−17). All the comparisons were done

using data from the final time point of the experiments. How-

ever, the effect of shape was present throughout the experiments

and was robust to many parameter combinations (see Figs. S2,

S3, S6–S8). Over the entire course of the experiment, slender

populations in Aevol secrete on average 10.1% less than bulky

ones, which contributes to them also being 12.5% less fit, indicat-

ing a biological and not just statistical significance (see Supporting

Information for further discussion).

POPULATION DYNAMICS OF PATCHES

To identify the explanation for the effect of population shape on

secretion, we examined the dynamics of cooperating populations.

It was immediately evident that the population averages from

Figure 3 do not capture the existing within-population diversity

(Fig. 2). In Aevol there are hundreds of different cooperation

phenotypes, and even in Aevol-lite and CAevol, populations are

a constantly changing mixture of cooperators and cheaters (see

Video S1). The individual types are in continued competition,

which is reflected by the perpetually expanding and shrinking

patches they form. Although patch dynamics is difficult to follow

in Aevol due to large number of organism types, it is visually strik-

ing in the two other systems. In Aevol-lite we can clearly identify

the following stages of a cooperative patch lifecycle (Fig. 4): (1)

emergence, persistent group of cooperators appears; (2) expan-

sion, cooperator offspring are invading neighboring locations; (3)

invasion, at least one noncooperator mutant appears within the

cooperator patch; (4) decline, an expanding noncooperator patch

forms; and (5) extinction, noncooperator patch completely takes

over, no individuals from the original cooperator patch remain.
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Figure 5. Quantification of patch lifecycle and dynamics. (A) Total number of cooperators present during the lifetime of a patch in a

bulky (blue, triangles) and slender (green, circles) population as a function of mutation rate. Lifecycle of a single, cooperative patch

was examined in isolation, using a reduced version of Aevol-lite. Mutation rate corresponds to the probability of cooperator mutating

into a cheater. All possible scenarios for appearance of a single cheater mutant are considered and the number of cooperators summed

over time. (B) Ratio of the mean percentage of cooperators in bulky versus slender populations for different mutation rates after 5000

generations of evolution in Aevol-lite. Multiple patches of cheaters and cooperators exist and the mutation rate corresponds to the

probability of an offspring having a different phenotype than the parent. The error bars represent one standard deviation.

There are several scenarios for the emergence of cooperator

patches, including multiple cooperators appearing by mutation in

a neighborhood in the same or consecutive generations or even

a single cooperator reproducing by chance, in spite of having

lower fitness than its noncooperating neighbors. These complex,

stochastic scenarios make analytical, equation-based quantifica-

tion of the patch dynamics difficult, which is why we simulated

the isolated patches in Aevol-lite. Following initial appearance,

a cooperator patch in a bulky population can expand on all four

sides, potentially adding dozens of new cooperators in a single

generation (e.g., Fig. 4A, from generation 343 to 344). On the

other hand, after reaching the size of about 16 individuals (4 × 4

square), the corresponding patch in a slender population is con-

strained by the population shape and cannot grow by more than

eight cooperators per generations, four on each side (e.g., Fig. 4B,

from generation 619 to 620). Due to faster patch growth, we ex-

pect the noncooperators to appear within a patch in bulky sooner

than in slim populations. The invasion of noncooperators cannot

happen from the outside, but requires a mutation of an individual

in the growing patch, because of the accumulation of the public

good and the corresponding benefit it confers. This will happen

at different times in populations of different shape. For example,

at mutation rate of 0.0005, there is more than a 99.9% probability

of invasion starting within the first 68 generations in slim and

32 generations in bulky populations. The nonsecretors likely start

their takeover earlier in bulky than in slim populations. However,

cooperative patches in bulky populations still grow faster and

to a larger size, because they are not constrained by population

shape. The difference in the dynamics and lifecycle of cooperative

patches directly leads to a greater number of cooperators being

present in bulky than in slender populations–this is a simple, ef-

fective, mechanistic explanation for the effect of population shape

on cooperation.

