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Abstract
Citizen- science databases have been used to develop species distribution models 
(SDMs), although many taxa may be only georeferenced to county. It is tacitly as-
sumed that SDMs built from county- scale data should be less precise than those built 
with more accurate localities, but the extent of the bias is currently unknown. Our 
aims in this study were to illustrate the effects of using county- scale data on the spa-
tial extent and accuracy of SDMs relative to true locality data and to compare poten-
tial compensatory methods (including increased sample size and using overall county 
environmental averages rather than point locality environmental data). To do so, we 
developed SDMs in maxent with PRISM- derived BIOCLIM parameters for 283 and 230 
species of odonates (dragonflies and damselflies) and butterflies, respectively, for five 
subsets from the OdonataCentral and Butterflies and Moths of North America citizen- 
science databases: (1) a true locality dataset, (2) a corresponding sister dataset of 
county- centroid coordinates, (3) a dataset where the average environmental condi-
tions within each county were assigned to each record, (4) a 50/50% mix of true locali-
ties and county- centroid coordinates, and (5) a 50/50% mix of true localities and 
records assigned the average environmental conditions within each county. These 
mixtures allowed us to quantify the degree of bias from county- scale data. Models 
developed with county centroids overpredicted the extent of suitable habitat by 15% 
on average compared to true locality models, although larger sample sizes (>100 local-
ity records) reduced this disparity. Assigning county- averaged environmental condi-
tions did not offer consistent improvement, however. Because county- level data are 
of limited value for developing SDMs except for species that are widespread and well 
collected or that inhabit regions where small, climatically uniform counties predomi-
nate, three means of encouraging more accurate georeferencing in citizen- science da-
tabases are provided.
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1  | INTRODUCTION

Species distribution models (SDMs) map the geographic distribution of 
empirically defined suitable environmental space for species of inter-
est and as such are valuable tools in conservation (Franklin, 2009). The 
models are only as good as the data used to build them, however, so 
ensuring data accuracy and precision are crucial for model usefulness 
(Araújo & Guisan, 2006; Huston, 2002). Biases and imprecision in spe-
cies locality data have been the subject of several studies that have 
proposed various approaches in detecting and compensating for such 
errors (e.g., Beale & Lennon, 2012; Fithian, Elith, Hastie, & Keith, 2014; 
Mitchell, Monk, & Laurenson, 2016). Problems with the resolution of 
locality data, however, have not been assessed. Although conceptually 
related to the problem of data inaccuracy, the issue of using coarse- 
scale locality data (e.g., at the scale of county, province, state, or coun-
try rather than point- scale data) imposes a unique set of decisions 
that must be made (namely, whether to assign a coordinate, such as 
at a county’s centroid, at which to extract background environmental 
information to build an SDM, or to take an average value over the 
range of environmental conditions present at the scale [e.g., county] 
being used). In many cases, coarse- resolution locality data may be all 
that are available, such as when using citizen- science data (Graham, 
Haines- Young, & Field, 2015).

Citizen- science data are increasingly being used around the world 
to develop species distribution models. Many of these databases 
record species localities with precise information (e.g., geographic 
coordinates), but many others use only anthropogenic designations 
such as country, state, province, or county (e.g., checklists). Within 
the USA, many citizen- science databases focus at the level of county 
for recording species localities (Appleby, 1991; Angelo & Boufford, 
2000; Donnelly, 2004a,b,c; Price & Dorcas, 2011; http://www.butter-
fliesandmoths.org/; http://mothphotographersgroup.msstate.edu/). 
Given the value of vouchered data collected by citizen scientists that 
is now being realized and utilized (Fink et al., 2010; Hassall, 2012; 
Kery, Gardner, & Monnerat, 2010; Schmeller et al., 2009; van Strien, 
van Swaay, & Termaat, 2013; Sullivan et al., 2009; Szabo, Vesk, Baxter, 
& Possingham, 2010; Wood, Sullivan, Iliff, Fink, & Kelling, 2011), it is 
important that the impacts of using only county- scale species data to 
examine species distributions be understood. The use of county as an 
indication of species presence (or absence) is often a convenient res-
olution for recording and displaying data, or may be a consequence of 
inaccurate historical data and early distribution cataloguing (Abbott, 
2006–2016; Lotts & Naberhaus, 2016). For example, sometimes data 
are recorded only as a specific county because localities are poorly 
or imprecisely described (Graham et al., 2007). Addressing imprecision 
in species localities has been a focus in species distribution model-
ing (see Graham et al., 2007 and Rocchini et al., 2011 for some types 
of locational errors, their effects on SDMs, and recommendations of 
modeling approaches that are relatively insensitive to such errors). 
With the case of using county- scale data, the issue is one of the res-
olution rather than imprecision of locality data. Although this is con-
ceptually related to the problem of data inaccuracy, the issue of using 
coarse- resolution data (e.g., at scale of county) imposes a unique set 

