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A B S T R A C T

A fully automatic method for detection and quantification of ischemic lesions in diffusion-weighted MR
images of neonatal hypoxic ischemic encephalopathy (HIE) is presented. Ischemic lesions are manually seg-
mented by two independent observers in 1.5 T data from 20 subjects and an automatic algorithm using a
random forest classifier is developed and trained on the annotations of observer 1. The algorithm obtains
a median sensitivity and specificity of 0.72 and 0.99 respectively. F1-scores are calculated per subject for
algorithm performance (median = 0.52) and observer 2 performance (median = 0.56). A paired t-test on
the F1-scores shows no statistical difference between the algorithm and observer 2 performances. The
method is applied to a larger dataset including 54 additional subjects scanned at both 1.5 T and 3.0 T. The
algorithm findings are shown to correspond well with the injury pattern noted by clinicians in both 1.5 T
and 3.0 T data and to have a strong relationship with outcome. The results of the automatic method are
condensed to a single score for each subject which has significant correlation with an MR score assigned by
experienced clinicians (p < 0.0001). This work represents a quantitative method of evaluating diffusion-
weighted MR images in neonatal HIE and a first step in the development of an automatic system for more
in-depth analysis and prognostication.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is a condition associated
with brain injury which, in newborn infants, is typically caused by
perinatal asphyxia. The rates of mortality and morbidity in neona-
tal HIE remain high, even in the era of therapeutic hypothermia, the
only treatment available to date. In neonates receiving therapeu-
tic hypothermia, rates of death are reported between 10 and 40%,
while amongsurvivors 20–30 % have moderate to severe disabilities
(Azzopardi et al., 2014; Jacobs et al., 2008; Shankaran et al., 2005;
Simbruner et al., 2010). Assessment and understanding of the type
and severity of cerebral injury that has occurred is extremely impor-
tant in the context of clinical decision making and prognostication
(Bonifacio et al., 2015).

* Corresponding author.
E-mail address: keelin.murphy@ucc.ie (K. Murphy).

One of the principal ways to assess cerebral injury following sus-
pected neonatal HIE is through magnetic resonance (MR) imaging,
which has been shown to be one of the best predictors of outcome
(Cheong et al., 2012; Weeke et al., 2016). While conventional T1 and
T2 sequences may show signal changes in affected areas, it is well
known that diffusion-weighted (DW) imaging should be acquired for
early visualisation of hypoxic ischemic injury, optimally between 3
and 7 days after the hypoxic insult occurs (Alderliesten et al., 2011;
Bednarek et al., 2012; Cowan et al., 1994; Johnson et al., 1999;
Rutherford et al., 2006).

DW images depict water diffusion in the brain tissue, which, in
neonatal HIE, is known to be reduced in ischemic regions in the
first week after the injury occurs (Bednarek et al., 2012; Cowan et
al., 1994). Since DW images may be affected by T2 relaxation and
other factors which simulate restricted diffusion, it is recommended
to acquire the apparent diffusion coefficient (ADC) map, which is
essentially a voxel-by-voxel ratio between a diffusion-weighted and
a non-diffusion-weighted image (Le Bihan et al., 1986). The ADC map
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eliminates any T2 shine-through effect and there is a large body of
literature to suggest that this is optimal way to visualise ischemic
injury in neonates with suspected HIE (Alderliesten et al., 2011;
Barkovich et al., 2006; Cheong et al., 2012; de Vries et al., 2011; Heinz
and Provenzale, 2009; Liauw et al., 2009; Rutherford et al., 2010;
Vermeulen et al., 2008; Wolf et al., 2001).

