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A B S T R A C T

Pancreatic ductal adenocarcinoma (PDAC) shows remarkable propensity to metastasize. This predilection to
escape from the primary tumor is driven by paracrine and autocrine mechanisms that guide cancer cells
through a multi-step process concluding with colonization in distant tissues. Although cell-intrinsic features
support the metastatic ability of cancer cells, permissive microenvironments within the primary organ and
at sites of distant metastasis may be rate-limiting. Identification of cancer cell-extrinsic factors that regulate
formation of these environments lend new therapeutic targets for intervening on the metastatic cascade. In
addition, the bipolar, yet fundamental, role of the immune system in the metastatic process presents thera-
peutic opportunities. Herein, we review the current knowledge of the metastatic cascade in PDAC, and pro-
pose that genomically stable determinants of metastasis (e.g. the pro-metastatic niche and immune system)
are actionable targets for preventing, containing, and treating metastasis in PDAC.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a
5-year overall survival of 3% for patients with metastatic disease [1].
This dismal outcome has remained largely unchanged for the past two
decades (Fig. 1). This is in stark contrast to the promising progress being
made for patients who present with localized PDAC (Fig. 1) and there-
fore, beckons for novel approaches capable of intervening on the
metastatic process. PDAC is currently the 3rd most common cause of
cancer deaths in the United States but is expected to become the 2nd
leading cause within the next decade [2]. Mortality in PDAC is primarily
the result of metastasis to the liver, lung, and peritoneal cavity [3].
Notably, at diagnosis, over 50% of patients with PDAC will present with
metastatic disease [1]. Further, nearly 80% of patients who undergo sur-
gery with curative intent ultimately relapse with two-thirds succumb-
ing to distant recurrence [4]. As such, novel therapeutic strategies
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Fig. 1. Five-year survival for patients with pancreatic ductal adenocarcinoma diag-
nosed with localized, regional (i.e. lymph node involvement), or distant (i.e. metastatic
to other organs) disease. Graph is based on mortality data from the National Center for
Health Statistics reported for 2006 [90], 2012 [91], and 2019 [1] by the American Can-
cer Society. Numbers associated with histogram bars indicate percent of patients alive
at �5 years after diagnosis.
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capable of disrupting, restraining, and reversing metastasis are needed
to improve outcomes for patients.

Metastasis is a multistep process (Fig. 2). Cancer cells must invade
their local microenvironment to intravasate into the bloodstream and
then lodge within distant organs before extravasating into the organ
parenchyma to establish metastatic colonies. This highly regulated and
inefficient process is dependent on cell-intrinsic properties that engen-
der cancer cells with the ability to metastasize as well as on cancer cell-
extrinsic features of the primary tumor and distant organ sites of metas-
tasis that enable the metastastic process. Recent studies provide insight
into the determinants that instruct pancreatic cancer cells with meta-
static ability, guide the predilection of cancer cells for distinct organs,
and govern the receptiveness of distant organs for metastasis. Under-
standing this biology is paramount to identifying strategies that may be
capable of intervening on the metastatic process. In this review, we dis-
cuss paracrine and autocrine signals that educate and support pancre-
atic cancer cells through their metastatic journey. Our focus is on
Fig. 2. Graphical representation of the metastatic cascade in pancreatic ductal adenocarcinom
nation (steps 1�5) and that condition distant organs (steps 6 and 7) for increased permissiv
detach from the basement membrane (step 1), invade into the surrounding stroma (step 2) a
sequent, lodging in a distant organ (step 5), such as the liver. Concurrently, primary tumors r
ment in a distant organ (step 7). DCCs then extravasate (step 8) into the parenchyma of the
appropriate awakening signals or proceed to colonize the distant tissue.
biology that instructs cancer cell dissemination away from the primary
tumor and orchestrates the formation of a pro-metastatic niche that cul-
tivates the seeding of disseminated cancer cells in distant organs.
2. Determinants regulating cancer cell dissemination

The multi-step process of metastasis (Fig. 2) is directed by a coordi-
nated set of signals that converge to instruct cancer cells to detach from
the basement membrane, invade into the surrounding tissue, and intra-
vasate into the bloodstream where they emerge as disseminated cancer
cells (DCCs). Concurrently, secreted signals instruct formation of a pro-
metastatic niche in distant organs which then supports the journey of
DCCs. During this process, DCCs must endure physical stress and evade
immune elimination as they seek to extravasate into the parenchyma of
other organs. After seeding, DCCs may initially lie dormant awaiting the
necessary proliferative signals that trigger their awakening and subse-
quent outgrowth to form a metastatic lesion [5]. Overall, this process is
highly inefficient such that the vast majority of cancer cells never suc-
cessfully complete their metastatic journey [6]. In PDAC, cancer cells
with high metastatic competency are predicted to be generated at a
rate of approximately 1 in a million cells during tumor development [7].
This prediction suggests that cancer cell-extrinsic features may be criti-
cal in defining the fitness of cancer cells and their tropism for distant
organs. To this end, a permissive tumor microenvironment and a recep-
tive distant organ niche are fundamental in determining the capacity of
cancer cells to escape from primary tissues and subsequently seed and
colonize distant tissues. Here, we discuss key determinants, including
paracrine signals produced by cancer cells (Table 1), that coordinate the
metastatic process and address the role of non-malignant cells in facili-
tating cancer cell metastasis.