of decisions that must be made regarding how to extract background 
environmental data to build a distribution model. For county- scale 
data that are common in citizen- science databases, the issue becomes 
whether to assign a coordinate, such as at a county’s centroid, at 
which to extract background environmental information, or to take an 
average value over the range of environmental conditions present at 
the scale (county) being used. It is currently unknown how SDMs are 
affected by such coarsely scaled county data, and whether averaging 
approaches or increasing sample size can overcome the inherent lim-
itations in such data.

The most common environmental data used with SDMs are cli-
matic variables describing the magnitude and seasonality of tempera-
ture and precipitation (Pearson & Dawson, 2003). Using county- scale 
environmental data may be problematic because associating species- 
presence localities with the correct climates is important for SDMs, 
yet climatic conditions can vary substantially within a US county 
(Figure 1). Because of the variability of the size of (and thus the cli-
mate within) many US counties, species locality data recorded only 
to the resolution of county might be of limited use for distribution 
modeling, but this has not previously been examined and so needs 
to be tested. Previous studies have shown mixed success in param-
eterizing models at coarse scales and then making predictions at fine 
scales (Araújo, Thuiller, Williams, & Reginster, 2005; Barbosa, Real, 
Olivero, & Mario Vargas, 2003; Lloyd & Palmer, 1998; McPherson, 
Jetz, & Rogers, 2006). Highly uncertain localities such as county- scale 
data could be excluded from modeling, but the reduction in sample 
size could negatively affect model performance (Hernandez, Graham, 
Master, & Albert, 2006; McPherson, Jetz, & Rogers, 2004), which may 
be especially true among invertebrates, where as many as 80% of US 
records are at only the county level for some taxa (Table 1) and are typ-
ically recorded with coordinates that represent the geographic center 
(centroid) of the county. Using the geographic centers of coarse- scale 
atlas blocks as localities for distribution models (Lloyd & Palmer, 1998) 
assumes either that the centroid is representative of suitable climatic 
conditions within that block or that the entire block contains suitable 
conditions (McPherson et al., 2006). In some US counties, the centroid 
may be representative of typical climatic conditions within the county, 
and these records may thus be highly appropriate for use in distribu-
tion modeling. However, in some large or mountainous counties, the 
centroid may not be representative of the typical climate (Figure 2). 
This is partly because many large and mountainous counties have 
different climates contained within their borders (Figure 3). Placing 
a number of points throughout the county to represent the species 
occurrence could capture the variability of environmental conditions 
within the county (Howard, 2006), but it is unlikely that environmental 
conditions throughout a county are universally suitable for a species, 
so this approach is likely to increase uncertainty in modeling attempts 
(McPherson et al., 2006), especially if the point placement scheme 
is dependent on county size. Another potential solution would be to 
assign average climatic conditions to county- data points, though it 
is unlikely the average is representative of the conditions at the true 
locality (Huston, 2002). Alternatively, since increased uncertainty may 
not be inappropriate if it is unknown where precisely a species occurs 
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within a county, a Bayesian modeling approach could be taken that 
would sample the environmental conditions in a county as covariates 
(Hanzlicek, Raghavan, Ganta, & Anderson, 2016). Similarly, uncertainty 
in predictor variables that stems from fine- scale environmental varia-
tion can be addressed with a Bayesian approach (McInerny & Purves, 
2011).