The ADC value is a property of the tissue being imaged and
expected normative ranges for particular cerebral regions have been
defined for neonatal images (Bartha et al., 2007; Coats et al., 2009;
Neil et al., 1998). Throughout the first week after the hypoxic insult,
ischemic lesions are expected to have restricted diffusion, leading
to lower than normal ADC values (McKinstry et al., 2002). Current
clinical practice for analysing the ADC map is a visual assessment,
where the clinician scrolls through the slices of the image looking for
regions where intensity is visibly lower than expected, and makes
a non-quantitative report based on an impression of the volume,
severity and pattern of the injuries. To assist in the assessment, the
clinician may use an on-screen tool to identify a 2D region of interest
(e.g. an ellipse) and obtain a measurement (e.g. average ADC value)
(Wolf et al., 2001), however, this is not a requirement and since
it is manually laborious it is typically limited to a few small areas
of the scan. Some scoring systems have been suggested and used
in research studies (Barkovich et al., 1998; van Rooij et al., 2010),
however the scores are based on visual assessment rather than quan-
tifiable, precise, reproducible measurements. The aim of this work
is to develop an automated method to assess ADC maps in neona-
tal HIE, providing quantitative, objective analysis which will aid the
clinician in clinical decision-making and determination of prognosis.

In spite of the volumes of literature describing the visual interpre-
tation of neonatal MR images in HIE there has been relatively little
work to date on automating the image analysis tasks for effective and
consistent injury quantification. Ghosh et al. (2011) used a hierarchi-
cal region splitting (HRS) method to automatically detect ischemic
lesions on T2 images in an animal model of neonatal HIE, which
showed promising agreement with manual delineations. In 2014 the
authors compared the method with two others on a dataset includ-
ing T2 images of animal model hypoxic ischemic injury and DW MR
images from human neonatal subjects (n = 2) with arterial ischemic
stroke (AIS) (Ghosh et al., 2014). It was found that the HRS method
was most robust, while a method of symmetry-integrated region
growing performed slightly better in comparison to the gold stan-
dard. Isgum et al. have also reported a method of injury detection and
quantification in neonatal AIS using supervised voxel classification
(Išgum et al., 2011). However, neonatal AIS presents very differently
to hypoxia ischemia in an MR examination, with much larger and
more focal injuries and an animal model of hypoxia may not pro-
vide a reliable representation of ischemia in human neonatal HIE.
In this work we present a method to segment ischemic lesions in
DW MR of neonatal HIE subjects. Lesions have been manually delin-
eated by two expert observers, allowing for benchmarking of our
reference-standard. The method is trained on manual annotations
from 20 subjects and applied to a database of 74 subjects in total.
The results of the algorithm are compared with manual annotations
as well as with injury patterns and MRI scores provided by clinicians
and neurodevelopmental outcomes.

2. Data

2.1. Cohort

Data from a total of 74 infants, admitted to the neonatal inten-
sive care unit of the Wilhelmina Children’s Hospital with suspected
HIE, is used in this work. All MRI data was acquired at Wilhelmina
Children’s Hospital, University Medical Center Utrecht between
2005 and 2012. Infants with suspected genetic conditions or con-
genital anomalies have been excluded. Outcome (either death or

developmental assessment results at 2 years of age (see Section 2.4))
is known for all subjects. This is a retrospective study using anony-
mous data analysis which was approved by the local ethics commit-
tee. The requirement to obtain informed consent for this study was
waived.

2.2. Scanning

Scanning took place between day 2 and day 7 after birth (median
was day 4). All scans were acquired in the axial direction on 1.5
T or 3 T MR scanners (whole-body Achieva system, Philips Medi-
cal Systems, Best, Netherlands) using an 8 channel head coil. For
each subject the non-diffusion-weighted image was acquired with
the attenuation factor, b, set at b = 0 (Le Bihan et al., 1986). The
diffusion-weighted image was acquired in 3 perpendicular direc-
tions with b = 1000 (1.5 T) or b = 800 (3.0 T). The ADC map
was calculated using the logarithm of the ratio of these two images
as described in (Le Bihan et al., 1986). Purpose-built software was
used for this calculation to avoid potential variation in software from
different scanners. The main properties of the data are provided
in Table 1 where the data is divided into 3 datasets for clarity, as
follows: A) Subjects for which ischemic lesions have been fully anno-
tated by 2 independent observers. (1.5 T data), B) Independent test
set without annotations (1.5 T data), C) Independent test set without
annotations (3 T data).