2.1. Initiating signals that establish a microenvironment permissive of
cancer cell invasion

The metastatic process begins with cancer cell detachment from the
basement membrane and invasion into the surrounding stroma. These
early metastatic steps rely on a permissive state of the microenviron-
ment that surrounds cancer cells. For example, in the pancreas,
a. Metastasis is a multi-step process involving signals that support cancer cell dissemi-
eness of disseminated cancer cells (DCC). During metastasis, malignant epithelial cells
nd intravasate into the bloodstream (step 3) leading to dissemination (step 4) and sub-
elease factors (step 6) that promote the development of a pro-metastatic niche environ-
distant organ where they seed (step 9). Thereafter, DCCs either lie dormant awaiting



Table 1
Cancer cell-derived paracrine signals involved in pancreatic cancer metastasis.

Soluble factor Targets Proposed function

Sonic hedgehog (Shh) [8] Fibroblasts Myofibroblast proliferation
TGF-b [12] Multiple cell types (including cancer cells, macro-

phages, T cells, fibroblasts)
EMT, CAF activation, immune suppression

MMP-7 [37] Stromal matrix and protein components Increased metastatic potential of cancer cells
Hyaluronic acid [14,16] Cancer cells Proliferation, increased cancer cell invasion
GM-CSF [63] Myeloid cells Recruitment and differentiation of myeloid cells, T

cell exclusion
Colony stimulating factor 1 (CSF1) [40] Macrophages Support cancer cell invasion
Exosome-derived macrophage-inhibitory factor (MIF)
[69]

Kupffer cells Supports formation of a liver pro-metastatic niche

TIMP1 [70] Hepatic stellate cells Support formation of liver pro-metastatic niche
CXCL1 [62] Granulocytes Support formation of liver pro-metastatic niche;

Immune suppression
CCL2 [45] Myeloid cells Cancer cell dissemination, myeloid cell recruitment,

formation of liver pro-metastatic niche
Versican [74] Macrophages Promotes metastatic outgrowth
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pancreatic stellate cells (PSCs) are quiescent resident fibroblasts that in
the setting of cancer, differentiate into activated cancer-associated fibro-
blasts (CAFs). CAFs accumulate during tumor development in response
to a variety of cytokines that are involved in wound-healing and fibrosis.
For instance, cancer cells produce survival factors for CAFs, such as sonic
hedgehog (Shh) [8]. Within tumors, CAFs then establish sub-populations
with functionally heterogenous and disparate roles which influence
immune, vascular and cancer cells [9]. Reciprocal cell-cell interactions
also shape the biology of CAFs within tumors. For example, transforming
growth factor b (TGF-b) produced by both malignant and non-malig-
nant cells promotes CAF activation and their formation of filopodia
which in turn, facilitate CAF cell migration within tissues [10]. In essence,
TGF-b triggers CAFs to walk toward cancer cells. Bi-directional commu-
nications between CAFs and cancer cells then confer a survival advantage
to cancer cells that aspire to metastasize to distant organs. For instance,
CAFs activated by TGF-b produce IL-11 and in doing so, trigger signal
transducer and activation of transcription 3 (STAT3) signaling in cancer
cells to support their metastatic potential [11]. Overall, CAFs instruct can-
cer cells to acquire an invasive and proliferative phenotype [12].

The extracellular matrix deposited within tumors influences the
metastatic ability of cancer cells. Activated CAFs facilitate formation
of this desmoplastic reaction through secretion of collagen, fibronec-
tin, glycosaminoglycans and proteoglycans. Fibroblasts also produce
lysyl oxidase (LOX) which acts to crosslink and stiffen collagen fibers
in the tumor microenvironment and in doing so, increases integrin
signaling supportive of cancer cell invasiveness [13]. The dense extra-
cellular matrix in PDAC is also rich in hyaluronan, a large linear gly-
cosaminoglycan produced by cancer cells and capable of generating
remarkably high interstitial fluid pressures [14]. Notably, increased
interstitial fluid pressure influences the transcriptome of malignant
cells and in doing so, triggers cancer cell proliferation, invasion, and
metastasis [15]. Hyaluronan also promotes cancer cell migration [16].
However, depletion of components of the extracellular matrix may
paradoxically endow PDAC with increased metastatic ability [17].
This observation illustrates the remarkable complexity of determi-
nants of the metastatic process and suggests that the stromal com-
partment may possess both pro- and anti-metastatic properties.

