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Currently, third-generation sequencing techniques,whichmake it possible to obtainmuch longer DNA reads compared to the next-
generation sequencing technologies, are becoming more and more popular. There are many possibilities for combining data from
next-generation and third-generation sequencing. Herein, we present a new application called dnaasm-link for linking contigs, the
result of de novo assembly of second-generation sequencing data, with long DNA reads. Our tool includes an integratedmodule to
fill gaps with a suitable fragment of an appropriate long DNA read, which improves the consistency of the resultingDNA sequences.
This feature is very important, in particular for complex DNA regions. Our implementation is found to outperform other state-of-
the-art tools in terms of speed andmemory requirements,whichmay enable its usage for organisms with a large genome, something
which is not possible in existing applications.The presented application has many advantages: (i) it significantly optimizes memory
and reduces computation time; (ii) it fills gapswith an appropriate fragmentof a specified longDNA read; (iii) it reduces the number
of spanned and unspanned gaps in existing genome drafts. The application is freely available to all users under GNU Library or
Lesser General Public License version 3.0 (LGPLv3). The demo application, Docker image, and source code can be downloaded
from project homepage.

1. Introduction

High-throughput sequencing devices, called next-generation
sequencers, have provided lots of DNA sequences for various
organisms. However, a very large number of draft genome
sequences are still incomplete. For example, inGenBank, 90%
of bacterial genomes are incomplete [1]. In order to improve
the consistency and completeness of the draft of reference
genomes, which are produced based on short reads obtained
from second-generation sequencers, third-generation long
read sequencing can be used. Due to this, third-generation
sequencing technologies are becoming more popular; for
example, in 2018 the de novo human genome assembled from
only long DNA reads was published [2].

Third-generation sequencing makes it possible to obtain
much longer DNA reads compared to second-generation
sequencing technologies. However, the error rate in long
reads from third-generation devices compared to short
DNA reads from second-generation sequencers is signif-
icantly higher [3, 4]. Moreover, the cost per sample of

third-generation sequencing is higher than second-genera-
tion sequencing [5].

An obvious concept of using both types of reads in de
novo assembly, hybrid assembly is currently being explored
[6, 7]. There are many possibilities for combining data
from second-generation sequencing and third-generation
sequencing. The four most popular are listed below.

(1) Long DNA reads could be mapped directly onto the
de Bruijn graph, which is built from short DNA reads.
Then, dedicated algorithms allow us to resolve some
ambiguity in the de Bruijn graph, which can improve
the consistency of the resulting DNA sequences. Such
an approach is implemented in some de novo DNA
assemblers for second-generation reads, e.g., Velvet
[8], ABySS [9], and SPAdes [10].

(2) Long DNA reads could be de novo assembled with
dedicated assemblers, e.g., Canu [11], Falcon [12], and
miniasm [13]. The created DNA sequences can be
improved in terms of quality by mapping short DNA
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reads and correcting assembly errors using Pilon [14]
or quiver [15] applications.

(3) Short DNA reads could be used to correct long DNA
reads, for example, with CoLoRMap [16] or Nanocorr
[17] tools. Then, long and corrected DNA reads could
be assembled with assemblers for third-generation
sequencing data (as depicted in the previous point).

(4) Short DNA reads could be de novo assembled using
assemblers dedicated to second-generation sequenc-
ing data (as depicted in point 1). Then, long DNA
reads could be used to link the resulting DNA
sequences (contigs), for example, with LINKS [18] or
SSPACE-LongRead [19] applications.

In this paper, we present a new application called dnaasm-
link for combining the output of a de novo assembler with
long DNA reads (point 4 of the above list). Our software
contains a module for filling the gaps between contigs with
a specified sequence from an appropriate long DNA read.
This feature is very important, in particular for complex
DNA regions. What is more, our method has a much shorter
calculation time as well as much lowermemory requirements
in comparison to other tools. Significant memory optimiza-
tion and reduction of computation time may enable the
usage of the application for organisms with a large genome,
which may be cumbersome or even impossible for existing
applications (estimated resources required for scaffolding of
a humangenome (∼3 Gbp): dnaasm-link, 8 h/600GB; LINKS,
2 days/6TB; SSPACE-LongReads, 5 days/130GB).