2.3. MRI scores

A scoring system originally developed by Barkovich et al. (1998)
to assess perinatal asphyxia by means of MR imaging was modified
to include DW imaging as described in van Rooij et al. (2010). This
scoring system is applied for each subject resulting in a ‘modified
Barkovich’ MRI score (van Rooij et al., 2010), which ranges in value
from 0 to 11 depending on the severity of visible injury. In determining
this score the clinician has access to conventional MR images (T1- and
T2-weighted) as well as the diffusion-weighted image and ADC map.

2.4. Outcome data

Of the 74 infants included, 24 died in the neonatal period follow-
ing withdrawal of intensive care. The decision to redirect care was
based on neurological examination, EEG/aEEG, MRI and ultrasound
findings. The remaining 50 had neurodevelopmental assessments at
2 years of age. The Bayley Scale of infant and toddler development
(third edition, BSID-III) (Bayley, 2006) was used for assessment in 44
cases and the remaining 6 were assessed using the Griffiths Men-
tal Development Scales (GMDS) (Griffiths, 1984). The developmental
assessments were carried out by specialists who were blinded to the
MR findings. The results were processed to provide an outcome cat-
egory for each subject as follows: For those that received the Bayley
test the composite scores for both motor and cognition were consid-
ered and the minimum of these was used as the outcome score (in
practice we found a very high degree of correlation between motor
and cognition scores (Pearson’s r = 0.98)). For those that received
the GMDS the developmental quotient (DQ) was used. In both cases,
a score of < 85 is considered to be abnormal, while a score of 100
matches the population average. We define 3 categories of surviving
infants, abnormal (score < 85), normal [below mean] (85 ≤ score <
100) and normal [above mean] (score ≥ 100).

3. Methods

3.1. Data annotation

Using proprietary software, observers were asked to identify and
mark every pixel on the ADC map which they considered to represent
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Table 1
Properties of the three datasets included.

Set Number subjects Magnetic field Manual annotations Higher b-factor (bHigh) Voxel sizes (mm) Acquisition time period

A 20 1.5 T Yes 1000 0.7 × 0.7 × 4.0 2005–2011
B 21 1.5 T No 1000 0.7 × 0.7 × 4.0 2008–2012
C 33 3.0 T No 800 0.9 × 0.9 × 4.0 2008–2012
All 74 20 2005–2012

ischemia (cytotoxic edema). The developed software allows the user
to annotate individual pixels with a mouse-click and to draw pixel-
based boundaries. Closed boundary regions could be filled with a
single mouse-click. Annotations were carried out on a slice-by-slice
basis, although observers could scroll freely to surrounding slices
to assist their decision making. Observers were free to view the
scan in coronal and sagittal directions, but because of the 4 mm
slice thickness this was typically not found to be very useful. All
annotations were made on the ADC map, however the observers
also had access to the original diffusion-weighted and non-diffusion-
weighted images as required, as well as to the conventional MR
sequences. Intensity values for pixels under the mouse cursor were
displayed at the bottom of the screen, allowing the observers to esti-
mate region intensities by moving the cursor around. Typically the
observers examined and marked the ADC map using the ADC inten-
sities to help confirm suspicion of ischemia. The diffusion-weighted
image was also consulted if there was any further doubt. Each
observer was free to adjust the brightness and contrast (window
level and width) as they wished both before and during analysis.

Annotations were made by SN and NvdA, clinicians with more
than 2 and 8 years experience respectively in evaluating neonatal
MRI. The observers worked independently and blind to subject out-
come, each annotating all of the 20 ADC maps from dataset A. The
markings of SN were all checked and corrected where necessary
by MB, a neonatologist with over 10 years experience in evaluating
neonatal MRI.

3.2. Automatic ischemia detection

Automatic detection of ischemia was carried out using features of
the ADC map and the diffusion-weighted image in a system of super-
vised learning using random forest classification (Breiman, 2001).
The first step in the method was to create a brain mask, eliminating
background and non-brain structures. This was done using FSL’s BET
tool on the non-diffusion-weighted image (Smith, 2002). The default
parameters of the tool were used in all cases, leading to very accurate
brain segmentations in most subjects and only minor, partial over-
segmentations in a small number. No manual correction was carried
out. All subsequent processing excludes voxels outside the brain-
mask and is carried out on 2D slices because of the slice-thickness of
4 mm. Each slice is first divided into superpixels (regions) which are
relatively homogeneous in intensity. Features of each superpixel are
then calculated and the manual annotations of observer 1 on dataset
A are used as training data to build a random forest classifier (leave-
one-subject-out training and testing is employed within dataset A).
Classification using the random forest then yields a probability, for
each superpixel, of it representing ischemia. The method is described
in more detail in the remainder of this section.