Species distribution models function on the concept that the eco-
logical niche can be defined reasonably with a limited set of environ-
mental variables (e.g., annual precipitation, maximum summer tem-
perature). The environmental conditions at county centroids may be 
outside the range of suitable conditions for a species, so using centroid 
data for SDM development may inflate the empirically derived niche, 
or environmental envelope, and consequently inflate the geographic 
range of suitable conditions for the species. This study therefore pre-
dicts that SDMs developed with US county centroids will overpredict 
the geographic range of suitable conditions as compared to models 
developed with true localities and that geographic overprediction will 
be highest in species that occur in the western USA where large coun-
ties include a larger range of environmental conditions compared to 
smaller eastern US counties (Figure 4).

An ideal test case would be to use a large database of precise 
species localities from which precise species distribution models 
can be built and then rescale these localities to a coarser (county) 
resolution; with these two sets of localities, various approaches to 

treating background environmental data can then be compared (dis-
tribution models built by taking county- wide environmental aver-
ages to those built with county- centroid environmental values, and 
combinations of these). Some citizen- science databases for butter-
flies and odonates (dragonflies and damselflies) provide such test 
cases, so our objectives were to determine how species distribu-
tion models built using only county- scale data compared to using 
true localities. We then asked whether any techniques could be 
employed that would allow county- scale data to generate species 
distribution models that were of comparable accuracy to those built 
with true localities; specifically, we examined whether using more 
samples or using county- scale environmental averages improved 
model performance.

2  | MATERIALS AND METHODS

2.1 | Data sources

Two online citizen- science species- presence datasets were used to 
test our predictions. OdonataCentral (http://www.OdonataCentral.
org) and the Butterflies and Moths of North America (BAMONA; 
http://www.butterfliesandmoths.org) include vouchered records of 
odonates and butterflies, respectively, from personal and museum 
collections and photo- records submitted by professional and citizen 

F IGURE  1 Within- county standard 
deviation of (a) annual precipitation and (b) 
annual mean temperature from the PRISM 
dataset within the contiguous USA

http://www.OdonataCentral.org
http://www.OdonataCentral.org
http://www.butterfliesandmoths.org
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scientists that are vetted by experts (Table 1). OdonataCentral also 
includes the North American Dot- map Project (DMP) compiled by 
Nick Donnelly (Donnelly, 2004a,b,c). Though the DMP database is 
the most comprehensive source of US distributional data contained 
within OdonataCentral, each record corresponds to a US county cen-
troid for a species, and no other metadata are available. Similarly, the 
BAMONA database was built from the USGS Northern Prairie Wildlife 
Research Center database, and no metadata are included with the 
USGS US county records.

Odonate localities contained within OdonataCentral were 
obtained in November 2012, and butterfly localities contained within 
BAMONA were obtained in November 2012. US county records with-
out accurate locality information were excluded from analysis. The 
OdonataCentral and BAMONA databases were filtered to exclude 
the following: records outside of the contiguous USA, inaccurately 
located data points including county centroids and instances where 
the plotted coordinates did not fall within the user- entered county, 
duplicate entries for the same species and locality, records without a 
photograph or specimen voucher, and records that had been invali-
dated or not yet vetted by expert reviewers. For species that had more 
than one validated record within a county, only the first record in the 
database was selected from each county. This one- per- county filter 
was performed so the sample size for each species would match the 
sample size of county centroids for each species. Though these data-
sets may be spatially biased toward population centers or regions with 
active collectors, for the purpose of this study, it is assumed that the 
filtered datasets contain an acceptable representation of the distribu-
tion of all species. After these filters, only species that contained ten or 
more records were retained for modeling, resulting in a set of 283 spe-
cies of odonates and 230 species of butterflies within the USA. Sister 
datasets were created that contained the coordinates for the county 
centroid of each record contained in the filtered datasets. To compare 
if county centroids are more problematic in the western USA versus 
the eastern USA, species were selected where all filtered records were 
east or west of the 100th meridian. To reduce the effect of sample 
size on this comparison, a subset of strictly eastern and western spe-
cies were selected such that the numbers of records were comparable 
(Table 2).

2.2 | Model development

Bioclimatic (bioclim) variables were derived from monthly values of 
maximum and minimum temperature and precipitation from the 
PRISM 30- arcsec climatology normals (1971–2000) gridded dataset 
(http://www.prism.oregonstate.edu). These 19 metrics are consid-
ered more biologically meaningful than the 36 raw monthly values 
(Busby, 1991). PRISM was chosen because it is more physiographi-
cally sensitive than WorldClim and performs better in mountainous 
regions (Daly et al., 2008). The better performance of PRISM can be 
attributed to interpolation method, an increased density of available 
weather stations, and a peer- review procedure that accounts for local 
knowledge in the development process (Daly et al., 2008). The bio-
clim grids and the odonate and butterfly datasets were reprojected to T
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NAD_1983_Albers to avoid the cell- size bias with latitude present in 
the native projections of these data.