2.2. Signals that promote cancer cell invasion and migration

Cancer cells are engendered with metastatic potential during epi-
thelial to mesenchymal transition (EMT). EMT is a process by which
epithelial cells acquire migratory and invasive properties characteris-
tic of mesenchymal cells. During this process, cancer cells lose their
apical-basal cell polarity and detach from the basement membrane.
Acquisition of mesenchymal properties is associated with downregu-
lation of cell adhesion molecules (e.g. E-cadherin) and gain of a
migratory phenotype [18]. In PDAC, EMT has been detected at the
earliest stages of carcinogenesis [18,19]. A variety of signals produced
within a cell’s surrounding microenvironment instruct cancer cells to
undergo EMT. For example, cytokines, including TGF-b and leukae-
mia inhibitory factor (LIF), that are produced by both PSCs and cancer
cells, promote EMT [20]. In addition, EMT may be triggered via TGF-b
independent mechanisms including hypoxia and pro-inflammatory
cytokines (e.g. macrophage migration inhibitory factor, MIF) [21,22].
In vivo studies have shown that the EMT process is intricately regu-
lated, yet fundamental to metastasis. For instance, whereas deletion
of Twist or Snail, two principal transcription factors responsible for
EMT, was found to be dispensable for PDAC metastasis [23], deletion
of zinc finger E-box-binding homeobox 1 (Zeb1) not only impaired
the EMT process but also reduced the metastatic ability of cancer cells
[24]. Non-redundant subfunctions of transcription factors involved in
EMT may explain this biology [24]. Nonetheless, these findings sup-
port a role for cellular plasticity in defining the metastatic ability of
pancreatic cancer cells.

After detachment from the basement membrane, cancer cells
invade and migrate through their surrounding stroma in search of
endothelial and lymphatic vasculature. This process is facilitated by
genetic drivers of pancreatic cancer including KRAS, p16INK4A, TP53,
and SMAD4 [25]. For example, oncogenic Kras activation endows
tumor necrosis factor (TNF)-related apoptosis-inducing ligand recep-
tor (TRAIL-R) with the capacity to trigger activation of the Rac1/phos-
phoinositide 3-kinase (PI3K) signaling axis that then increases the
migratory capacity and invasiveness of pancreatic cancer cells in a
cell-autonomous manner [26]. Deletion of the Ink4a/ARF locus may
then cooperate with Kras activation to promote metastasis [27]. In
addition, mutations in Tp53 can induce the expression of platelet-
derived growth factor receptor beta (PDGFRb) on cancer cells
through a cell-autonomous mechanism. Activation of PDFGRb by
PDGF enhances pancreatic cancer cell invasiveness [28]. Homozygous
loss of Dpc4/Smad4 may also influence the metastatic ability of can-
cer cells. Loss of Dpc4 signaling triggers expression of the transcrip-
tion factor Runx3 which slows proliferation, but also endows cancer
cells with increased migratory capacity and the ability to produce
matrix constituents supportive of metastasis [29]. Epigenomic modi-
fications that arise during cancer cell evolution may also contribute
in a cell-intrinsic manner to the metastatic ability of cancer cells [30].
Similarly, metastatic ability acquired during disease progression has
been linked to alterations in the activity of enhancers, a class of regu-
latory DNA elements that regulate transcription over large genomic
distances [31]. Together, these data implicate a role for genetic altera-
tions in directing the metastatic ability of pancreatic cancer cells.

Driver gene mutations associated with metastasis show remark-
able uniformity among different lesions in patients with PDAC
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[32,33]. This observation implies that the metastatic ability of cancer
cells may be conferred by few genetic alterations. As such, multiple
sub-clones derived from a primary tumor may undergo the meta-
static process [34]. However, the remarkable inefficiency of metasta-
sis predicts that additional factors are required for successful seeding
of clones in distant organs. For example, mouse models suggest that
cancer cell sub-clones may cooperate during metastasis [35]. As such,
cancer cells may metastasize as cell clusters, a strategy that appears
to enhance their metastatic colonization in distant tissues [34�36].
2.3. A permissive tumor microenvironment that supports metastasis

Inflammation is a hallmark of cancer and serves as a major cell-
extrinsic determinate of cancer cell metastasis. For example, STAT3 is
a key mediator of cancer inflammation and enforces cancer cell
expression of matrix metalloproteinase-7 (MMP-7) which then sup-
ports cancer cell invasion [37]. Accordingly, induction of pancreatitis,
which drives Stat3 activation in PDAC, increases pancreatic cancer
cell intravasation into the bloodstream [19,38]. Within the tumor
microenvironment, inflammatory cells contribute to this finding such
that blocking inflammatory cell recruitment to tumors reduces the
metastatic potential of PDAC. For instance, disruption of neutrophil
recruitment to primary tumors by genetic ablation or inhibition of
CXC chemokine receptor 2 (CXCR2) suppresses metastasis in mouse
models of pancreatic cancer [39].