We directly test the patch dynamics hypothesis by track-

ing expanding patches from their emergence to extinction and

summing the total number of cooperators. We do so by isolat-

ing a single cooperative patch and only one noncooperative mu-

tant in a reduced Aevol-lite setup. Independently of the mutation

rate, the total number of cooperators during the patch lifetime

is greater in bulky than in slender populations (Fig. 5A), di-

rectly supporting our analysis. Further confirmation comes from

comparing the ratio of cooperators in bulky and slender pop-

ulations at different mutation rates in the full Aevol-lite simu-

lations, with many patches simultaneously going through their

lifecycles (Fig. 5B). As seen previously, there are more cooper-

ators in bulky than in slender populations. Moreover, the ratio

of cooperators to cheaters was generally greater at smaller mu-

tation rates. The change in the ratio can be interpreted as being

a direct consequence of the greater difference in patch size be-

tween slender and bulky populations at lower mutation rates, and

supports our explanation of the effect of population shape on

cooperation.
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Figure 6. Clustering of Aevol populations. We used the MCL algorithm to identify (A) the number and (B) the average size of clusters

in evolved populations. Individuals were clustered based on the amount of the public good they secrete. We evaluated the significance

of our clustering method by comparing the clustering of regular evolved populations (blue, first and third boxplot from the left, in

each panel) and populations constructed from them by randomly permuting the location of all individuals (green, second and fourth

boxplot from the left). Stars mark statistically highly significant differences between clustering results (see main text for statistics). The

boxplots have the same properties as in Figure 3, and the points outside of the whiskers are considered outliers and marked with plus

symbols (+).

PATCHINESS IN AEVOL

Based on the amount of secretion, we evaluate the patchiness of

Aevol populations. To do so, we have clustered individuals in the

bulky and slender populations at the end of our experiments us-

ing the MCL algorithm described in the methods. Comparing the

number and size of detected clusters from the actual populations

with the ones of the shuffled populations confirmed that there is

some significant clustering of individuals. Populations were shuf-

fled by randomizing the positions of all individuals. There are

significantly fewer and significantly larger clusters in the actual

than in the shuffled populations (P < 10−21 for all comparisons,

paired two-sample t-test, Fig. 6). Finally, we confirm that the

bulky populations have both fewer (P < 10−58, two-sample t-test)

and larger clusters (P < 10−41, two-sample t-test, Fig. 6) consis-

tent with the mechanisms of patch spread we have described in

Aevol-lite.

RELATEDNESS IN AEVOL

We measured relatedness by calculating the coefficient of cor-

relation between the neighboring individuals’ secretion phe-

notype in the evolved populations. Higher coefficient of cor-

relation observed in bulky populations (Wilcoxon rank sum

P < 10−17, Fig. 7A) directly points toward higher relatedness

in bulky than in slender populations. The relatedness difference

is consistent with the corresponding smaller, more numerous

clusters in slender populations, arising from lower similarity

among neighboring individuals. To investigate the potential causal

connection between patch dynamics, relatedness, and coopera-

tion, we repeated the analysis using data from Aevol experiments

in which secretion was not possible, calculating relatedness based

on the metabolism phenotype. The difference in relatedness be-

tween the shapes we observed in cooperating populations was

completely absent when individuals had no means of cooperating

with each other (Wilcoxon rank sum P = 0.754, Fig. 7B).

RESHAPING EXPERIMENTS IN AEVOL

So far we have established that the population shape consistently

affects cooperation. Here we investigate the potential genetic con-

straints the evolution in different shapes may convey. Namely, if

the shape of the population changes, would the level of coopera-

tion change as well, or is it genetically “hard-coded” and difficult

to change. Such a test is meaningful only in the Aevol system,

where we know that organisms evolve genetic architecture that

may affect cooperation evolvability (Frénoy et al. 2013), but not in

the context of the Aevol-lite and CAevol simple genetic encoding.