The 19 bioclim metrics are often correlated with each other, so a 
principal component analysis (PCA) was performed so that a subset of 

uncorrelated layers describing climate could be used for model devel-
opment. Using PCA for this purpose is recommended over using full 
sets of potentially correlated variables, such as bioclim data (Porfirio 
et al., 2014). To normalize each bioclim grid, the mean of all cells within 

F IGURE  2 US county centroids tend to be least representative of average county climate in the mountainous and large counties of the 
western USA. To develop this figure, a principle component analysis (PCA) was performed within the contiguous USA on 19 normalized 
bioclimatic variables derived from 30- arcsecond PRISM data (see Methods section). Each component was weighted by the eigenvalue of the 
PCA to develop an overall climate metric, and the difference between the centroid value and the average value across the county is shown

F IGURE  3 Climatic variance within US 
counties is highest in the mountainous and 
large counties of the western USA, though 
not all large counties have varied climate. 
Figure generated as in Figure 2, with the 
variance of each component across each 
county calculated and weighted by the 
eigenvalue of the PCA to develop an overall 
climatic variance metric

F IGURE  4 The largest US counties 
containing the largest elevation ranges 
tend to be in the western USA
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the contiguous USA (9,154,303 cells) was subtracted from each cell’s 
value, and the result in each cell was divided by the standard deviation 
of all cells. This resulted in 19 raster layers, each having an average of 
0 and a standard deviation of 1. Principal components were derived 
from these 19 layers with the principal components tool in ArcGIS 9.3. 
The first principal component explained 40.6%, the first three com-
ponents explained 82.6%, and the first seven explained 98.5% of the 
total variance in the original 19 bioclim grids, so SDMs were devel-
oped using the first seven principal component grids as background 
environmental layers.

Species distribution modeling was performed in maxent v.3.3.3k 
(Phillips, Dudik, & Schapire, 2004). This modeling package has been 
shown to be robust compared to other methods (Elith et al., 2006) 
and has been shown to perform well in the face of spatial errors in 
training localities (Graham et al., 2007) and reduced sample sizes 
(Wisz et al., 2008). If using only county records for species- location 
data in species distribution modeling, one has to either assume aver-
age environmental conditions across the county as a whole unit, or 
select environmental conditions at a representative point location 
(such as the county centroid). To examine the consequences of these 
alternatives, SDMs were generated for each of the 283 focal odo-
nate species and 230 focal butterfly species using five datasets: (1) 
the true species locality dataset, (2) the corresponding sister data-
set of county- centroid coordinates, (3) a dataset where the average 
environmental conditions within each county were assigned to each 
record, (4) a dataset including a 50/50% mix of true localities and 
county- centroid coordinates, and (5) a dataset including a 50/50% 
mix of true localities and records assigned the average environmental 
conditions within each county. For the two 50/50% mix approaches, 
the records converted to county- scale data were selected randomly, 
but the same selection of true localities and county- scale data were 
used in both approaches.

2.3 | Data analysis

The model outputs from each dataset were compared in terms of areal 
extent and niche similarity metrics. For the purposes of this project, 
models developed with true localities were assumed to represent the 
true distribution of each species. It is known that locality density will be 
highest in regions with small counties, but this bias should be consist-
ent among all model comparisons. To quantify and compare the areal 
extent of each modeled range between models developed with each 
dataset for each species, two thresholds were applied for each species. 

All grid cells with a predicted value above the threshold were consid-
ered suitable, and the number of suitable cells was summed to quantify 
the areal extent of each distribution. The sensitivity- equals- specificity 
threshold represented the value where positive and negative obser-
vations have an equal chance of being predicted correctly, and the 
minimum- training- presence threshold represented the value where a 
species was predicted to be present at all localities used to train the 
model (Fielding & Bell, 1997; Freeman & Moisen, 2008). Overprediction 
was assessed by the ratio of the areal extent of thresholded model out-
put for each dataset compared to the areal extent of the thresholded 
model output for the true locality models. Comparisons were also 
made between eastern and western species subsets (Table 2).