Within the tumor microenvironment, macrophages represent the
dominant immune cell component. Tumor-infiltrating macrophages
can be obligate partners for tumor cell invasion and as such, they
migrate with cancer cells through the stroma in search of endothe-
lium. A paracrine signaling loop between macrophages and malig-
nant cells involving colony stimulating factor 1 (CSF1) produced by
malignant cells and epidermal growth factor (EGF) produced by mac-
rophages supports this co-migration [40]. In addition, macrophages
produce cathepsins, proteases involved in the processing and activa-
tion of growth factors and transcription factors, that may then sup-
port the invasiveness of cancer cells [41]. Consistent with this,
pharmacologic inhibition of macrophages decreases metastasis for-
mation during spontaneous development of PDAC [42]. Thus, tumor-
extrinsic signals may enable the invasive ability of cancer cells.
2.4. Signals that promote tumor cell intravasation into the bloodstream

For cancer cells that successfully traverse the stromal compart-
ment and encounter tumor endothelium, additional coordinating sig-
nals are necessary for their intravasation into the bloodstream.
Macrophages in the stroma may be instructors of this key step in
metastasis. For example, macrophages cooperate with endothelial
cells to orchestrate tumor microenvironments of metastasis
(TMEMs), which is a triad of a macrophage, a cancer cell and an endo-
thelial cell [43]. The formation of TMEMs is reliant on macrophage
recruitment to the tumor by C-C chemokine receptor type 2 (CCR2)
signaling [44]. CCL2 is a ligand for CCR2 and is produced by both can-
cer cells and stromal cells [45] Inhibition of CCR2 in mouse models of
PDAC blocks monocyte recruitment to tumors and prevents liver
metastasis [46,47]. Macrophages recruited to tumors are attracted to
the perivascular space in a CXCR4-dependent manner through C-X-C
motif chemokine ligand 12 (CXCL12) produced by perivascular fibro-
blasts [44,48]. In PDAC, CXCL12 may also attract cancer cells; support
their survival; and enhance their invasiveness [49,50]. Cancer cells
follow macrophages into the perivascular niche under the support of
macrophage production of Wnt family member 1 (Wnt1), which dis-
rupts E-Cadherin junctions [51]. In doing so, cancer cells associate
with both endothelial cells and macrophages to form TMEMs, which
promote vascular leakiness and facilitate cancer cell intravasation
into the bloodstream.
Hematogenous dissemination of cancer cells is commonly consid-
ered a late event in cancer progression. For instance, this process was
thought to not occur from precursors lesions of invasive carcinoma
where cells remain attached to their basement membrane. However,
accumulating evidence suggest that pancreas epithelial cells may
undergo this process even at the earliest stages of cancer conception
[19]. In a preclinical model of PDAC, epithelial cells originating from
pre-cancerous pancreatic intraepithelial neoplasia (PanIN) lesions
were found to detach from the basement membrane, undergo EMT,
invade into the surrounding stroma, and intravasate into the blood-
stream. This process was accentuated by inflammation induced by
the secretagogue cerulean or following pancreatic duct ligation [19].
Remarkably, single epithelial cells were also detected in the liver sug-
gesting that epithelial cells arising from precancerous lesions can suc-
cessfully complete the metastatic journey even prior to progression
to invasive carcinoma. Similar findings have been found in patients
with precancerous cystic lesions of the pancreas who have no evi-
dence of tumor or metastasis [52]. Although circulating pancreatic
epithelial cells originating from PanIN lesions are not competent to
form colonies [19], the ultimate fate of circulating pancreas epithelial
cells harboring mutations in genetic drivers (e.g. Kras and Trp53)
remains unclear. In patients with PDAC undergoing surgical resec-
tion, detection of circulating tumor cells in the blood is an indepen-
dent predictor of tumor recurrence [53]. Accordingly, the evolution
of pancreatic epithelial cells with invasive and metastatic ability has
been proposed as a step-wise progression that spans many years
[54,55]. However, tracking DNA copy number changes and their asso-
ciated rearrangements suggests that for some tumors this process
may proceed as a cataclysmic event [56]. For example, chromothrip-
sis, a phenomenon by which many clustered chromosomal rear-
rangements occur in a single event, has been implicated as a
mechanism involved in conferring PDAC with both invasive and met-
astatic ability. Thus, metastasis in PDAC may, at least in some cases,
be an early rather than late event in cancer progression.
3. Immune evasion and the pro-metastatic niche of distant
organs

Upon escaping from the primary tumor, cancer cells must endure
a variety of stresses as they attempt to reach the promised pro-meta-
static niche in a distant organ. During this process, DCCs must sur-
mount mechanical stresses within the bloodstream. They must also
evade immune recognition and elimination. Finally, they must
become lodged within and navigate through a foreign microenviron-
ment to seed and ultimately, colonize distant tissues. This process of
Darwinian selection for DCCs with metastatic ability is highly regu-
lated. Here, we discuss a role for cancer cell-extrinsic factors, includ-
ing the immune system and the permissiveness of the distant organ
niche, in defining the metastatic ability of DCCs.