3.2.1. Superpixel detection
The first step in the detection of intensity-based homogeneous

superpixels was to process the ADC image such that voxels above
threshold tupper would be set to that value, and similarly for regions
below threshold tlower (clamping voxel values). This was done based
on the fact that the ADC value is a physical property of the tissue
type represented, and research in normative neonatal DW imaging
(Coats et al., 2009; Neil et al., 1998; Toft et al., 1996) as well as

a wealth of experience in imaging neonates with ischemic injuries
(Alderliesten et al., 2011; Barkovich et al., 1998; Rutherford et al.,
2010; Vermeulen et al., 2008; Wolf et al., 2001) provides an expec-
tation of the ADC ranges within which ischemic tissue may fall. We
wished to bundle regions which clearly cannot represent ischemia
together rather than dividing them unnecessarily into homogeneous
superpixels which will require further individual processing. We
set tupper at 1.5 × 10−3 mm2/s (which typically represents healthy
white matter or CSF) and tlower at 0.2 × 10−3 mm2/s (rarely occur-
ring and typically representative of small artefacts). Fig. 1 (parts 1–2)
illustrates how this affects image appearance.

Each slice was then processed as follows: The sum of the squared
image gradients in the in-slice directions (X and Y) was calculated,
using a Gaussian kernel with s = 0.5 mm. The lowest 10% of non-
zero values in the gradient image were zeroed and a watershed
transform (Meyer, 1994) was applied to determine the final super-
pixel boundaries. Fig. 1 (parts 3–5) shows an example of this process.
All bounded regions are considered as superpixels, including those
whose original ADC values fall outside the clamping thresholds.

This watershed-based method works well for our application,
where the requirement for homogeneity of intensity values within
the superpixel is foremost, while the size and shape of the superpixel
is irrelevant. Experiments with previously developed methods to
define superpixels, such as Achanta et al. (2012) and Levinshtein et al.
(2009), found that the aim to retain consistency of size and shape
of the superpixels interfered with our requirement to place bound-
aries at image gradients. Tuning parameters to strongly prioritise this
requirement obtained erratic and unsuitable results.

3.2.2. Feature calculation
For each detected superpixel, a total of 9 features were calculated,

describing the grey-value of the superpixel in the ADC map and the
diffusion-weighted image as well as the location of the superpixel
within the brain. Location features are important since ischemia is
most common in certain regions such as the basal ganglia/thalamus
and white matter, while the healthy cerebellum and brainstem, for
example, often contain grey-values which would represent ischemia
in other tissues.

While ADC values are a property of the underlying tissue type,
and have set ranges within which they may be expected to fall,
this is not true of the original diffusion-weighted and non-diffusion-
weighted scans, which can have extreme variation in the value
ranges depending on the scanner and settings applied. This was
an important consideration when developing a feature to represent
image values in the diffusion-weighted image, since it was required
that the feature values would be consistent across all scans. For each
diffusion-weighted image we therefore obtained a reference value,
dref, which corresponded to regions of ‘high diffusion’ in that image.
This was done by obtaining the average value of all voxels in the
diffusion-weighted image, where the corresponding ADC value was
in the range 1.5 to 3.0×10−3 mm2/s (healthy white matter and CSF).
The value of each voxel in the diffusion-weighted image was then
modified by dividing it by dref to obtain a value dmod, illustrating the
level of diffusion at that voxel location, relative to the ‘high diffusion’
areas.
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Fig. 1. Detecting boundaries of homogeneous superpixels. From left to right: 1) A slice from the ADC map. 2) The same slice shown after clamping pixel values to a fixed range.
Contrast and brightness settings are unchanged. 3)The in-slice gradient image (from clamped ADC image). 4) Pixels shown in red are below the gradient threshold to be zeroed.
5) Result of the watershed transform.

