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Abstract

Patient-derived xenograft (PDX) models generated from surgical specimens are gaining popularity as preclinical models of
cancer. However, establishment of PDX lines from small cell lung cancer (SCLC) patients is difficult due to very limited
amount of available biopsy material. We asked whether SCLC cells obtained from endobronchial ultrasound-guided
transbronchial needle aspiration (EBUS-TBNA) could generate PDX lines that maintained the phenotypic and genetic
characteristics of the primary tumor. Following successful EBUS-TBNA sampling for diagnostic purposes, we obtained an
extra sample for cytologic analysis and implantation into the flanks of immunodeficient mice. Animals were monitored for
engraftment for up to 6 months. Histopathologic and immunohistochemical analysis, and targeted next-generation re-
sequencing, were then performed in both the primary sample and the derivative PDX line. A total of 12 patients were
enrolled in the study. EBUS-TBNA aspirates yielded large numbers of viable tumor cells sufficient to inject between 18,750
and 1,487,000 cells per flank, and to yield microgram quantities of high-quality DNA. Of these, samples from 10 patients
generated xenografts (engraftment rate 83%) with a mean latency of 104 days (range 63–188). All but one maintained a
typical SCLC phenotype that closely matched the original sample. Identical mutations that are characteristic of SCLC were
identified in both the primary sample and xenograft line. EBUS-TBNA has the potential to be a powerful tool in the
development of new targeting strategies for SCLC patients by providing large numbers of viable tumor cells suitable for
both xenografting and complex genomic analysis.
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Introduction

Small cell lung cancer (SCLC) accounts for approximately 15%

of all thoracic malignancies [1]. Patients with disease confined to

the chest are treated with chemo-radiotherapy, whereas patients

with advanced disease are treated with chemotherapy alone [2]. In

advanced disease, platinum-based doublet chemotherapy induces

complete responses in up to 20%, whereas combined chemo-

radiotherapy in disease limited to the chest produces complete

responses in up to 50% of patients [3]. However, lethal

recurrences within 12 months occur in almost all cases. In

addition, trials of multiple cytotoxic agents, dose intensification, or

novel targeted therapies have failed to improve outcome over the

last three decades [3].

Accurate preclinical models and high quality tissue samples are

essential for the development of new cancer therapies. Since

surgical resection of SCLC is uncommon, diagnosis and biomarker

studies rely heavily on samples obtained by percutaneous fine

needle aspiration or bronchoscopic forceps biopsy [1]. Both

techniques provide precious little material for researchers, leading
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to a heavy reliance on conventional cell lines that may not

accurately reflect the complex biological and genomic heteroge-

neity of the human disease [4]. More recently, PDX models have

gained popularity amongst cancer researchers. Here, tissue

obtained from fresh surgical specimens can be implanted into

immunodeficient mice and maintained as an unlimited source of

tumor material that closely resembles the primary tumor [4–7]. In

addition, ‘‘co-clinical’’ trials are now possible, where patient and

mouse receive the same therapy [8]. However, the limited

availability of high-quality SCLC tissue makes such an approach

extremely challenging [4].

EBUS-TBNA is a new development in diagnostic bronchoscopy

that permits highly accurate aspiration sampling of tumors and

lymph nodes adjacent to the airway that are not visible by

conventional bronchoscopy [9]. Since SCLC is commonly

associated with mediastinal lymphadenopathy [1], EBUS-TBNA

is an ideal way of obtaining material for diagnosis and staging.

Therefore, we tested the feasibility of using live cells obtained from

EBUS-TBNA sampling to generate PDX lines from SCLC

patients.

Materials and Methods

Ethics
Human experimentation was undertaken with informed,

written consent in accordance with the policies of the National

Health and Medical Research Council of Australia, Monash

Health, Melbourne Health and the Declaration of Helsinki. The

clinical and research protocols were approved by an Australian

Multisite Human Research Ethics Committee (Protocol #HREC/

12/SHA/8). Animal experimentation was approved by the

Monash University Animal Ethics Committee (Protocol

#09072A), and was performed in accordance with the National

Health and Medical Research Council of Australia and the

National Research Council. Humane killing of mice was

performed using inhaled carbon dioxide anaesthesia in accordance

with institutional and national guidelines.

Patients and study design
Patients with suspected lung cancer undergoing EBUS-TBNA

as part of routine clinical care gave informed consent for one extra

biopsy to be taken for research purposes. Those that were found to

have SCLC were then included for the analysis presented below.