3.1. Immune evasion is a prerequisite for metastasis

The exodus of cancer cells from the primary tumor exposes them
to immune recognition and potential elimination. Thus, DCCs must
possess strategies to evade the immune system [57]. To this end,
DCCs which become lodged within distant organs must escape
phagocytic clearance by macrophages, which may act as the first line
infantry to protect distant organs from malignant cells. This evasion
can be mediated through the upregulation of “don’t eat me” signals
on tumor cells, including CD47 and CD24 [58,59]. These molecules
signal through receptors on macrophages, namely signal regulatory
protein a (SIRPa) and Siglec-10 respectively, to inhibit phagocytosis.
However, the role of these molecules in regulating PDAC metastasis
remains ill-defined, although they could represent key targets for
intervening on the metastatic process.
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In addition to evading elements of the innate immune system,
DCCs must also avoid elimination by tumor-specific T cells. In
patients, with advanced PDAC, the presence of tumor-specific T cells
correlates with improved outcomes [60,61]. The importance of T cells
in preventing metastasis is also supported by preclinical models. For
example, tumors infiltrated by T cells display decreased metastatic
potential that can be reversed by T cell depletion [62]. Multiple fac-
tors may determine the capacity of T cells to infiltrate pancreatic can-
cer, including cancer cell-derived factors such as CXCL1 and GM-CSF
which coordinate the recruitment of immunosuppressive myeloid
cell populations [62,63]. Nonetheless, T cell infiltration associates
with a decreased likelihood for metastatic or local recurrence in
patients with surgically-resected PDAC [57]. Indeed, it is likely that T
cells may intervene at multiple stages of the metastatic process. For
instance, although T cells are commonly found trapped within the
stromal compartment that surrounds PDAC [64], this may be advan-
tageous to eliminating cancer cells as they attempt to invade their
surrounding stroma and intravasate into the bloodstream. In addi-
tion, circulating T cells may limit the likelihood of initial seeding and
colonization by DCCs [65]. Finally, T cells may slow tumor outgrowth
of DCCs that successfully seed by directing micro-metastases into a
state of cellular dormancy [66]. However, it currently remains unclear
how to effectively leverage T cell immunosurveillance for the treat-
ment of PDAC [57].

3.2. The pro-metastatic niche

Seeding and colonization by DCCs in a distant organ is the final
stage of the metastatic process. During cancer development, host
organs respond to inflammatory signals released in the setting of
cancer development by triggering formation of a pro-metastatic
niche environment. This niche acts as the “soil” for the seeding of
DCCs. Formation of a pro-metastatic niche in distant organs is guided
by specific paracrine signals which we discuss below. These mecha-
nisms, which may differ between organs, ultimately converge on cen-
tral themes that define fundamental features of the niche. For
example, the pro-metastatic niche is characterized by an increased
presence of myeloid cells, including macrophages as well as neutro-
phils, and is associated with increased deposition of matrix proteins
(e.g. fibronectin and type I collagen), which together establish the
“soil” [67]. The nature of the niche must then support DCC evasion of
the immune system; provide the necessary factors to enable DCC
seeding; and trigger DCC colonization and outgrowth. Thus, elements
of the pro-metastatic niche that forms in distant organs may regulate
the efficiency of the metastatic process.

The liver is the most common distant organ site of metastasis in
PDAC. This propensity for DCCs to seed the liver cannot merely be
explained by direct vascular drainage from the pancreas via the por-
tal vein. To this end, elegant mouse and human studies support the
concept that PDAC development triggers formation of a pro-meta-
static niche in the liver. Hepatocytes, tissue inhibitor matrix metallo-
proteinase 1 (TIMP1), and tumor-derived exosomes have each been
identified as proponents of niche formation [68�70]. As a result, it is
likely that several paracrine mechanisms may trigger the develop-
ment of a pro-metastatic niche and as result, offer PDAC with multi-
ple strategies for increasing its likelihood for successful metastasis.

During PDAC development, non-malignant stromal cells produce
IL-6 which is released into the portal vein and triggers hepatocyte
activation [68]. Hepatocytes respond to IL-6 by activating the Stat3
signaling pathway and producing acute phase reactants, including
serum amyloid A (SAA) proteins, which then facilitate both the
release of myeloid chemoattractants (e.g. S100a8 and S100a9) to
recruit myeloid cells to the tumor and the deposition of extracellular
matrix proteins (e.g. fibronectin). In patients with PDAC, this signal-
ing pathway is activated in the liver and correlates with metastasis
and poor overall survival [68]. Disengaging any of the elements of the
IL-6/STAT3/SAA signaling pathway prevents formation of a pro-meta-
static niche in the liver in the setting of PDAC development. Interest-
ingly, this pathway is not responsible for formation of a pro-
metastatic niche environment in the lung, another common site of
PDAC metastasis [68]. This sobering finding implicates a role for
organ-specific programs that coordinate the pro-metastatic niche in
distinct tissues.