We compared populations that spent 70,000 generations in

the same shape against ones that switched the shape after 50,000

generations (Fig. 8). The reshaped populations evolved signifi-

cantly different levels of secretion, compared to populations that

remained in their respective ancestral shapes (P < 10−5, in both
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Figure 7. Relatedness in Aevol populations. Relatedness is calculated as the coefficient of correlation between secretion of an individual

and average secretion in its neighborhood. We measure relatedness in bulky and slender populations in which secretion, and thus also

cooperation, are (A) possible or (B) not possible. The boxplots have the same properties as in Figure 3.
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Figure 8. The average amount of public good secreted after

70,000 generations of evolution in either constant or changing

population shapes. Fifty replicate populations with 100 × 100

(bulky) and 4 × 2500 (slender) shapes from the generation 50,000

of the initial Aevol experiments were propagated for additional

20,000 generations either in the same (blue, first and third boxplot

from the left) or different (green, second and fourth boxplot from

the left) shape. The different shape was slender for bulky pop-

ulations and vice versa. Stars mark statistically highly significant

differences between clustering results and “n.s.,” the nonsignifi-

cant ones (see main text for statistics). The boxplots have the same

properties as in Figure 3.

comparisons, Wilcoxon rank sum). After the reshaping, the pop-

ulation secretion evolved toward the levels observed in popula-

tions that spent their entire evolutionary history in that shape.

Specifically, at generation 70,000, there was no significant dif-

ference between either the two groups of 50 slender populations

(P = 0.171, two-sample t-test), or the groups of bulky populations

(P = 0.053, Wilcoxon rank sum). The difference between slender

and bulky populations that were not reshaped remained highly

significant (P < 10−11, Wilcoxon rank sum).

Discussion
Our experiments have a clear and easily stated outcome: organ-

isms in bulky populations evolve to cooperate more than organ-

isms living in slender populations. Simply put, shape matters. This

outcome went against our intuition. At the core of the current un-

derstanding of cooperation is the idea that it will be selected for

when cooperators preferentially interact with each other—for ex-

ample, when cooperators form some type of refuges, regions that

are free of noncooperators. Cooperator-rich regions, abundant in

the secreted public good, effectively create a different niche, one

that favors the maintenance of cooperation. Such islands of co-

operation, already observed in some of the first game-theoretical

simulations (Nowak and May 1992), would have fewer cells in

contact with noncooperators in slender than in bulky populations

just due to the constraints of grid geometry: in slender popula-

tions the borders between two types are more likely to exist only

on two and not on all four sides of the neighborhood. However,

because this prediction was incorrect, our experiments serve a
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double purpose: to provide an explanation of the observed effect

and to revise our intuition about the evolution of cooperation via

public good secretion.

To find a satisfying, mechanism-based answer we switched

from Aevol to a simpler system, Aevol-lite. Because there are

only two types of Aevol-lite individuals, secretors and nonsecre-

tors, patterns are much easier to represent graphically, identify,

and qualify than in Aevol (e.g., Fig. 4, Video S1). We started

from the observation that each population is a mix of secretors

and nonsecretors, who are grouped in ever-expanding and shrink-

ing patches. The dynamic of these patches holds the key to the

population shape effect: in slender populations, the cooperator

patches do not have as much space to expand as in the bulky pop-

ulations, resulting in smaller number of cooperators over time.

We quantified the difference and found that during the total patch

lifetime there is greater number of cooperators present in bulky

than in slender populations (Fig. 5A). Considering one patch over

time is generally equivalent to considering the entire population

at one time point, as the population is composed of many patches

in different stages of their lifecycle. Thus, we can conclude that

the population shape effect is caused by differences in the area

available to expanding patches of cooperators between slender

and bulky populations.