EBUS-TBNA
All procedures were carried out as outpatient procedures as

previously described [10], in accordance with British Thoracic

Society guidelines [11], under conscious sedation together with

topical airway anaesthesia using lignocaine 2%. All procedures

were carried out using a dedicated linear array bronchoscope (BF-

UC180F-OL8, Olympus, Tokyo, Japan). Ultrasound images were

processed by a dedicated Doppler-mode ultrasound scanner (EU-

ME1, Olympus, Tokyo, Japan).

The first specimen was obtained according to standard clinical

protocols. The initial 3 drops of the aspirate was recovered onto a

positively charged slide, air dried, and then simultaneously fixed

and stained using the Diff-Quik protocol and assessed on-site by a

cytopathologist. The remainder of the specimen was then placed

in a sterile solution and transported to the diagnostic pathology

laboratory where it is centrifuged, fixed in formalin, embedded in

paraffin and sectioned for routine histopathology and immuno-

histochemical analysis. Once the on-site diagnosis was confirmed,

a second specimen was then taken for research purposes.

Processing of research EBUS-TBNA specimen
The entire research specimen was recovered in a sterile 1.5 ml

Eppendorf tube, placed on wet ice, and then transported

immediately to the laboratory. Ice-cold, sterile phosphate buffered

saline (PBS) was added to the specimen in order to make a total

volume of 500 ml, and then centrifuged at 1000 g for 5 seconds.

The specimen was then gently mixed with a 1 ml pipette and

placed on ice. The specimen is then divided as follows: (i) 200 ml

was transferred to a Nunc Cryotube and stored at -80uC for

subsequent DNA purification; (ii) 50 ml was smeared on a

positively charged slide, air dried and then stained using the Diff

Quik protocol to determine tumour cell purity; (iii) 50 ml was

transferred to a fresh Eppendorf tube, and vigorously triturated

with a 200 ml pipette to mechanically disaggregate the cells

followed by counting using a hemocytometer to determine total

cell number; (iv) the remaining 200 ml was used to generate the

PDX. The total number of tumor cells injected was estimated by

determining the number tumor cells seen in the Diff-Quick stained

slides as percentage of all nucleated cells by averaging the counts of

10 random fields at 40X.

Generation of PDX lines
The EBUS-TBNA sample was mixed with an equal volume of

ice cold Matrigel (BD Biosciences), placed in a sterile 1 ml syringe

capped with a 26 G needle and transported immediately to the

animal facility. Under aseptic conditions, the cell suspension was

injected subcutaneously into the right flank of a NSG mouse

(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ). These profoundly immu-

nodeficient animals are derived from the NOD/SCID strain with

the addition of a homozygous Interleukin-2 receptor gamma chain

knockout, and are maximally efficient at establishing xenograft

tumors from a small number of donor cells [12]. Once primary

engraftment was achieved, PDX lines were then passaged in nude

mice as previously described [4].

Immunohistochemistry
Staining was performed on 5 mm formalin fixed, paraffin

embedded sections as described [13], using the Vectastain Elite

ABC Kit (Vector Laboratories; PK-6101) and the Mouse on

Mouse Basic Kit (Vector Laboratories; BMK-2202). Antibodies

and dilutions were as follows: rabbit polyclonal anti-NCAM

(CD56) a neural and neuroendocrine marker,(H-300) (Santa Cruz

Biotechnology; sc-10735), 1:200; rabbit monoclonal anti-TTF1

(EP1584Y,Novus Biologicals; NB100-8006), 1:400; mouse mono-

clonal anti-Synaptophysin (Ventana Clone SP11, pre-diluted).

Targeted re-sequencing
Snap frozen EBUS and PDX samples were used to generate

purified DNA using the Qiagen DNeasy kit (#69504) with the

Qiagen RNAse A treatment option (#19101) according to the

manufacturer’s instructions. DNA was assayed and quality

controlled using the Qubit 2.0 Fluorimeter (Invitrogen

#Q32866) according to the manufacturer’s instructions.

Targeted re-sequencing was performed using the Ion AmpliSeq

comprehensive cancer panel v2 (Life Technologies #4477685),

Figure 1. Cytopathology and histopathology analysis of EBUS-TBNA diagnostic and research specimens and derivative xenograft.
Scale bar = 30 mm. H&E = haemotoxylin and eosin stain. Blank squares indicate that the sample was not available.
doi:10.1371/journal.pone.0106862.g001
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Figure 2. Immunohistochemical analysis of EBUS-TBNA diagnostic and research specimens and derivative xenografts. Scale
bar = 30 mm. Blank squares indicate that the sample was not available.
doi:10.1371/journal.pone.0106862.g002
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which targets exons of 409 tumor suppressor genes and oncogenes.