Alternative pathways may also trigger formation of a pro-meta-
static niche in the liver. For example, tumor-derived exosomes can
prepare the pro-metastatic niche of distant organs by fusing with res-
ident cells (e.g. lung fibroblasts and epithelial cells) and liver macro-
phages based on integrin expression patterns unique to the
exosomes [71]. Integrin subtypes expressed on tumor-derived exo-
somes also predict the preferred site of metastasis [71]. For example,
integrins a4b6 and a6b1 associate with lung metastasis and integrin
avb5 correlates with liver metastasis. In PDAC, tumor-derived exo-
somes expressing MIF instruct liver macrophages (Kupffer cells) to
release TGF-b to facilitate fibronectin production by hepatic stellate
cells [69]. Fibronectin deposits then support the recruitment of
inflammatory cells including bone marrow-derived macrophages
and neutrophils. In doing so, exosomes trigger formation of a pro-
metastatic niche in the liver. Notably, MIF levels were higher in exo-
somes collected from patients with PDAC who experienced disease
progression after diagnosis compared to patients with no evidence of
disease five years after diagnosis. Together, these data imply a role
for exosomes in directing the metastatic potential of PDAC.

TIMP1 also demonstrates the capacity to coordinate orchestration
of a pro-metastatic niche in the liver in a paracrine manner. TIMP1 is
produced by cancer cells and is a known activation marker of hepatic
stellate cells [70]. In genetic models of PDAC, hepatic stellate cells
respond to TIMP1 binding to its receptor, CD63, which signals
through PI3K and triggers release of cytokines (e.g. CXCL12) and
growth factors that modulate the hepatic microenvironment and
attract neutrophils. In doing so, TIMP-1 directs formation of a pro-
metastatic niche which becomes detectable during the PanIN stage of
cancer development but is significantly more pronounced with the
emergence of invasive carcinoma. In patients with PDAC, TIMP1 cor-
relates with a poor prognosis [72].

While the liver is the most common organ involved in PDAC,
cancer cells can also spread to lymph nodes, lung, and perito-
neum. In fact, although less common, metastasis has also been
detected to the bones, brain, and skin illustrating the remarkable
ability of DCCs in PDAC to adapt to a range of distant organ
microenvironments. The niche environment that forms in distinct
organs may be directed by organ-specific mechanisms. For exam-
ple, blockade of IL-6 signaling inhibits formation of a pro-meta-
static niche in the liver but is unable to prevent development of a
pro-metastatic niche in the lung [68]. However, similar to the
liver, the lung pro-metastatic niche is orchestrated by chemoat-
tractants (e.g. S100A8 and S100A9) which lure myeloid cells into
the lung parenchyma [73]. DCCs that become lodged within the
lung vasculature recruit inflammatory monocytes to support their
extravasation [45]. Cancer cells may also activate myeloid cells
via release of versican, an extracellular matrix proteoglycan,
which signals through Toll-like receptor 2 (TLR2) on macro-
phages, leading to TNF release which promotes lung metastasis
[74]. Cancer cells also secrete myeloid chemoattractants, includ-
ing CXCL1 and CCL2, which may contribute to orchestration of a
niche environment supportive of cancer cell seeding and out-
growth [39,47]. However, it is likely that metastatic organotrop-
ism is not only defined by a receptive niche within a distant
organ but also cancer cell predilection for that niche. For exam-
ple, epithelial plasticity defined by p120 catenin can toggle cancer
cell preference for the liver or lung [75]. Nonetheless, sustained
inflammation within distant organs appears central to defining
organ receptiveness to cancer cell metastasis.



Fig. 3. Approaches for intervening on the metastatic process. Shown is a schematic
depicting the formation of a pro-metastatic niche in a distant organ (the liver is dis-
played as an example). This process can be facilitated by tumor-derived factors which
initiate formation of the niche environment and in doing so, support seeding and colo-
nization by disseminated cancer cells. The metastatic process can be derailed in several
ways: Approach 1, prevent or reverse the niche formation in a distant organ; Approach
2, contain micro-metastases to prevent their outgrowth; and Approach 3, treat macro-
metastases.
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3.3. The fate of DCCs in the distant organ niche and their awakening

DCCs that successfully seed a distant organ must decide whether
to enter a state of dormancy or to attempt the process of colonization
and outgrowth. This decision is regulated by both cancer cell-intrinsic
and -extrinsic mechanisms. Whereas EMT supports invasion and
intravasation of DCCs into the bloodstream, mesenchymal-to-epithe-
lial transition (MET) promotes colonization by DCCs through stimu-
lating proliferation and the expression of adhesive junctions that
communicate with the surrounding niche [76]. In PDAC, DCCs that
are locked into a mesenchymal state are capable of reaching a distant
organ but fail to colonize [24]. From studies in genetic models of
PDAC, two major isoforms of the paired-related homeodomain tran-
scription factor 1 (Prrx1), Prxx1a and Prxx1b, have been implicated
in reciprocal regulation of EMT and MET [77]. In addition, in the
absence of a receptive niche in the liver, DCCs appear to initially enter
a state of cellular dormancy as defined by decreased cellular prolifer-
ation [68]. Together, micro-metastatic dormancy may constitute a
temporary barrier to metastatic colonization.