Until now we have examined cooperation based on public

good secretion. To test whether secretion is a necessary condition

for the population shape effect we performed simulations with

CAevol, where cooperation has significantly different properties.

For example, in CAevol there is no memory of past population

states and the fitness depends only on properties of the current

population. Additionally, the speed of patch expansion is always

the same, unlike in Aevol and Aevol-lite, where the expansion

of secretor patches is delayed because it depends on accumula-

tion and in turn the fitness benefit of the secreted public good

(see, e.g., generations 336–338 in Fig. 4A). However, the patch

lifecycle and dynamics in CAevol actually causes greater dif-

ferences in cooperation between slender and bulky populations,

as observed in Figure 3, because noncooperative patches cannot

ever “catch-up” and overtake cooperative ones. Overall, the sim-

ulations with CAevol show that the shape effect is robust across

evolving systems and not contingent on a particular cooperation

mechanism.

Having identified the cause of the different level of coop-

eration in Aevol-lite and CAevol, we finally return to Aevol it-

self. Reconstructing the full lineage of all individuals and thus

delineating the patches and their size remains computationally

intractable. Given the continuous levels of secretion, and thus

cooperation, distinct classes of cooperators and noncooperators

cannot be identified to clearly characterize their interactions, as

before. The same Aevol individual may be considered a “cheater”

when compared to individuals secreting more, or a cooperator

when interacting with individuals secreting less. However, the

same mechanism governing the two-type cooperation dynamics

in Aevol-lite should hold: constrained patch size of the expand-

ing (more) cooperative strains leads to less overall cooperation.

We identify patches of organisms with the MCL clustering al-

gorithm and confirm that Aevol bulky populations indeed have

a smaller number of patches than slender populations, and that

those patches are larger, as predicted by Aevol-lite experiments

(Fig. 6). Furthermore, although we do not record “digital pedi-

grees” and are unable to find Haldane’s proverbial two brothers

or eighth cousins for Aevol organisms to cooperate with, we have

measured relatedness and found higher relatedness in bulky than

in slender populations, as would be expected based on the clus-

tering data and Hamilton’s rule.

Given the observation from simpler systems, we must con-

clude that the Aevol genotype–phenotype mapping is not critical

for the shape effect, and in turn question the necessity of using

Aevol in this study. However, while CAevol and Aevol-lite elim-

inate the possibility that complexity single handedly drives the

effect, they cannot assure us that it would not hinder it. Genetic

hitchhiking, epistasis between secretion and nonsecretion genes,

evolving switching rates between cooperators and noncoopera-

tors are just some of the high-level processes that may shape

the evolution of cooperation in bulky and slim populations. They

all are dependent on the genetic architecture and thus can play

a role in Aevol but not Aevol-lite and CAevol. The reshaping

experiments specifically show that shape does not irreversibly

modify cooperation. Even though Aevol individuals can exhibit

constrained, hard to modify genetic architecture (Frénoy et al.

2013), average cooperation level does change after the change

in population shape. Organisms adapt to the present shape, as

they would to any other environmental constraint, such as public

good diffusion or degradation. The same way a given set of public

good physical properties determines the “optimal,” stable amount

of cooperation (Brown and Taddei 2007; Kümmerli and Brown

2010; Wintermute and Silver 2010; Misevic et al. 2012), so does

the population shape. Overall, the presence of the shape effect in

Aevol populations increases the likelihood of also observing it in

even more complex, biological systems.

It would have been convenient to explain the shape effect via

relatedness alone, the effect somehow being directly created by

the population shape. However, the analysis of populations that do

not cooperate and do not show a difference in relatedness directly

contradicts arguments purely based on Hamilton’s rule (Fig. 7B).