The presented algorithm was implemented as a new
extension of the dnaasm assembler [20]. The demo appli-
cation, Docker image, and source code are available at the
project homepage: http://dnaasm.sourceforge.net.

2. Materials and Methods

The presented algorithm efficiently finds and joins adjacent
contigs using long reads. The contigs are produced by a
de novo DNA assembler from short and high quality reads
from second-generation sequencers. In our approach, the
contigs are created using the de Bruijn graph algorithm
implemented in a dnaasmassembler [20].Thenew algorithm,
called dnaasm-link, checkswhich contigs have a subsequence
similar to a subsequence in a long read, then finds adjacent
contigs, calculates the distance between contigs, and fills the
gap with a sequence from the appropriate long DNA read.
The presented approach and details of implementation are
described below.

2.1. Finding Adjacent Contigs. The algorithm uses k-mer
similarity to find adjacent contigs. This algorithm consists of
several stages.

Firstly, a set of k-mers is generated from the input set
of contigs, each of them being inserted into a Bloom filter
[21]. A Bloom filter is a probabilistic data structure that
efficiently tests whether a k-mer is present in a set. The length
of analysed k-mers (the value of parameter 𝑘) can be set by the
user based on the error rate of long DNA reads: the higher the

error rate, the lower the 𝑘 value. The default value is 15. This
step is depicted in Figure 1(a).

Secondly, a set of long DNA reads begins; a set of k-
mer pairs with the distance 𝑑 is generated (paired k-mers
that map onto two different contigs are used to link these
contigs in the next step of the algorithm). The default value
𝑑 is 4000. It should be mentioned that we do not generate
a full k-spectrum here; we rather use the step value 𝑡,
set by default to 2. This step is depicted in Figure 1(b).
The pairs in which both k-mers are in the previously
generated Bloom filter are processed further, as depicted in
Figure 1(c).

Thirdly, a set of unique k-mers is determined.This process
consists of counting the number of instances of a given k-mer
in the input set of contigs. K-mers which occur more than
once are treated as nonunique. All pairs of k-mers containing
at least one nonunique k-mer are removed from further
considerations, as depicted in Figure 1(d).

Next, a connection graph is built. This graph is composed
of vertices that represent contigs and edges that represent
connections between contigs derived from pairs of k-mers
from long DNA reads. Each edge contains three parameters
that define the strength of the specified connection. These
parameters are

(i) the number of connections between a given pair of
contigs defined as the number of k-mers pairs;

(ii) the number of connections between a given pair of
contigs defined as the number of DNA reads;

(iii) the number of connections between a given pair of
contigs defined as the number of DNA reads, where a
specified DNA read is taken into consideration if the
number of k-mer pairs in this read is greater than the
threshold value specified by the user.

After building the connection graph a set of filters is applied
to remove some edges representing connections. Filters
remove the edges where at least one of the three parameters
mentioned above is lower than the corresponding thresholds
set by the user.

Finally, the process of generating the resulting set of
scaffolds from the connection graph is performed. At first,
a list of all vertices from the connection graph is prepared.
The list should represent contigs sorted by their lengths in
descending order. Next, all vertices on the list are marked
as unseen. In each iteration an unseen vertex pointing to
the longest contig becomes a seed for a new scaffold. The
seed is expanded to the right and to the left by attaching
consecutive contigs to both ends, based on the connection
graph. During the expansion, two situations can occur: (i)
the specified contig is connected only with a single vertex
in a contig graph, then, considered contigs are joined; (ii)
the specified contig is connected with more than a single
vertex. In this situation, the vertex with the largest number
of connecting pairs of k-mers is preferred. At this stage, two
adjacent contigs are not joined into a single sequence, but
rather are separated by a gap/overlap placeholder that will be
replaced with a proper sequence by the gap-filling algorithm
described in the next section. All vertices used to construct