Library construction was performed using the Ion AmpliSeq

Library Kit 2.0 (Life Technologies, #4478379) and library

templates were prepared and barcoded for sequencing using the

Ion OneTouch System as per manufacturer’s instructions. Four

barcoded samples were multiplexed per Ion PI Chip (Life

Technologies) and sequenced on the Ion Proton Sequencer

System (Life Technologies). Sequencing reads were processed

using Ion Torrent Suite software v 4.0.2 (Life Technologies). De-

multiplexed samples were assessed for sequencing quality and high

quality sequencing reads were mapped to the complete hg19

human genome (UCSC version, February 2009). Variant discov-

ery was performed using Torrent Variant Caller v 4.0 (Life

Technologies), a software plug in for the Ion Torrent Suite

software. Sample identified variants were pooled and compared

using VcfTools [14] and SnpSift [15]. Variant functional

annotation was performed using SnpEff [15], and SnpSift with

dbNSFP [16], a database for functional annotation of non-

synonymous variants. All data and metadata are available at the

NIH Short Reads Archive, (www.ncbi.nlm.nih.gov/sra), accession

number SRP044662.

Results

Patient and sample characteristics
A total of 12 patients with a confirmed diagnosis of SCLC were

entered into the study, and are summarised in Table 1. EBUS

samples were taken from defined nodal stations, or from large

masses in the paratracheal, hilar or mediastinal regions. All

samples were assessed using routine cytopathology criteria as being

consistent with a diagnosis of SCLC. Where available, cell blocks

were sectioned and H&E stained sections confirmed the diagnosis.

Immunohistochemical staining of cell block sections was per-

formed for Synaptophysin, CD56 and Thyroid Transcription

Factor 1 (TTF1) in 8, 2 and 1 cases respectively.

Generation of PDX lines
Tumor cells were recovered in the research specimen in 12

consecutive cases, and were analysed and implanted into the flanks

of NSG mice as described above. The number of tumor cells

injected ranged from between 18,750 and 1,487,000 cells per

flank. DNA extraction was then retrospectively performed on the

10 samples that successfully generated xenografts using frozen

aliquots of the same number of cells as were used to establish the

PDX. This yielded between 0.31mg and 11.12 mg high quality

genomic DNA suitable for next-generation sequencing analysis.

First passage PDX tumors appeared between 63 and 188 days

following implantation (mean 104 days). Following engraftment

and growth to a size of 800 mm3, the first passage recipient mouse

was sacrificed, the tumor dissected from the associated skin and

muscle, and a formal mouse necropsy performed. No metastatic

lesions were identified in any of the animals. Fresh tumor samples

(4–5 mm3) were taken and snap frozen for subsequent DNA

extraction, and a further sample was fixed in formalin and

sectioned for histopathologic and immunohistochemical analysis.

The remaining tumor was then mechanically disaggregated, and

16106 cells re-implanted in the flanks of 5 new recipient nude

athymic mice. Once these tumors reached a size of 800 mm3, the

tumor was sampled in an identical fashion, and 16106 aliquots

were then cryopreserved.

Of the 10 successful grafts, 9 retained a typical SCLC

phenotype, as well as expressing typical immunohistochemical

markers of a malignant neuroendocrine tumor at passage 1 and 2.

Representative images from the entire sample set are shown in

Figures 1 and 2, and a detailed example is shown in Figure 3. One

PDX line, LX109, exhibited features consistent with a large cell

neuroendocrine tumor, including larger nuclei with distinct

nucleoli, prominent eosinophilic cytoplasm, and patchy staining

for CD56 (Figure S1). With limited diagnostic material available to

review, we are unable to determine if this represent outgrowth of a

subpopulation of large cell tumor cells from the experimental

specimen. A summary of these data is shown in Table 2.

Targeted re-sequencing
In order to determine the effects of engraftment and passage on

the genomic integrity of our PDX models, we employed a

targeted, next-generation sequencing strategy to identify exonic

mutations in the primary EBUS sample and its derivative passage-

2 xenograft. Genomic DNA from both samples was analysed using

the Ion Ampliseq Comprehensive Cancer Panel sequenced on the

Ion Torrent platform (Life Technologies). This system amplifies

and sequences the coding exons of 409 genes in which driver

mutations have been identified.