The full list of nine features calculated for each superpixel is
provided as follows:

1. Superpixel volume. The largest components tend to be those
regions which were excluded from further division based on
their high ADC values. The volume further identifies them as
unlikely ischemia candidates.

2. Average ADC value within the superpixel. The ADC value is the
feature providing most weight in typical clinical analysis.

3. Average blurred ADC value within the superpixel. The average
of the ADC values within the superpixel when the slice val-
ues are blurred using a Gaussian kernel with s = 1.0 mm.
This gives information about ADC in regions surrounding the
superpixel.

4. Average dmod value within the superpixel. This provides infor-
mation about the diffusion level according to the diffusion-
weighted image. Regions of true ischemia should show
restricted diffusion in both ADC and diffusion-weighted
images independently.

5. Average blurred dmod value within the superpixel. The average
when the slice of dmod values is blurred using a Gaussian kernel
with s = 1.0 mm

6. Distance to brain mask edge. This helps to exclude regions
around the cortex which can appear naturally darker (like
ischemia) in ADC.

7. The signed distance (in mm) in the X (sagittal) direction
between the superpixel centre of mass and the brain centre of
mass.

8. The signed distance (in mm) in the Y (coronal) direction
between the superpixel centre of mass and the brain centre of
mass.

9. The signed distance (in mm) in the Z (axial) direction between
the superpixel centre of mass and the brain centre of mass.

3.2.3. Random forest classification
A random forest classifier (Breiman, 2001) is a supervised clas-

sifier consisting of a number, ntrees, of binary decision trees. Each
decision tree is built using randomly drawn training samples from
the specified training set. The classification probabilities from all
trees are combined to give the final random forest classification.
Each sample, in this work, was a single superpixel (as described in
Section 3.2.1), which was labelled as class 0 (healthy) if more than
90% of its pixels had been labelled healthy in the training data and
class 1 (ischemia) if more than 50% of its pixels had been labelled
as ischemia. (The threshold was set lower for class 1 in order to
increase the number of ischemic samples, which are typically much
fewer in number.) Superpixels with between 10 and 50% annotated
ischemic were not included as training samples since their true clas-
sification was uncertain. Superpixel boundaries were excluded from
the classification process. The classifiers were built using 100 trees

with entropy as the splitting criterion, a maximum tree depth of
15 and bootstrapped samples. The average error when classifying
out-of-bag samples was used to decide the number of trees and the
maximum tree depth. Analysis of this error measure over 7 different
subjects, randomly selected from dataset A, showed that it declined
rapidly with the number of trees up to approximately 20–30 trees
and levelled out thereafter. We settled on 100 to allow for any vari-
ation in unseen datasets, and since it incurs no penalty other than
extra processing time. Tree-depth appeared to be optimal at around
15, with some minor variations between subjects. The classification
process yielded a probabilistic output for each superpixel, indicat-
ing the chance of it representing ischemia. This final probability for
each superpixel was obtained as the mean of all probability estimates
across trees.

4. Experiments and results

The random forest classifier was trained using the annotations of
observer 1 on the twenty subjects in dataset A. The annotations of
observer 2 were retained for interobserver comparisons (the term
‘interobserver’ is used in this work to refer to the difference between
our two specific observers and does not imply any more general
meaning). For classification in dataset A (where training labels were
defined), a system of leave-one-subject-out was employed and each
subject was classified using training data from the other 19 sub-
jects. Datasets B and C were classified using all training data from
dataset A.

The output probabilities of ischemia for each superpixel are writ-
ten to a probabilistic image Iprob. To obtain a binary segmentation Iprob

is first thresholded with a specified threshold tprob. Next, a morpho-
logical closing (square kernel, half-size = 1 pixel) is applied on each
slice to close small gaps between remaining superpixels. This fills in
superpixel boundaries, which have hitherto been ignored.

Where manual annotations are available (dataset A) the resulting
binary image is then compared voxel-wise with the annotations of
observer 1 to determine agreement in terms of sensitivity and speci-
ficity. Section 4.1 describes the results from these experiments in
more detail, as well as the sensitivity and specificity of observer 2.