http://dnaasm.sourceforge.net
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Figure 1:�e process of generating and filtering k-mer pairs from longDNA reads. (a) Firstly, a Bloomfilter and an array containing the number
of occurrences of each k-mer are built based on the k-spectrum generated from the input set of contigs. (b) From each long DNA read, a set
of k-mer pairs (k-mer length equal to 𝑘) is generated, with a distance between the beginning of the first k-mer and the end of the second equal
to 𝑑 and a sliding step equal to 𝑡. (c) The input set of k-mer pairs is filtered with the Bloom filter; some pairs are discarded (dotted arrows).
(d)The resulting set of k-mer pairs after the second filtering process (red arrows - nonunique k-mers - are discarded). It is worth noting that
the resulting set of k-mers pairs (d) is very limited in relation to the generated set of k-mers pairs (b) due to errors in long DNA reads and
repetitive regions of the investigated genome.

a single scaffold are marked as seen and are not taken into
consideration in the next iterations of the algorithm. The
process is repeated until there are no unseen vertices. The
main steps of the described above algorithm are presented in
Figure 2.

2.2. Gap-Filling Algorithm. When generating scaffolds, two
contigs may overlap. In this case, a single “N” sign is inserted
between them. However, the contigs may be separated by
a gap. The final step of the presented algorithm aims to
estimate the gap size and to fill it with a fragment of a
long DNA read. For each linking k-mer pair, the gap size
is calculated based on (1) the fixed distance between k-
mers in the long read, (2) lengths of contigs, and (3) k-
mers’ offsets on contigs. Sequencing errors in long reads
may cause distances computed for each k-mer pair to be
different. An average value is taken as an estimate. In the
same manner, if the offset of each k-mer pair extracted from
the long read is known, it is possible to determine the offset
of a subsequence of a read corresponding to each of the
gaps in scaffolds. Contigs are covered by reads containing
multiple errors, and consequently, multiple different gap
sequences may be generated. In the presented application, a
gap sequence is taken directly from the read which covers
the considered contigs with the greatest number of k-mer
pairs.

2.3. Implementation. The dnaasm application was imple-
mented in client-server architecture, based on the bioweb
framework [22].The dnaasm-link is a new module, deployed
as a shared library. In our implementation, we used three pro-
gramming languages: JavaScript, Python, and C++. Firstly,
JavaScript along with HTML5 and the AngularJS framework
were used to implement the graphical user interface (GUI).
Then, the Python and Django library were used to implement
the server side. The server side stores parameters of numeric
tasks in the PostgreSQL relational database. We decided to
use object-relational mapping (ORM) to communicate with
the database as this was a flexible and simple approach, and
performance issues were not critical. Finally, C++ was used
to implement the most complex data processing step, the
algorithm presented in the work. Moreover, we used several
libraries: Boost, MurmurHash3, and Google Sparse Hash, to
make the implementation of our algorithm fast and memory
scalable. The main modules of our software are presented in
Figure 3.

3. Results

Numerical experiments were performed to compare the pre-
sented application with other available tools and to indicate
the advantages of filling gaps in scaffolds using long DNA
reads. Briefly, the first experiment compares the quality of



4 BioMed Research International

ACTGAAA

GACTTTACGATAACTG

TGGATCTAGC

ACTGGGACAAAT

ACCGAAT

GCCGAACAACGACTTTACGAT ACTGATTCCCTTTACAACTACCGAATAAAGACTTTACGATAAC
ACCGA GACTT
CCGAA ACTTT
CGAAT CTTTA
GAATA TTTAC
AATAA TTACG
ATAAA TACGA
TAAAG ACGAT
AAAGA CGATA
AAGAC GATAA
AGACT ATAAC

GCCGA GACTT
CCGAA ACTTT
CGAAC CTTTA
GAACA TTTAC
AACAA TTACG
ACAAC TACGA
CAACG ACGAT

ACTGA TTTAC
CTGAT TTACA
TGATT TACAA
GATTC ACAAC
ATTCC CAACT

2,4,1

1,1,0

2,4,2

2,4,2

TAACTGAAAATGGATC TAACTGCCCCTGGATC TAACTGAAAAACTGGG TAACTGCCCCACTGGG

TAACT TGGAT
AACTG GGATC

TAACT TGGAT
AACTG GGATC

TAACT ACTGG
AACTG CTGGG

TAACT ACTGG
AACTG CTGGG

ACCGAAT
ACTGAAA
GACTTTACGATAACTG
TGGATCTAGC
ACTGGGACAAAT

Long DNA reads

Contigs

(c)