The cues that regulate cellular dormancy in PDAC remain ill-
defined. Findings from other cancer histologies suggest that dor-
mancy may be triggered in response to inhibitory signals originating
from the parenchyma of the metastatic organ but may also reflect a
lack of stimulatory signals that provoke their awakening. For exam-
ple, neovascularization can support reactivation of dormant cells
leading to metastatic outgrowth [78]. Further, chronic inflammation
may stimulate neutrophil recruitment and in doing so, awaken dor-
mant cancer cells by remodeling their surrounding extracellular
matrix [5]. In contrast, immunosurveillance may lull DCCs into a state
of cellular dormancy [66]. In a PDAC model of liver metastasis, age-
associated changes in liver inflammation were found to support DCC
colonization over cellular dormancy [79]. Together, these findings
indicate a complex set of cellular communications that converge to
inform the decision of a DCC to become dormant or to colonize.

Within a distant organ, metastatic colonization proceeds through
a series of defined steps in which cancer cells assume an epithelial
cell phenotype and begin to orchestrate a microenvironment that
facilitates their outgrowth [80]. This process involves recruitment of
haematopoietic (e.g. macrophages, neutrophils) and non-haemato-
poeitic (e.g. CAFs and endothelial cells) cells that support the forma-
tion of micro-metastases. Micro-metastases are rapidly infiltrated by
macrophages which are recruited from the bone marrow and precede
the accumulation of activated myofibroblasts [81]. Blockade of mono-
cyte or neutrophil recruitment to the liver not only prevents the for-
mation of a pro-metastatic niche but also impairs the outgrowth of
micrometastases [39,47,82]. Macrophages that are recruited to meta-
static foci in the liver secrete granulin to facilitate myofibroblast acti-
vation. In turn, myofibroblasts respond by releasing periostin which
triggers formation of a fibrotic microenvironment that supports met-
astatic colonization [81]. In the absence of granulin production by
macrophages, micro-metastases are coaxed into a state of cellular
dormancy. Thus, the immune microenvironment that is recruited to
DCCs may be fundamental to defining their ultimate cellular fate.

4. Outlook and perspective

Metastasis is a hallmark of cancer, not just pancreatic cancer. For
the past 20 years, outcomes for patients with metastasis have
remained relatively stable [83]. Notably, despite significant advance-
ments in our understanding of metastasis, it is remarkable that there
are no FDA approved drugs designed to specifically undermine the
metastatic process. This failure to translate basic science to the clinic
reflects multiple reasons including the diversity of ways that cancer
cells may seek to metastasize, the complexity of the metastatic pro-
cess, and challenges in demonstrating the success of a therapeutic
that specifically derails metastasis. Certainly, targeting cancer cell-
intrinsic features that define metastastic ability is daunting. This is
due to the inherent genomic instability associated with cancer cells,
and thus, their capacity to readily evolve resistance mechanisms to
therapeutics targeting cell-intrinsic mechanisms of metastasis. How-
ever, manipulating cancer cell-extrinsic features, such as the pro-
metastatic niche and the immune system, which are genomically sta-
ble elements of the metastatic process, introduces new therapeutic
opportunities. Indeed, the immune system is central to nearly every
step of metastasis.

The metastatic process is complicated and informed by many
cues, some of which may even be redundant. As such, multiple fac-
tors may affect or contribute to the success or failure of mestastasis
which lends to this complexity. In addition, metastatic outcomes may
be confounded by many often unmeasured variables, including the
microbiome, concomitant medications, lifestyle (i.e. stress, sleep,
exercise), co-morbidities, underlying infections, and genetics. How-
ever, it is possible that many or all of these variables converge on cen-
tral themes, such as distant organ biology and the immune system,
that ultimately govern the metastatic ability of cancer. As a result,
preventing metastasis may require a focus away from the cancer cell
and toward the host. This reasoning is consistent with the assertion
made by Sir William Osler that “The good physician treats the dis-
ease; the great physician treats the patient who has the disease.” To
this end, the advent of immunotherapy is based on leveraging the
capacity of the immune system to distinguish, with exquisite specific-
ity, self from non-self [84]. This approach represents a leap of faith
that strategies targeting factors extrinsic to neoplastic cells can inter-
vene on cancer progression. Similarly, therapeutic measures to dis-
rupt the formation of niche environments in common metastatic
sites pose a diversion away from the cancer cell and a focus on cancer
cell-extrinsic factors that are essential for metastasis.

