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ABSTRACT

ComplexContact (http://raptorx2.uchicago.edu/
ComplexContact/) is a web server for sequence-
based interfacial residue-residue contact prediction
of a putative protein complex. Interfacial residue-
residue contacts are critical for understanding
how proteins form complex and interact at residue
level. When receiving a pair of protein sequences,
ComplexContact first searches for their sequence
homologs and builds two paired multiple sequence
alignments (MSA), then it applies co-evolution
analysis and a CASP-winning deep learning (DL)
method to predict interfacial contacts from paired
MSAs and visualizes the prediction as an image.
The DL method was originally developed for intra-
protein contact prediction and performed the best in
CASP12. Our large-scale experimental test further
shows that ComplexContact greatly outperforms
pure co-evolution methods for inter-protein contact
prediction, regardless of the species.

INTRODUCTION

Most proteins function by interacting with others to form
complexes and/or protein-protein interaction (PPI) net-
works (1). Solving the structures of protein complexes by
experimental techniques is very challenging (2). For exam-
ple, there is little structural information for ~80% of cur-
rently known protein interactions in bacteria, yeast or hu-
man (3). Computational prediction is an alternative way to
elucidate the structure of a complex of interacting proteins.
Inter-protein contact prediction is becoming an important
intermediate step for such a task (4,5).

Due to the evolution pressure, co-evolved residues are of-
ten found to be spatially proximal within the protein struc-
ture (6) or upon the protein-protein interface (7). As such,

co-evolution analysis or more specifically direct-coupling
analysis (DCA) (e.g. EVcomplex (5) and Gremlin-Complex
(4)) is widely used to identify co-evolved residues and pre-
dict inter-residue contacts from multiple sequence align-
ments (MSA) (6-15). Although popular, DCA has low ac-
curacy when a protein under prediction does not have many
sequence homologs in MSA (16-23). This problem becomes
even more serious for inter-protein contact prediction since
it is challenging to find so many interlogs (i.e. interacting
homologs) for an interacting protein pair, especially for eu-
karyotic species (4,5).

We present ComplexContact, a web server that pre-
dicts inter-protein residue-residue contacts without using
any structural templates. The underlying algorithm of this
server is a Deep Learning (DL) model which has won intra-
protein contact prediction in CASP12 (24,25). In addition
to co-evolution information, our DL method makes use
of sequential features and contact occurrence patterns to
dramatically reduce the requirement of sequence homologs
and greatly improve accuracy (16). This server also applies
a phylogeny-based method to identify interlogs and build
better MSAs for a protein pair from eukaryotes. Our ex-
perimental results show that ComplexContact outperforms
pure DCA for inter-protein contact prediction for both
prokaryotes and eukaryotes.

MATERIALS AND METHODS

The detailed description of the DL algorithm underlying
ComplexContact is described in (16) and the detailed exper-
imental results for inter-protein contact prediction is avail-
able at (26). Here, we briefly summarize the method.

Overall flowchart for inter-protein contact prediction

As shown in Figure 1, given a pair of putative interact-
ing protein sequences A and B for which users would like
to predict inter-protein contacts, our method first employs
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Figure 1. Illustration of ComplexContact workflow. Given a pair of putative interacting proteins A and B, ComplexContact first uses HHblits (38) to
search for sequence homologs and build an MSA for each protein. Then ComplexContact constructs two paired MSAs using genome and phylogeny
information. Finally, ComplexContact applies deep learning to predict two inter-protein contact maps from the two paired MSAs and calculates their
average as the final contact prediction. The top half of this figure is inspired by Fig. S2 in (40).

HHblits to search for sequence homologs and build MSAs
for A and B, respectively. Then we employ two strategies
(i.e. genome- and phylogeny-based) to concatenate MSA_A
and MSA _B into two paired MSAs consisting of only inter-
logs, denoted as MSA_g and MSA _p, from which we may
predict two inter-protein contact maps using our DL model
(trained from single-chain proteins), and calculate their av-
erage as the final prediction.

Concatenate two multiple sequence alignments

Concatenating MSAs by genomic distance. In prokaryotes
and some eukaryotes, interacting genes are often co-located
on the chromosome into operons (27), so we may assume
two proteins forming an interacting pair if their intergenic
distance is less than a threshold (28). A similar approach is
used in EVcomplex (5) and Gremlin-Complex (4).

Concatenating MSAs by phylogeny. In most eukaryotes, it
is challenging to concatenate two individual MSAs since an
individual MSA may contain abundant paralogs and two
genes may interact even if they are not close by genomic dis-
tance (13). Here, we group proteins in each MSA by their
species (or sub-species if possible) according to the phy-
logeny tree in the Taxonomy Database (29). Then we sort
proteins of a specific species/subspecies in each MSA by
their sequence similarity (from high to low) to their respec-
tive query proteins. Let py, p2, ..., pm and qi, qQo, ..., Qn

be the sorted proteins of a specific species in two MSAs, re-
spectively. Then we pair p; and q; together where i ranges
from 1 to the minimum of m and n.