(d)

(b)

(a)

ACTGAAA

GACTTTACGATAACTG

TGGATCTAGC

ACTGGGACAAAT

ACCGAAT 2,4,1 2,4,2

2,4,2

ACCGAATNNNGACTTTACGATAACTG 
ACTGAAA
TGGATCTAGC
ACTGGGACAAAT

Figure 2: �e process of generating scaffolds from contigs and long DNA reads. (a) In the presented example there is an input set of
contigs composed of five sequences: ACCGAAT, ACTGAAA, GACTTTACGATAACTG, TGGATCTAGC and ACTGGGACAAAT. The set
of long reads contains seven sequences: ACCGAATAAAGACTTTACGATAACT, GCCGAACAACGACTTTACGAT, ACTGATTCCCTT-
TACAACT, TAACTGAAAATGGATC, TAACTGCCCCTGGATC, TAACTGAAAAACTGGG, and TAACTGCCCCACTGGG. Firstly, from
each long DNA read a set of k-mer pairs is generated. The values of k (k-mer size), d (distance between the beginnings of k-mers in a pair),
and t (sliding step) parameters are equal to 5, 10, and 1, respectively. For example, from the TAACTGAAAATGGATC read, two pairs of
k-mers are generated (TAACT,TGGAT) and (AACTG,GGATC).The result of this step is a set of k-mer pairs containing 30 elements. (b)The
connection graph built from 30 pairs of k-mers from the previous step and five previously mentioned contigs. Each of the contigs creates a
separate vertex. Pairs of k-mers, depending on the contig on which they are located, form the edge of the connection graph. The numbers
above the edges represent the number of elements supporting the specified edge, in turn: (i) number of DNA reads, (ii) number of k-mer
pairs, and (iii) number of DNA reads where the specified DNA read is taken into account if the number of k-mer pairs in this read is greater
than the threshold value (in the presented example the value of this threshold is equal to 1). (c) The filtered connection graph. The applied
filter assumes rejection of edges for which there is no DNA read with the number of k-mers above 1 (the third number above the edge
should be greater than 0 in proper edges). The values of all three parameters in the filtering step can be set by the user. (d) The result of
the algorithm. The set of scaffolds is built from four sequences; the only connection in the example is the combination of ACCGAAT and
GACTTTACGATAACTG contigs into the ACCGAATNNNGACTTTACGATAACTG scaffold. This scaffold has not been extended to the
right because there is ambiguity of connections.The ratio of the number of k-mer pairs related to the source contig (GACTTTACGATAACTG)
is smaller than the threshold value (in the example, the threshold value is equal to 0.3). The ratio, in both cases (GACTTTACGATAACTG
with TGGATCTAGC and GACTTTACGATAACTGwith ACTGGGACAAAT), is equal to 0.5. It is worth noting that the length of sequence
of “N” signs in ACCGAATNNNGACTTTACGATAACTG is equal to 3, which results from the mapping places of the related k-mer pairs,
(ACCGA,GACTT), (CCGAA,ACTTT), (CGAAT,CTTTA), and (CCGAA,ACTTT), to the contigs. It is also worth emphasizing that, in gap-
filling mode, the “NNN” sequence would be changed to “AAA” from the ACCGAATAAAGACTTTACGATAACTread.

results obtained in the presented method with other tools for
hybrid assembly. The second experiment was carried out on
artificially generated data and it indicates the benefits of using
both short and long DNA reads over using only the output
from second-generation sequencers. Finally, the calculation

time and memory usage of the application compared to other
tools were measured.

To evaluate the quality of resulting DNA sequences in
experiments we used QUAST [24] ver. 4.1. We compared
DNA sequences in terms of
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Figure 3: Architecture of the dnaasm application. The user can use the application in two ways: through the graphical user interface or a
command line. Both ways lead to launching the calculation module in which the presented algorithm is implemented as the shared library.
What is more, the calculationmodule contains an additional shared library in which the de novo assembler has been implemented in advance.
Both the mentioned assembler and the presented dnaasm-link scaffolder can be launched in a very similar and convenient way.