Figure 3. Features of specimen LX104 and its derivative
xenograft. A. Diff-Quick stained cytology smear of diagnostic EBUS-
TBNA sample. Scale bar = 15 mm. B. Diff-Quick stained cytology smear
of experimental EBUS-TBNA sample. Scale bar = 15 mm. C. Haematoxylin
and eosin stained section of the diagnostic cell block. Scale bar = 30 mm.
D. Diagnostic cell block stained for CD56. Scale bar = 30 mm. E.
Haematoxylin and eosin stained section of the derivative xenograft.
Scale bar = 300 mm. F. Haematoxylin and eosin stained section of the
derivative xenograft. Scale bar = 30 mm. G. Section of the derivative
xenograft stained for CD56. Scale bar = 30 mm. H. Section of the
derivative xenograft stained for TTF1. Scale bar = 30 mm.
doi:10.1371/journal.pone.0106862.g003
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The number of mapped sequencing reads ranged from 16 to 26

million, most of them on target (over 97% in all samples), with a

minimum sequence depth of coverage in the targeted regions of

1000 times (Table S1). High uniformity of coverage was observed

for all samples, ranging from 85 to 92% (Table S1). The total

number of variants detected for each primary sample is shown in

Table 3, along with the total number of coding region variants.

The number of coding region variants in each sample shared with

each corresponding xenograft ranged 55-92% (mean 81.4%). The

entire set of variant calls for each sample is included as an excel

spreadsheet in File S1.

Significant variants were identified as those predicted to (i) result

in frameshift, nonsense or essential splice site mutations; or (ii)

missense variants predicted to impair protein function with a SIFT

[17] score #0.05. Shared coding region variants were then filtered

using the following exclusion criteria: (i) known germline SNPs (ii)

likely incidental mutations (http://mutagenetix.utsouthwestern.

edu); and (iii) variants in genes commonly mutated in cancer that

are likely to be of no functional significance [18]. These variants

are listed in Table S2. We next ranked the affected genes

according to their mutation frequency in the COSMIC database

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic) with

a reported incidence $5%. As shown in Figure 4, when common

driver mutations were present in the primary sample, they were

conserved in the corresponding xenograft. Mutations present only

in the primary sample (IGFR1, TET1, MTOR) and only in the

xenograft (RB1, NTRK1) were observed in seven primary sample-

xenograft pairs (Figure 4). Mutations in KRAS, more typical of

lung adenocarcinoma, were not detected.

Discussion

PDX models have recently emerged as a way of more accurately

modelling therapeutic responses [5–7] outcome [12,19] and as

source of high quality material for next-generation sequencing

[20]. Typically, the generation of lung cancer PDX lines has been

limited to the use of surgically resected material as the source of

viable tumor cells [19,21,22]. Since less than 20% of lung cancer

patients undergo surgery, this approach limits the establishment of

PDX lines to early stage lung cancers. Moreover, SCLC is almost

never surgically resected, as emphasized by recent whole genome

studies [23,24]. In our initial description of three SCLC PDX

lines, we sourced material from bronchoscopic biopsies in rare

cases where endobronchial lesions could be easily identified [4,20].

Recently, Hodgkinson et al [25] described the successful gener-

ation of 4 SCLC PDX lines from circulating tumor cells from 6

patients, emphasizing the aggressive nature of these tumors, as well

the potential for generating tractable models from minimally

invasive techniques.

To our knowledge, this is the first description of EBUS-TBNA

samples as a platform for the generation of PDX lines. Since

SCLC much more commonly presents as intra-thoracic lymph-

adenopathy or mediastinal mass, EBUS-TBNA can potentially

provide engraftable samples from almost all patients, thus

dramatically expanding the potential for preclinical modelling in

this disease. The shortcomings of PDX models, especially the lack

of a host immune system, are well described [5–7]. Nevertheless,

increasing use of these models is driven by evidence that PDX lines

retain key features of the primary tumor that are irreversibly lost in

conventional tissue culture [4–7]. For example, SCLC PDX lines

do not respond to single agent therapy with the BCL2 antagonist

ABT737 in contrast to xenograft models derived from conven-

tional SCLC cell lines [26]. Our data now show that SCLC PDX

lines derived from EBUS-TBNA retain the characteristic features

of the primary tumor.