On average for eukaryotes, the phylogeny-based method
works better while for prokaryotes, the genomic-based
method works better. Combining them can improve per-
formance on eukaryotes. For some protein pairs, neither
method can identify many sequence homologs, and the re-
sultant interfacial contacts may have low accuracy.

Deep learning for inter-protein contact prediction

Our DL model is formed mainly by two deep residual neu-
ral networks (ResNet) (30). One is used to handle sequential
features and the other pairwise features. The first ResNet
conducts 1-dimensional (1D) convolutional transformation
of sequential features to capture long-range sequential con-
text of each residue in the query proteins. Its output is con-
verted to a 2-dimensional (2D) matrix and then fed into the
2nd ResNet together with the original pairwise features. The
second ResNet conducts 2D convolutional transformation
of its input to capture long-range 2D context of a residue
pair. Finally, the output of the 2nd ResNet is fed into lo-
gistic regression, which predicts the probability of any two
residues forming a contact.

The sequential features include protein sequence profile,
predicted 3-state secondary structure (31) and 3-state sol-
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Figure 2. The top-50 prediction accuracy by ComplexContact and Grem-
lin on the protein pairs extracted from 3DComplex. Each dot represents
one protein pair and is colored by its species. A dot below the diagonal line
indicates that ComplexContact has a better accuracy.

vent accessibility (32,33). The pairwise features include the
direct information produced by CCMpred (11) and mutual
information derived from paired MSAs.

The DL model underlying ComplexContact was origi-
nally developed for intra-protein contact prediction, which
has been officially ranked No. 1 in CASP12 (24,25). That
is, our DL model was trained by single-chain proteins in-
stead of protein complexes, so there is no overlap between
our training and test sets. We doubled check this by BLAST
(34), which shows that none of the test protein pairs can be
simultaneously aligned to a training protein.

RESULT
Evaluation and metrics

We compare ComplexContact with pure DCA methods
such as CCMpred (11), Gremlin (35) and EVfold (36)
and two related web servers GremlinComplex and EVcom-
plex. CCMpred, EVfold and Gremlin are pure co-evolution
methods and their accuracy is not very different.

We evaluate the accuracy of the top L/5, 50, 20, 10, 5
predicted inter-protein contacts. The top-k accuracy is de-
fined as the percentage of correct predictions among the
top k predicted contacts. When the number of native con-
tacts i1s smaller than k, we still use & as denominator in
calculating accuracy, which may make the accuracy look
small when k is big. More experimental results are available
at the online documentation page http://raptorx2.uchicago.
edu/ComplexContact/documentation/#6.

Performance on Baker and 3Dcomplex datasets

Asshown in Table 1, tested on the Baker’s dataset (of 32 pro-
tein pairs), ComplexContact greatly outperforms EVCom-
plex (EVfold), GremlinComplex and CCMpred regardless
of how many predicted contacts are evaluated.

As shown in Figure 2, on a much larger benchmark (of

4479 heterodimers) extracted from 3D complex (37), Com-
plexContact outperforms Gremlin by a large margin re-
gardless of the species of the test dimers.

The prediction accuracy depends on two main factors:
the number of non-redundant sequence homologs in the
multiple sequence alignment (MSA) and the interfacial con-
tact density (measured by the number of interfacial contacts
divided by sequence length sum). The former determines
the quality of co-evolution signal (one of the input features
of our DL method). The latter impacts prediction accuracy
because our DL method makes use of contact occurrence
patterns. When contact density is low, it is hard to identify
reliable contact patterns.

Quality assessment of the predicted probability

ComplexContact predicts the probability of any two
residues forming a contact. Here we assess the quality of
the top 50 predicted probability values of the heterodimers
extracted from 3Dcomplex.

As shown in Figure 3, ComplexContact has much bet-
ter AUC (Area Under the ROC curve) and AUPRC (Area
Under the PR curve) (0.712 and 0.175, respectively, Fig-
ure 3B) than Gremlin (0.297 and 0.013, respectively, Fig-
ure 3A). Gremlin has an AUC <0.5, which implies that its
contact selection is even worse than random guess. Table 2
shows the precision and recall for a list of probability val-
ues produced by ComplexContact. For example, when the
predicted probability is >0.90, the precision is 0.57.

SERVER IMPLEMENTATION
Overall description

Input. As shown in Figure 4, users may submit a single
sequence pair, a pair of multiple sequence alignments or a
batch of 20 sequence pairs by copying and pasting to the
input text field or uploading files. A jobname and an email
address are optional, but they can facilitate job retrieval.