The niche similarity of models generated with each dataset was 
compared for each species using ENMTools (Warren, Glor, & Turelli, 
2010). Three statistics were generated: the similarity statistic (I), which 
is a metric used to test whether models generated from different pop-
ulations are identical; Schoener’s D, which is a metric describing the 
level of niche overlap; and relative rank (RR), which is an estimate of 
the probability that a pair of rasters agree in the relative ranking of 
any two patches of habitat regardless of the suitability values (Warren, 
Glor, & Turelli, 2008; Warren & Seifert, 2011; Warren et al., 2010). For 
both I and D, a value of 0 represents no niche overlap, and a value 
of 1 represents identical niches. For RR, a value of 0 represents dis-
agreement on the relative quality of every habitat patch (cell) pairing, 
and a value of 1 represents identical relative ranking of all cell pairs. 
Values of I, D, and RR were compared across models via nonparametric 
(Wilcoxon signed- rank) tests.

Area under the curve (AUC) values were also compared between 
models for each species with Wilcoxon signed- rank tests. AUC is a 
threshold- independent measure of model performance (Hanley & 
McNeil, 1982), where performance is assessed as the ability of the 
model to discriminate between species occurrence and absence. Use 
of this metric is a standard technique for distribution models based 
on presence- only data (Guisan & Zimmermann, 2000). AUC values 
above 0.9 typically describe very good discrimination ability (Swets, 
1988).

3  | RESULTS

Species distribution models for 283 species of odonates and 230 spe-
cies of butterflies in the continental USA based on true locality data 
outperformed corresponding SDMs based on county centroids, with a 

TABLE  2 Number of species with all records east or west of the 100th meridian

Database

East of 100th meridian West of 100th meridian

No. of species No. of records No. of species No. of records

OdonataCentral 75 Median = 28, SD = 24.85 22 Median = 15, SD = 11.01

BAMONA 63 Median = 37, SD = 49.18 60 Median = 14.5, SD = 5.82

OdonataCentral (subset) 22 Median = 15.5, SD = 10.40 22 Median = 15, SD = 11.01

BAMONA (subset) 30 Median = 20.5, SD = 6.20 30 Median = 19, SD = 5.03
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mean AUC reduction of 0.007 for the latter models (Wilcoxon signed- 
rank test p < 0.00001). The AUC of county- centroid SDMs was still 
fairly high (median: 0.915, min: 0.733, max: 0.996). Developing niche 
models with county data led to overprediction, on average, of the 
geographic representation of the environmental niche (mean: 15%; 
median: 3.2%; range: −65% to 789%). The mean predicted areas 
were larger regardless of how the county- scale data were treated 
(Table 3). The majority of butterfly and odonate species (n = 288) 
showed greater than a 1.0% increase in the predicted range when 
county centroids were substituted for true localities, although 201 
species showed a reduction in range by more than 1.0%, and 24 spe-
cies showed less than 1.0% change (Appendix S1). Considering both 
butterflies and odonates, the lowest and highest RR metrics for a 
county- centroid model compared to a true locality model were 0.737 
and 0.988. The lowest and highest RR metrics for a county- average 
model compared to a true locality model were 0.751 and 0.996. The 
lowest metric values were associated with species with few localities. 
The butterfly and odonate models built from a 50/50% mix of true 
localities and county centroids significantly outperformed the models 
built with county centroids as assessed by the I, D, and RR metrics. 
Specifically, for the butterfly models, the county- average models out-
performed the county- centroid models as assessed by the I, D, and 
RR metrics (Wilcoxon signed- rank test p = 0.0179, p = 0.0061, and 
p = 0.0311 for I, D, and RR, respectively), and for the odonate models, 
the county- centroid models outperformed the county- average mod-
els as assessed by the I, D, and RR metrics (p < 0.00001 for all three 
metrics).