An ongoing concern with respect to PDX models is their ability

to maintain the genotype of the primary tumor. Given the

relatively small numbers of cells obtained from EBUS-TBNA

samples, we are unable to determine whether the PDX genotype

represents expansion of a more aggressive subclone based on the

genomic heterogeneity model [27,28]. Although our data clearly

show that well described driver mutations are preserved in our

EBUS-TBNA PDX lines for at least 2 passages, discordance in the

detection of several mutations suggests that the process of

xenografting may select for genetically distinct subclones derived

from highly heterogeneous primary samples. In once case

(LX105), a mutation in RB1 was seen only in the PDX line,

indicating that some xenograft lines may be more useful as stand

alone models, rather than as identical copies of the patient’s

original tumour.

The amount and quality of DNA available from the EBUS

sample allows for detailed, high depth sequencing analysis in

contrast the more limited comparisons that can be made between

circulating tumor cells and derivate PDX lines [25]. Interestingly,

Table 3. Variants detected in primary samples derivative xenografts.

Total Variants Coding Region Variants

Sample Primary Xenograft % Primary Xenograft %

LX102 1266 1076 85 720 626 87

LX103 1128 666 59 628 377 60

LX104 1235 679 55 692 381 55

LX105 1151 1047 91 692 630 91

LX106 1172 1055 90 649 597 92

LX107 1167 899 77 671 544 81

LX108 1093 951 87 620 552 89

LX109 1163 1047 90 655 603 92

LX110 1329 1050 79 723 600 83

LX111 1345 1076 80 737 619 84

doi:10.1371/journal.pone.0106862.t003
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the sample that generated the PDX line LX109, which grew as a

LCNEC tumor, lacked mutations commonly seen in SCLC,

suggesting that molecular analysis of EBUS-TBNA specimens may

add to the precision of conventional pathologic and cytologic

criteria. Since structural variants in genes such as MYC, MYCN
and SOX2 are well described in SCLC [23,24], our approach to

generating PDX lines from EBUS-TBNA specimens could also

serve as a platform for more intensive interrogation using WGS

analysis to determine the effects of xenografting on chromosomal

instability in SCLC.

Our results also highlight the potential for EBUS-TBNA

samples as a source of high-quality DNA for molecular pathology

analysis. Several groups have shown the retrospective analysis of

fixed EBUS-TBNA samples can be used to identify clinically

actionable mutations in lung cancer [29–33], and that high quality

DNA, RNA and protein can be obtained from these samples

[34,35]. Our data extend these studies by demonstrating that

freshly isolated EBUS-TBNA samples can generate high-quality

DNA suitable for massively parallel targeted re-sequencing that

avoids formalin artefact, and that can be carefully controlled for

stromal artefact.

We have shown that in SCLC, EBUS-TBNA is a practical and

minimally invasive technique that can generate high-quality DNA

for next-generation sequencing, and can be used as a source of

viable tumor cells that engraft in immunodeficient mice with

extremely high efficiency. Furthermore, these grafts retain

important features of the primary tumor, including mutations

that are characteristic of SCLC. These data suggest that EBUS-

TBNA is a technique through which respiratory physicians and

thoracic surgeons can generate samples that can form the basis for

novel preclinical research, and ultimately, actionable molecular

diagnosis in SCLC and other intra-thoracic malignancies.

Figure 4. Ideogram summarising variants predicted to result in mutations commonly seen in SCLC. Genes are ranked by % according to
their prevalence in the COSMIC database. Mutations detected in both the primary sample and the xenograft are shown.
doi:10.1371/journal.pone.0106862.g004
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Supporting Information

Figure S1 Features of specimen LX109 and its deriva-
tive xenograft. A. Diff-Quick stained cytology smear of

diagnostic EBUS-TBNA sample. Scale bar = 15 mm. B. Diff-

Quick stained cytology smear of experimental EBUS-TBNA

sample. Scale bar = 15 mm. C. Hematoxylin and eosin stained

section of the diagnostic cell block. Scale bar = 30 mm. D.

Diagnostic cell block stained for CD56. Scale bar = 30 mm. E.

Hematoxylin and eosin stained section of the derivative xenograft.

Scale bar = 300 mm. F. Hematoxylin and eosin stained section of

the derivative xenograft. Scale bar = 30 mm. G. Section of the

derivative xenograft stained for CD56. Scale bar = 30 mm. H.

Section of the derivative xenograft stained for TTF1. Scale

bar = 30 mm.

(TIF)

Table S1 Summary of mapping statistics of NGS
experiments.
(DOC)

Table S2 Functionally significant variants shared be-
tween primary sample and xenograft.

(DOC)

File S1 Unfiltered variant calls across all samples.

(XLS)
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