Job retrieval. ComplexContact assigns one unique job ID
and one URL to each submission for job retrieval. When
an email is provided in submission, users will be notified by
email once a batch of jobs are done; users may also retrieve
their jobs by the ‘My Jobs’ link at the top right of the web
page and by the ‘Job Status’ link, through which users may
find a job by one of its submitted sequences.

Output. In addition to the original input sequences, the
result web page has three result sections (see Figure 5). The
first section visualizes the predicted contact map, which can
be zoomed in and dragged around to facilitate detailed ex-
amination. Hovering mouse over the contact image will dis-
play the predicted contact probability value at a specific
residue pair. The second section includes three panels: a
panel for contact image zooming and dragging, a panel
for downloading the predicted complex contact map, and a
panel for downloading the detailed prediction results. The
third section displays the two paired MSAs generated by
genome- and phylogeny-based methods as well as the num-
ber of sequence homologs in each MSA.
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Figure 3. Quality assessment of the top 50 predicted interfacial contacts for 4479 heterodimers extracted from 3Dcomplex. (A) and (B) show the precision-
recall (in red) and ROC (in blue) curves generated by Gremlin and ComplexContact, respectively. AUC: Area Under the ROC curve; AUPRC: Area Under
the precision-recall curve.
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Figure 4. ComplexContact server job submission. (A) Users may submit a job by a web interface, which has fields for job name (1), optional user email
address (2), and a pair of sequences (or multiple sequence alignments) (3). The sequences shall be in FASTA format and can also be submitted in a file.
(B) Users may also submit a job by a publicly available program Curl without using the web interface. In this command, Job name and Email address are
optional. A job URL will be returned on screen after submission. Curl allows users to submit a large number of jobs quickly.
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Table 1. Inter-protein contact prediction accuracy (%) on Baker’s dataset

Predictor L/5 50 20 10 5

EVcomplex(s) 9.63 14.41 21.55 26.55 31.03
GremlinComplex(s) 14.67 26.00 41.21 52.76 58.62
EVfold 16.10 27.59 42.07 54.83 62.76
CCMpred 17.64 29.86 46.03 55.52 61.38
ComplexContact (s) 38.47 50.41 60.52 65.86 68.28

Predictors ending with (s) are a web server. EVfold is same as EVcomplex, but runs locally with our MSAs. Columns 2-5 show accuracy of top predicted
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Figure 5. ComplexContact server result page. The left part shows the predicted complex contact map (1), where the predicted probability is displayed in
greyscale, with a darker color indicating a larger value. The middle part shows three panels. The first one is used to zoom and drag contact images (2). The
second panel is for downloading the predicted contact map (3), and the third panel is for downloading the detailed prediction results (4). The right part
shows two paired MSAs generated by genome-based method (5) and phylogeny-based method (6).

Table 2. Precision and recall of the top 50 predicted interfacial contacts
by ComplexContact on the 3Dcomplex data

Probability Precision Recall
0.95 0.70 0.03
0.90 0.57 0.06
0.85 0.45 0.09
0.80 0.35 0.12
0.75 0.27 0.14
0.70 0.22 0.17
0.65 0.19 0.21
0.60 0.16 0.27
0.55 0.14 0.35
0.50 0.13 0.44

Detailed prediction results. The downloadable file con-
tains the followings: (a) the two input protein sequences in
FASTA format; (b) MSAs generated by HHblits (38) for
each input sequence; (c) two paired MSAs; (d) one predicted
complex contact map for each paired MSA; (e) the final pre-
dicted contact map.

Processing time. The running time depends on the length
of the two input sequences and the number of sequence ho-

mologs detected by the server. For a protein pair of ~250
residues, it takes about one hour to finish one job after it is
scheduled to run. When there are many waiting jobs (or jobs
of long sequences) in the queue, it may take a few hours for
ajob to be scheduled to run. Nevertheless, most jobs can be
done within one day after submission.

Documentation. The documentation of ComplexContact
is available by the ‘Docs’ link at the web page. It includes
some details about the server, descriptions of input and out-
put, explanations of prediction results, a sample prediction
result and more experimental results.

CONCLUSION AND FUTURE WORK

We have presented ComplexContact, a web server for
sequence-based interfacial residue-residue contact predic-
tion using deep learning and residue co-variation. Com-
plexContact outperforms similar servers by a large margin
regardless of the species. However, it shall be noted that
complex contact prediction is a very challenging problem
and there is still a large room for improvement. Currently
our DL model was trained using only single-chain proteins.



According to our experience on membrane protein contact
prediction (39), using a mix of membrane and soluble pro-
teins to train a DL model works better than using soluble
proteins or membrane proteins alone. Therefore, we plan to
further improve interfacial contact prediction accuracy by
training a DL model using a mix of single-chain proteins
and protein complexes.
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