Misrepresentation of the geographic distribution of a species, an 
effect of modeling with county centroids, was reduced in more wide-
spread species, which had records in many US counties (some exam-
ples in Figure 5a–f). The largest predicted area discrepancies were 
found in species with few records (Figure 6), though not all species 
with few records showed large discrepancies, and large sample sizes 
(>100 locality records) reduced the discrepancies. Geographic over-
prediction tended to be highest in species that had records in counties 

with high climatic variance, such as western US counties (Figure 3). 
The median increases in predicted area using county centroids in the 
western species subsets as indicated in Table 2 were 19.2% and 17.9% 
for BAMONA and OdonataCentral, respectively. The median increases 
in predicted area in the eastern species subsets were smaller: −1.7% 
and 3.0% for BAMONA and OdonataCentral, respectively (p = 0.008).

4  | DISCUSSION

A couple of large citizen- science datasets were used to test the effects 
of different approaches in dealing with coarse- scale data, taking a novel 
approach: geographic locality data were used to build precise species 
distribution models and also rescaled the resolution of those same 
data to a coarser (county) level. With these species localities, distribu-
tion models built by taking county- wide environmental averages were 
compared to those built with county- centroid environmental values, 
and combinations of these (compared to models built with the same 
data but from specified coordinates). We show that none of these com-
promises is particularly effective for large, heterogeneous counties of 
the western USA, although large sample sizes can reduce the possi-
bility of overpredicting species distributions. Using county- scale data 
somewhat compromises species distributional predictions, although 
this effect is more pronounced in the large and environmentally het-
erogeneous western US counties. Our attempts to compensate for this 
bias (e.g., by increasing sample size in terms of species locality data, or 
by comparing models built with county- averaged environmental data 
vs. point location [county centroid] environmental data) had mixed suc-
cess. There was not a consistent performance benefit to using county- 
average environmental conditions compared to county centroids. The 
predicted range sizes of models built with county- average environmen-
tal conditions were closer to models built with true locality data for 
both butterflies and odonates (Table 3), but comparisons using I, D, and 
RR metrics failed to reveal any consistent improvements (Table 4). It is 
thus possible that model performance may be improved by filtering and 

Trial
Equal specificity/sensitivity 
threshold (%)

Minimum- training- 
presence threshold (%)

BAMONA (n = 230)

County centroid 106.8 110.5

County average 100.6 101.4

50/50 True locality/
county- centroid mix

106.5 109.4

50/50 True locality/
county- average mix

102.8 103.3

OdonataCentral (n = 283)

County centroid 109.4 119.0

County average 100.7 107.9

50/50 True locality/
county- centroid mix

105.7 114.2

50/50 True locality/
county- average mix

103.3 109.3

TABLE  3 Mean ratio in predicted area 
relative to predicted area using true 
localities
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omitting points from counties with highly variable environmental con-
ditions while keeping those from less variable counties, but this would 
need to be tested (possibly on a case- by- case basis).

For widespread species with many county- scale data points, the 
risk of inflating the predicted range of a species is small. It is already 
known that model accuracy declines with reduced sample size, with 

F IGURE  5 Predicted ranges using true localities and county centroids for some representative odonate taxa: (a) Somatochlora semicircularis 
(n = 55) TL, (b) Somatochlora semicircularis (n = 55) CC, (c) Erpetogomphus compositus (n = 37) TL, (d) Erpetogomphus compositus (n = 37) CC, (e) 
Ischnura posita (n = 423) TL, (f) Ischnura posita (n = 423) CC. TL, true localities (white triangles); CC, county centroids (black triangles)
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model performance declining by as much as 19% when using 10 sam-
ples instead of 100 (Wisz et al., 2008), although model accuracy may 
be compromised even further for species with restricted ranges, which 
could have a corresponding low number of potentially unrepresenta-
tive county- centroid records. It may be possible to use county- scale 
data to complement true localities for model development, but the 
models should be interpreted carefully. Without an independent data-
set for comparison, expert opinion on distributions and habitat associ-
ation may be the best means for determining whether models includ-
ing county- scale data are improvements to models developed with 
only true localities (Burgman, 2005; Perera, Drew, & Johnson, 2012).