(i) the number of resulting DNA sequences longer than
1000bp;

(ii) the number of misassemblies: sum of relocations,
translocations, and inversions;

(iii) N50 statistic: the length of the DNA sequence for
which the sum of lengths of all sequences of that
length or longer is greater than half of an assembly;

(iv) NA50 statistic: the same as N50, but not for all
resulting DNA sequences, only for a set of aligned
blocks which are the results of breaking input DNA
sequences at misassembly events;

(v) the largest DNA sequence;
(vi) the largest alignment, the length of the largest contin-

uous alignment in the resulting DNA sequences;
(vii) the average number of mismatches per 100 kbp;
(viii) the average number of indels per 100 kbp;
(ix) the average number of uncalled bases (Ns) per

100 kbp.

Moreover, we used the BUSCO [25] ver. 2.0 tool to compare
the DNA sequence in terms of the number of reconstructed
core genes, genes present as single-copy in at least 90%
of the species from the selected group. As part of the
evaluation of DNA sequences, we distinguished four groups:
(i) complete and single-copy, (ii) complete and duplicated,
(iii) fragmented, and (iv) missing core genes. A detailed
description of the experiments and the results obtained can
be found in the next parts of this section.

3.1. ComparisonwithOther Tools. Wecompared the results of
our application with other tools for hybrid assembly that con-
nect contigs using long reads. The main objective was com-
parison in terms of linking the contigs with long DNA reads
and filling in the resulting gaps. For the above experiment we
used publicly available data for Escherichia coli (4,641,652 bp)
and Saccharomyces cerevisiae (12,157,105 bp). Both of the
datasets on which we worked came from Nanocorr’s
[17] research (http://schatzlab.cshl.edu/data/nanocorr); the
names of the files are provided in Supplementary Materials
(available here). The above files are the result of de novo
assembly of short DNA reads and the correction of Oxford
Nanopore Technologies (ONT) reads by short DNA reads.
Basic parameters of the input set of long DNA reads and
contigs are presented in Table 1.

We compared our approach with two state-of-the-art
tools used to join contigs into scaffolds with long reads:
LINKS [18] ver. 1.8.5 and SSPACE-LongRead [19] ver. 1.1.0.
For additional comparison we used scaffolders designed to
operate on another kind of read: paired-end tags (PETs) and
mate-pairs (MPs). These were OPERA-LG [26] ver. 2.0.6,
BOSS [27] and ScaffMatch [28] ver. 0.9.0. We prepared input
data for these scaffolders using the Fast-SG [29] tool. This
application generates paired DNA reads from long reads
and maps such paired reads onto preassembled contigs.
Parameter values for the applications and the appropriate
commands are provided in Supplementary Materials, while
the results of the evaluation are presented in Tables 2 and 3.

Our experiment indicates that the dnaasm-link applica-
tion gives slightly better results than existing tools in terms

http://schatzlab.cshl.edu/data/nanocorr
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Table 1: The input set of long DNA reads and contigs characteristic for E. coli and S. cerevisiae organisms from Nanocorr’s research.

No. of sequences Sum [Mbp] N50 [bp] Max [bp] Avg. mis. Avg. indels Avg. N’s

contigs E. coli 65 4.681 176396 398301 2.32 0.17 0.00
S. cerevisiae 430 14.911 53444 257346 85.77 8.80 0.00

long reads E. coli 59009 240.098 7471 43798 180.75 181.20 0.00
S. cerevisiae 88218 526.589 9189 72879 360.98 171.80 5.06

Table 2: Evaluation of dnaasm-link application in comparison to other tools for datasets depicted in Table 1. The first row in table, where
algorithm name is “no scaffolding”, provides the input set statistics (no scaffolding algorithm is used) taken from Table 1. The parameters
(No. of contigs, etc.) are depicted in first paragraph of “Results” section.

No. of
contigs

No. of
mis.

N50
[bp]

NA50
[bp]

Max
[bp]

Largest
algn. [bp]

Avg.
mis.