Rather than “shape causes relatedness that causes cooperation,”

we must consider a closer, more integrated relationship between

these population properties: relatedness is not the result of the

population shape alone, but of the dynamics of cooperation within

a shape. Without secretion, the patches of different organisms are

not “chasing each other” around the population, one outcompeting
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the other only for itself to be outcompeted by the same type

later. Instead, noncooperative populations are characterized by

only occasional sweeps of beneficial mutations, making the issues

of patch lifecycle and constrained patch size irrelevant. In other

words, the effects of shape are contingent in the presence of

cooperation and the within-population dynamics the cooperation

creates.

What do our results tell us about the cooperation in the “real

world”? After all, organisms in nature do not live on slender, bi-

cycle tire shaped worlds, and although bulky doughnuts may host

some microbes, they are not the most typical of habitats. How-

ever, even a brief review of microbial cooperative systems reveals

much habitat diversity and highlights some strange and unex-

pected shapes. For example, filamentous Anabaena cyanobacteria

inhabit a roughly linear, 1D world and exhibit cell differentiation

with a stable ratio of vegetative (carbon fixing) and heterocystous

(nitrogen fixing) cells (Kumar et al. 2010; Kim et al. 2011). The

vegetative cells are effectively a germline and the nonreproduc-

ing heterocysts are much like soma, their differentiation caused

by a molecular signal diffusing though neighboring cells (Yoon

and Golden 1998). Although not a classical cooperation system,

the division of labor in Anabaena is also evolutionarily unstable,

where populations could be invaded and overtaken by “cheater”

cells that forgo becoming heterocysts (Rossetti et al. 2010;

Rossetti and Bagheri 2012). 2D and 3D bacterial worlds are cer-

tainly not difficult to find in nature and have routinely been studied

in the laboratory. For example, one of the workhorses of micro-

bial sociobiology, Pseudomonas aeruginosa, causes opportunistic

infections via biofilm formation in the lungs of immunocompro-

mised patients (Griffin et al. 2004; Köhler et al. 2009). The already

complex structure of biofilms (Xavier et al. 2009), combined with

potentially fractal shape of the lung itself (Nelson and Manchester

1988) may lead to bacterial populations with noninteger, fractal

dimensions greater than 2 for their surface and even greater than

3 for the volume. Indeed, bacterial colonies have been found to

grow in complex, fractal shapes, driven by both genetics and en-

vironment (Obert et al. 1990; Ben-Jacob et al. 1998). If some of

those shapes select for or against cooperation, as our work sug-

gests, then population shape is another avenue for evolution to

fine-tune natural systems and for us to disrupt them in medically

relevant situations (Brown et al. 2009).

In conclusion, cooperation is present in a wide variety of

natural systems, ranging from microbes to humans, and it is in-

evitably instantiated in populations of individuals occupying a

certain shape. In our work with Aevol and related digital plat-

forms, we show that the population shape profoundly affects the

evolution of cooperation and in some cases may differentiate

between stable cooperation and no cooperation at all. To fully de-

scribe and predict the evolution of cooperation in all its diversity,

together with classic factors such as population structure, future

studies should also consider the effect of population shape.
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Köhler, T., A. Buckling, and C. van Delden. 2009. Cooperation and virulence
of clinical Pseudomonas aeruginosa populations. Proc. Natl. Acad. Sci.
USA 106:6339–6344.

Kumar, K., R. A. Mella-Herrera, and J. W. Golden. 2010. Cyanobacterial
heterocysts. Cold Spring Harb. Perspect. Biol. 2:a000315.
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Kümmerli, R., A. S. Griffin, S. A. West, A. Buckling, and F. Harrison. 2009.
Viscous medium promotes cooperation in the pathogenic bacterium
Pseudomonas aeruginosa. Proc. R. Soc. B 276:3531–3538.

Lehmann, L., and L. Keller. 2006. The evolution of cooperation and altruism—
a general framework and a classification of models. J. Evol. Biol.
19:1365–1376.