The objective of understanding the metastatic process in cancer is
to inform biology that may guide the development of strategies to
prevent, contain, and treat metastasis (Fig. 3). However, the approach
to disrupting the metastatic process will also likely depend on the
stage of disease. For example, the goal for patients with localized dis-
ease is to prevent metastasis and to contain any subclinical micro-
metastases. In contrast, for patients with metastatic disease, the pri-
ority will be to contain and treat micro- and macro-metastatic lesions
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while inhibiting new metastases. As such, therapeutics to intervene
on the metastatic process may be studied in distinct ways. For PDAC
that is surgically-resectable, this might mean incorporating a short
course of neoadjuvant immunotherapy prior to surgical resection, as
has been done recently in lung cancer and melanoma [85,86], with
the goal to contain the metastatic ability of residual cancer cells in
the post-operative setting. Indeed, mouse models support a role for
neoadjuvant immunotherapy for improved outcomes [87]. Reversing
and preventing re-formation of the pro-metastatic niche in the post-
operative setting may then reduce the likelihood of metastatic recur-
rence by eliminating the triggers that regulate the awakening of sub-
clinical micro-metastatic lesions. For patients with locally-advanced
and even metastatic disease, maintenance strategies designed to
reverse pro-metastatic biology in distant organs and strategies that
trigger productive T cell immunosurveillance may be needed to con-
tain micro- and macro-metastases while inhibiting the seeding and
colonization by a continuous pool of cancer cells attempting to
undergo metastasis.

Distant recurrence after surgical resection of PDAC is common.
However, metastasis is not universal and for some patients, long-
term survival without recurrence can be seen. Moreover, the pattern
of organ involvement (e.g. liver, lung, peritoneal) and the extent of
metastatic spread (i.e. few or many lesions) can vary significantly
between patients. We propose that assigning a relative risk for
metastasis, a so-called metastasis score, based on disease and host
characteristics might help to stratify patients who would most bene-
fit from therapeutic strategies that target the metastatic cascade
(Fig. 4). Similar scoring approaches, based on Kras mutation, tumor
Fig. 4. Graphical representation of determinants of the metastatic process. Metastasis is d
establish the metastatic ability of pancreatic cancer cells. These determinants include cance
dence of cancer cell dissemination based on peripheral blood detection of circulating tumo
detection of macro-metastatic lesions by computed tomography, magnetic resonance, and p
create a proposed metastasis score, or likelihood of distant spread of disease. Abbreviations
circulating tumor material; IL, interleukin; MR, magnetic resonance; NLR, neutrophil-to-lymp
inhibitor of metalloproteinase 1; TME, tumor microenvironment.
markers, and disease burden, have been proposed as a means to pre-
dict survival outcomes in patients with liver metastasis [88,89]. How-
ever, we envision the metastasis score as a way to also potentially
inform each of the stages of the metastatic process so that it might
even be used as a means for monitoring the success of interventions
designed to resolve pro-metastatic elements and enforce anti-meta-
static mechanisms. For example, a liver niche microenvironment sup-
portive of cancer metastasis in PDAC is associated with increased
production of SAA proteins [68]. Notably, SAA can be readily detected
in the peripheral blood and therefore, might be a useful measure of
the likelihood of a pro-metastatic niche in the liver.

The time is ripe for translating strategies that specifically seek to
target the metastatic cascade in PDAC. Metastasis portends a poor
prognosis and thus, intervening on the metastatic cascade in patients
with localized disease holds promise given the heightened risk for
metastatic relapse in this patient population. Continued investiga-
tions into the determinants governing the formation and mainte-
nance of pro-metastatic niche environments in distant organs will be
integral to the design of novel therapeutic interventions. Moreover,
validation of markers informative of the steps of the metastatic cas-
cade may aid in the evaluation of these treatments. Certainly, dis-
rupting the metastatic process in PDAC would dramatically impact
patient outcomes.

4.1. Outstanding questions

In the realm of pancreatic cancer metastasis, many mechanisms
still remain elusive. Some particularly sparse areas of the collective
etermined by multiple cancer cell-intrinsic and -extrinsic properties that converge to
r cell genetics, properties of the tumor microenvironment, systemic inflammation, evi-
r material, the presence of pro-metastatic niche environments in distant organs, and
ositron emission tomography imaging. Together, these surrogate markers combine to
: CRP, c-reactive protein; CT, computed tomography; CTC, circulating tumor cell; CTM,
hocyte ratio; PET, positron emission tomography; SAA, serum amyloid A; TIMP1, tissue
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literature include mechanisms by which PDAC cells intravasate into
blood vessels and traffic to distant organs. Moreover, the mechanisms
that promote dormant tumor cell awakening remain ill-defined. In
addition, the potential to shift tumors from an active to dormant state
is unclear but could have dramatic therapeutic implications for
patients. Sophisticated mouse models have provided new insights
into the metastatic process in pancreatic cancer. Translation of this
biology to the clinic, though, has lagged behind which reflects, at
least in part, the complexity of human pancreatic cancer. However,
with the goal of improving patient outcomes, ongoing questions nat-
urally lean toward how past and future research findings will trans-
late into rational therapeutic strategies. In many cases, clinical grade
drugs exist that could be leveraged against individual steps within
the metastatic cascade. To this end, future work in preclinical models
focusing on the metastatic process could serve as a guide for clinical
trial design.
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