Avg.
indels Avg. N’s

E. coli

no scaffolding 65 9 176396 164044 398301 360084 2.32 0.17 0.00
SSPACE-LongRead 32 29 398301 211043 1274776 564486 2.47 0.37 570.90

LINKS 23 19 637611 235726 1146701 636452 2.36 0.39 233.43
dnaasm-link 22 20 746714 219242 1128693 636452 2.36 0.37 212.75

Fast-SG + OPERA-LG 26 16 349966 342146 659623 658295 2.36 0.30 326.53
Fast-SG + BOSS 60 14 177523 164044 611106 360084 2.32 0.17 64.79

Fast-SG + ScaffMatch 55 18 185955 177523 603113 359089 2.41 0.17 139.44

S. cerevisiae

no scaffolding 430 53 53444 49075 257346 249232 85.77 8.80 0.00
SSPACE-LongRead 557 105 167867 126607 736874 452023 95.42 11.27 3690.74

LINKS 202 89 202618 126598 623140 416048 87.04 10.00 850.77
dnaasm-link 190 92 224004 126353 764024 431875 87.28 10.08 861.19

Fast-SG + OPERA-LG 202 59 180866 155226 736942 451889 85.51 9.72 462.50
Fast-SG + BOSS 369 113 57097 47994 257346 249232 85.77 8.80 374.16

Fast-SG + ScaffMatch 328 144 80833 51157 434320 249232 85.41 8.82 489.70
The following reference sequences were used to evaluate the results: NC 000913 for E. coli and NC 001133 . . . NC 001148, NC 001224 for S. cerevisiae.

of the quantity and quality of the resulting DNA sequences.
Looking at N50 and the largest DNA sequence, it seems
that dnaasm-link largely improves the assembly. In terms of
mismatches and core genes, dnaasm-link seems to be in line
with the other approaches. What is more, de novo assembly
by tools that treat short and long reads differently (LINKS,
SSPACE-LongRead, dnaasm-link) gives better results than
converting long reads into short reads to increase sequencing
coverage followed by de novo assembly.

3.2. Impact of Adding Long DNA Reads to Contigs Generated
from Short DNA Reads. We examined how the combination
of short and longDNA reads affects the length and quantity of
the resulting DNA sequences. In this study we used the Sac-
charomyces cerevisiae (GenBank NC 001133 . . . NC 001148,
NC 001224) reference genome. From this genome, we gen-
erated nine sets of short DNA reads using the pIRS [30]
ver. 1.1.1 application and five sets of long reads using the
NanoSim [31] ver. 1.0.0 tool, where each set had a different
depth of coverage.The details of application used and dataset
parameters are provided in Supplementary Materials.

The generated short reads were de novo assembled by
ABySS ver. 2.0.1, then contigs were linked using long reads.
The results, presented in Figure 4, prove that combining long
DNA reads with short ones can significantly increase the
consistency of the resulting assemblies by reducing the final

number of scaffolds. Moreover, increasing the coverage of any
sequencing technology above a certain level does not improve
the results further.

Next, we investigated how the use of long DNA reads
affects the reconstruction of complex DNA structures such
as long tandem repeats. We compared our method to a
technique where gaps are filled with short DNA reads. In
this experiment we generated an input set of reads for two
organisms: Escherichia coli (GenBank NC 000913) and Sac-
charomyces cerevisiae (GenBank NC 001133 . . . NC 001148,
NC 001224). We used the same applications, pIRS and
NanoSim as before. Their parameters are provided in Sup-
plementary Materials. The short reads were de novo assem-
bled by ABySS [9]. Next, we linked contigs with long
DNA reads using the dnaasm-link tool in two modes:
with and without gap filling. Then, the scaffolds produced
by dnaasm-link without gap filling were treated by three
tools for filling gaps with short DNA reads: GapFiller [32]
ver. 1.10.0, Sealer [33] ver. 1.9.0, and SOAPdenovo2 Gap-
Closer [34] ver. 1.12.0. Finally, we compared a number of
detected tandem repeats using the Tandem Repeats Finder
application [35]. This application was also launched on the
reference genomes, to determine ground truth data for this
study. The results presented in Table 4 depict the advan-
tage of filling gaps using dnaasm-link over other existing
methods.