From this, we can conclude that high- resolution SDMs should not 
be built with coarse- resolution data. If those are the only such data 
available, however, using county- average environmental conditions 
does not improve model performance (particularly for heterogeneous 
counties), although boosting sample size of species locality data showed 
some model improvement. Instead, some alternative approaches may 
be taken to improve model reliability. For example, background samples 
could be limited to locations where there are species records, which 
would control for sampling bias. Furthermore, rather than compare 
the AUC of models built from different types of data as we did (e.g., 
compare AUC of true locality model to AUC of county- centroid model), 
models could be built with k- fold partitioning to evaluate all models on 
the same withheld fold of true locality data. However, withholding a 
test dataset for comparing the AUC of the true locality and county- data 
models would have further reduced the number of species that could 
be modeled. Moreover, species with few locality records could not be 
modeled in that manner, which would limit understanding how the dif-
ferent modeling approaches affected species with few records (species 

with few records could be disproportionately affected if county data 
were substituted). Additionally, comparing predicted areas and niche 
similarity indices makes reporting AUC secondary.

There is value to county- scale data in that it provides at least some 
evidence of the occurrence of a species, though including it may pro-
vide an overly optimistic view of the completeness and extent of data 

F IGURE  6 The discrepancy in predicted 
area using US county centroids relative 
to true localities is greatest for species 
with few locality records, using the 
minimum- training- presence threshold for 
predicted area assuming a default value 
of prevalence. “x” = data from BAMONA, 
“o” = data from OdonataCentral

TABLE  4 Mean niche similarity metrics compared to true locality 
models

Trial I D RR

BAMONA (n = 230)

County centroid 0.9829 0.8860 0.9188

County average 0.9870 0.8961 0.9247

50/50 True locality/
county- centroid mix

0.9915 0.9209 0.9439

50/50 True locality/
county- average mix

0.9906 0.9176 0.9349

OdonataCentral (n = 283)

County centroid 0.9837 0.8917 0.9210

County average 0.9802 0.8810 0.9132

50/50 True locality/
county- centroid mix

0.9925 0.9273 0.9475

50/50 True locality/
county- average mix

0.9924 0.9264 0.9459

The similarity statistic I is a metric used to test if models generated from 
different populations are identical. Schoener’s D is a metric describing the 
level of niche overlap. Relative rank, RR, is an estimate of the probability 
that a pair of rasters agree in the relative ranking of any two patches of 
habitat regardless of the suitability values. See text for interpretation.



     |  6021COLLINS et aL.

coverage. It is important to understand biases that may be present in 
citizen- science databases. Citizen- science databases are likely biased 
toward the locations of active users, because there are seldom going 
to be attempts to randomize localities or search beyond what is con-
venient for users. The data may suggest some areas to be biodiver-
sity hot spots and others depauperate simply because of differences 
in effort. For the two databases used in this study, this was a bias in 
user- submitted records: contributors are more likely to submit records 
with actual coordinates if no record existed in a county previously 
regardless of the precision of that previous record (Table 1). Table 1 
shows that US county- scale records outnumbered true locality records 
in both databases and that the majority of US county records do not 
have a true locality record within the same county. In OdonataCentral 
and BAMONA, 44.8% and 16.3% of true locality records were new 
county records (records where no accurate or inaccurate record for 
the county was present in the database), respectively. Database users 
submit records when they perceive they are contributing new informa-
tion, and contributing records within a county that already has a record 
in the database may be perceived as inconsequential. This problem 
could be addressed in three ways. First, by developing tools that 
organize data by geographic units other than county, such as water-
shed, or by providing flight season charts based on existing data, it 
would be easier for users to identify knowledge gaps in the database. 
Second, the perceived value of record submission would also increase 
by presenting the data in other formats. By making record submission 
easier, users would be more likely to submit more records, including 
those perceived to be more mundane. This can be accomplished by 
improving the web submission process or by developing record sub-
mission applications for mobile devices (an OdonataCentral mobile 
app, Dragonfly ID, has been developed, with the ability to include 
record submission directly from the app coming soon; www.birdseye-
birding.com). Both of these improvements could have the added effect 
of improving record accuracy. Finally, incorporating more user- centric 
tools would motivate many contributors. For example, these data-
bases could keep track of user “life- lists” based on submitted records 
and list the top contributors by county, state, or country. Though “life- 
list” tools would be expected to have only limited scientific value, they 
would increase the record submission rate. Providing such incentives 
is important (Wood et al., 2011), because the questions that can be 
answered with citizen- science databases are dependent on the num-
ber of quality records they contain, and the results of our study indi-
cate that SDMs for species with over 100 county- centroid records are 
relatively accurate. Citizen- science databases should stress the signifi-
cance of recording specific locality data, because we show that species 
distribution models based on county- scale data are inherently flawed.
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