Misevic, D., A. Frénoy, D. P. Parsons, and F. Taddei. 2012. Effects of public
good properties on the evolution of cooperation. Pp. 218–225 in C.
Adami, D. M. Bryson, C. Ofria, and R. T. Pennock, eds. Proceedings of
Artificial Life 13. MIT Press, Cambridge, MA.

Morgan, A. D., B. J. Z. Quigley, S. P. Brown, and A. Buckling. 2012. Selec-
tion on non-social traits limits the invasion of social cheats. Ecol. Lett.
15:841–846.

Myerson, R. B. 1977. Graphs and cooperation in games. Math. Oper. Res.
2:225–229.

Nadell, C. D., K. R. Foster, and J. B. Xavier. 2010. Emergence of spatial
structure in cell groups and the evolution of cooperation. PLoS Comp.
Biol. 6:e1000716.

Nakamaru, M., H. Matsuda, and Y. Iwasa. 1997. The evolution of cooperation
in a lattice-structured population. J. Theor. Biol. 184:65–81.

Nelson, T. R., and D. K. Manchester. 1988. Modeling of lung morphogenesis
using fractal geometries. IEEE Trans. Med. Imaging 7:321–327.

Nowak, M. A., and R. M. May. 1992. Evolutionary games and spatial chaos.
Nature 359:826–829.

Nowak, M. A., S. Bonhoeffer, and R. M. May. 1994a. More spatial games.
Int. J. Bifurcat. Chaos 4:33–56.

———. 1994b. Spatial games and the maintenance of cooperation. Proc. Natl.
Acad. Sci. USA 91:4877–4881.

Nowak, M. A., C. E. Tarnita, and E. O. Wilson. 2010. The evolution of
eusociality. Nature 466:1057–1062.

Obert, M., P. Pfeifer, and M. Sernetz. 1990. Microbial-growth patterns de-
scribed by fractal geometry. J. Bacteriol. 172:1180–1185.

Ohtsuki, H., C. Hauert, E. Lieberman, and M. A. Nowak. 2006. A simple rule
for the evolution of cooperation on graphs and social networks. Nature
441:502–505.

Oliphant, M. 1994. Evolving cooperation in the non-iterated prisoner’s
dilemma: the importance of spatial organization. Pp. 349–352 in R.

A. Brooks and P. Maes, eds. Proceedings of Artificial Life IV. MIT
Press, Boston, MA.

Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for
biological modeling. Trends. Ecol. Evol. 19:530–534.

Pepper, J. W. 2000. Relatedness in trait group models of social evolution. J.
Theor. Biol. 206:355–368.

Perc, M., J. Gomez-Gardenes, A. Szolnoki, L. M. Floria, and Y.
Moreno. 2013. Evolutionary dynamics of group interactions on
structured populations: a review. J. R. Soc. Interface 10:20120997.
http://dx.doi.org/10.1098/rsif.2012.0997.

Popat, R., S. A. Crusz, M. Messina, P. Williams, S. A. West, and S. P. Diggle.
2012. Quorum-sensing and cheating in bacterial biofilms. Proc. R. Soc.
B 279:4765–4771.

Rainey, P. B., and K. Rainey. 2003. Evolution of cooperation and conflict in
experimental bacterial populations. Nature 425:72–74.

Rankin, D. J., K. Bargum, and H. Kokko. 2007. The tragedy of the commons
in evolutionary biology. Trends Ecol. Evol. 22:643–651.

Rossetti, V., and H. C. Bagheri. 2012. Advantages of the division of labour
for the long-term population dynamics of cyanobacteria at different
latitudes. Proc. R. Soc. B 279:3457–3466.

Rossetti, V., B. E. Schirrmeister, M. V. Bernasconi, and H. C. Bagheri. 2010.
The evolutionary path to terminal differentiation and division of labor
in cyanobacteria. J. Theor. Biol. 262:23–34.

Russe, M. 1999. The Darwinian revolution: science red in tooth and claw.
University of Chicago Press, Chicago, IL.
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