BioMed Research International 7

Table 3: Comparison of the number of core genes reproduced from datasets depicted in Table 1.

Complete and single-copy Complete and duplicated Fragmented Missing

E. coli

NGS contigs 780 0 1 0
SSPACE-LongRead 619 162 0 0

LINKS 780 0 1 0
dnaasm-link 780 0 1 0

Fast-SG + OPERA-LG 780 0 1 0
Fast-SG + BOSS 780 0 1 0

Fast-SG + ScaffMatch 780 0 1 0

S. cerevisiae

NGS contigs 1657 9 18 27
SSPACE-LongRead 1647 27 15 22

LINKS 1661 9 14 27
dnaasm-link 1659 10 14 28

Fast-SG + OPERA-LG 1661 9 16 25
Fast-SG + BOSS 1660 9 18 24

Fast-SG + ScaffMatch 1658 9 12 32
The sets of reference core genes used for evaluation were enterobacteriales odb9 (781 core genes) and saccharomycetales odb9 (1712 core genes) for E. coli and
S. cerevisiae, respectively.
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Figure 4: Impact of adding long DNA reads on the number of resulting scaffolds longer than 1000bp and the NA50 statistic.The experiment was
conducted on the Saccharomyces cerevisiae (GenBank NC 001133 . . . NC 001148, NC 001224) genome. Firstly, nine sets of short DNA reads
and five sets of long DNA reads with different depths of coverage were generated. Then, short reads were de novo assembled, and finally, the
resulting unitigs were linked by long DNA reads. The peak in number of contigs for Illumina coverage equal to 15x is due to the fact that 10x
is too small to cover the whole genome. After increasing the coverage, the number of contigs increases at the beginning, because the whole
genome is covered, but with small gaps. It is worth mentioning that a greater depth of coverage does not increase the number of covered gaps
in the results, as all the gaps are caused by the complex DNA region and not the lack of coverage. Moreover, the number of contigs obtained
only from short reads is greater than the number of sequences after adding long reads. This is because some of the long reads are spread over
complex DNA regions; the number of such regions determines the number of contigs [23]. If such a complex region is shorter than a long
DNA read, then contigs surrounding it could be joined (with an estimated gap).

3.3. Time andMemory Usage. We examined the dnaasm-link
application in terms of performance, as this can be crucial in
the analysis of large volume sequencing data. Our application
was compared with LINKS [18] and SSPACE-LongRead [19]

in terms of time andmemory usage.The results are presented
in Figure 5.

As expected, combining contigs in applications with
accurate mapping takes muchmore time than in k-mer based
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Table 4: Tandem repeat reconstruction efficiency.

Motif len.
[bp]

Num of
repet.

NGS
unitigs

dnaasm-link
without gap fill.

dnaasm-link without gap filling dnaasm-link
with gap fill.+ GapFiller + Sealer + GapCloser

E. coli

181 3.0 - - - - - -
181 2.3 - - - - - -
178 1.9 - - + - - +
226 2.0 - - - - - +
113 2.7 - - - - - +
226 1.9 - - - - - -
200 2.0 - - - - - +

S. cerevisiae

135 1.9 - - - - - -
135 1.9 - - - - - -
135 3.1 - - - - - -
135 3.1 - - - - - -
135 1.9 - - - - - -
192 2.2 - - - - - -
192 2.1 - - - - - -
84 3.0 - - - - - -
1998 2.0 - - - - - -
207 2.1 - - - - - +
81 3.3 - - - - - +
189 1.9 - - - - - +
72 5.3 - - - - - +
189 2.3 - - - - - +

The table presents all tandem repeats in the E. coli and S. cerevisiae reference genomes. In the presented table “+” signs mean the correct reproduction of the
specified repetitive fragment and “-” signs mean the lack of correct reconstruction. The presented results indicate that the usage of long DNA reads by dnaasm-
link tool allows reconstructing some of tandem repeats.

tools, in particular, because of the time required to map
long DNA reads to preassembled contigs. For example, the
calculation time of the SSPACE-LongRead application, for
which BLASR [36] software is used in the mapping process,
is over 15 times longer than for tools using a k-mer approach,
like the dnaasm-link tool. Our tool is significantly faster than
the LINKS application, because LINKS, which uses a similar
algorithm, is implemented in Perl. In addition, the LINKS
application requires much more RAMmemory; for example,
for a genome of size 100 Mbp and coverage of long reads
equal to 30x, the LINKS application uses over 200 GBof RAM
memory, and our application only 18.3 GB.

4. Discussion

The dnaasm-link application is a new tool for both con-
necting contigs and filling the gaps between them with long
DNAreads.Thepresented results indicate that the application
works similarly to existing tools in terms of the quality of
the resulting DNA sequences. However, it works significantly
faster with much less RAM memory usage, which can be
crucial for large volume sequencing data. Moreover, the
presented software contains a module for filling the gaps
between contigs with a specified sequence from an appro-
priate long DNA read, which is not implemented in similar
tools.

The procedure of filling the gaps with an appropriate
fragment of a specified long DNA read can significantly
increase the parameters of the resulting DNA sequences (in
the resulting DNA sequences there will be fewer gaps, which
may lead tomore detailed analyses, e.g., genome annotation).
In the presented study we indicated that a very large number
of complex DNA structures, especially tandem repeats, could
not be properly reproduced without using long DNA reads.
Moreover, the addition of long DNA reads, even with very
low coverage, can significantly reduce the number of resulting
DNA sequences and improve their consistency in relation to
the results obtained only from short DNA reads.

In the presented application, a gap within scaffolds could
be optionally filled with a fragment of a single long DNA
read. However, this solution is not ideal, because such a read
may contain many errors, especially if the long reads are
raw, i.e., if errors have not been corrected before. In order
to control this issue, in the future we plan to add a module
to create consensus from several DNA reads.The result of the
consensus of several long readswould be inserted into the gap
instead of the raw fragment of a single long read, whichwould
significantly reduce the number of errors in the considered
DNA fragments. However, the preliminary study shows a big
increase in time complexity when consensus is calculated
with the use of a multialignment dynamic programming
algorithm.
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Figure 5: Comparison of calculation time and peak of RAM memory usage of the SSPACE-LongReads, LINKS and dnaasm-link applications.
The experiment was conducted out on the Caenorhabditis elegans genome (GenBank NC 003279 . . . NC 003284, NC 001328). Firstly, a set
of eleven subgenomes of sizes 1Mbp, 10Mbp, 20Mbp . . . 100Mbp was generated from genome.Then, for each sequence a set of long and short
DNA reads was generated. Short DNA reads were de novo assembled by ABySS. Finally, the set of resulting contigs and long DNA reads were
used as input data sets in the presented experiment.

In the future, we also plan to add a module for analysing
the similarity of k-mers, which would take into account the
fact that the k-mers may contain errors. The presented tool
is based on k-mers, which should contain as few errors as
possible, because each single error in the specified DNA
sequence causes the creation of 𝑘 erroneous k-mers in the
k-spectrum. To deal with this problem, in the next version
of the software, we will add a module which will investigate
the profile of a specified k-mer and compare it to the profiles
of other k-mers. The profile will contain several pieces of
information, e.g., number of specified 2-mers and their
location in the investigated k-mer.

The presented application is available under GNULibrary
or Lesser General Public License version 3.0 (LGPLv3).
In order to easily use the software, the demo application
with web interface as well as the Docker [37] container
with the dnaasm-link tool is available. What is more, the
user can download binary files as well as source code
and compile the application with any changes in the
algorithm.

5. Conclusion

Asmore and more genomes are sequenced, it becomes desir-
able to correctly reproduce their DNA sequences, especially,
from short and long DNA reads. Here we have presented
dnaasm-link, a tool for linking contigs, the result of de novo
assembly of second-generation sequencing data, with long
DNA reads.

Data Availability

dnaasm-link is implemented in C++ and is freely available
under GNU Library or Lesser General Public License version
3.0 (LGPLv3). It and related materials can be downloaded
from project homepage http://dnaasm.sourceforge.net.
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