For the independent test sets (datasets B and C), and including
dataset A as well, the algorithm output is validated by comparison
with clinical information in the form of the modified Barkovich score
for the MR data, the clinician’s opinion of the injury pattern and the
outcome of the subject. For this purpose the algorithm output is con-
densed into a heatmap for visualisation and a single system score
which will be described in Section 4.2

4.1. Algorithm versus annotations

Binary segmentation results are obtained from the algorithm
probabilistic output using different thresholds tprob and used to cre-
ate ROC curves as shown in Fig. 2. Actual volumes of false-positives
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Fig. 2. Performance of the algorithm compared with observer 1 annotations on dataset A (20 subjects). Inset: false-positive volumes in mm3.

(healthy tissue identified as ischemia) in mm3 are shown per-subject
as an inset in Fig. 2. It should be noted that specificity (the percent-
age of healthy tissue detected correctly) is typically high since the
volume of healthy tissue is (relatively) large in most cases, compared
to the volume of ischemia. The number of false-positives identified
by the algorithm may be small in the context of this large healthy
region, but still be large in the context of what might be considered
acceptable. An ‘acceptable’ level of false-positive detection is difficult
to define, as it is a subjective matter, but this point should be taken
into account when interpreting the ROC curves presented.

Fig. 2 also shows the sensitivity and specificity values assigned
to observer 2, when compared with observer 1 (triangles) and the
sensitivity and specificity values of the algorithm at a fixed thresh-
old tprob = 0.1 (black dots). This threshold typically results in binary
segmentations which have sensitivity and specificity values in a sim-
ilar range to those of observer 2, and which appear visually correct.

We do not suggest that there is an optimal value for tprob across all
subjects, nor even that binary thresholding is the best way to inter-
pret the algorithm results, but it is useful for comparison with the
binary markings of the observers. We refer to the algorithm result
thresholded at tprob = 0.1 as the ‘binary result’.

Considering algorithm performance on binary results, the spread
of sensitivity and specificity values are, at first glance, reasonably
similar to those obtained by observer 2, with slightly lower sensitiv-
ities, but also higher specificities. To compare performance directly
we calculate F1-scores (harmonic mean of sensitivity and precision)
for the algorithm binary result and for observer 2 in each case. The
median F1-score for the algorithm is 0.52 (range 0.22–0.83), while
for observer 2 the median is 0.56 (range 0.23–0.83).

The algorithm performed best on subject 14 (consistently high-
est curve above sensitivity of 0.5). The top row of Fig. 3 shows a
slice from the ADC map, along with the annotations from observers

Fig. 3. Upper row: A slice from subject 14, the subject where the algorithm performs best against observer 1. Lower row: A slice from subject 8, the subject where the algorithm
performs worst against observer 1. From left to right: 1) and 2) The ADC map seen with two different brightness and contrast settings. 3) The observer annotations (red = observer
1 only, yellow = observer 2 only, green = agreement). 4) The probabilistic outcome from the algorithm. 5) The final binary result from the algorithm at threshold tprob = 0.1.
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1 and 2 and the algorithm output. The algorithm obtains sensitiv-
ity and specificity of 0.92 and 0.99 respectively for the binary result.
Interobserver agreement is also good for this subject, with sensitiv-
ity = 0.90 and specificity = 0.99. By contrast, the lower row of Fig. 3
shows a slice from subject 8, which had one of the poorest perfor-
mances. This subject has the lowest curve in the more acceptable
specificity ranges and one of the poorest binary results with a sensi-
tivity of 0.78 and specificity of 0.89. Interobserver agreement is also
poor for this subject with sensitivity of 0.85 at a specificity of 0.89.
The two different settings of brightness and contrast shown for this
scan in Fig. 3 indicate a possible reason for the observer disagreement
on the white-matter injury. The ADC values marked by observer 2
in the occipital region were low, but may not have appeared sig-
nificant with window settings which easily captured the dominant
basal-ganglia/thalamus injury.

It is clear from the lower row of Fig. 3 that (in this particular
subject) the algorithm has better agreement with observer 2 than
observer 1. An analysis of the algorithm performance in isolation
from interobserver differences (on consensus regions) is provided in
the supplementary material.

4.2. Assessing algorithm on independent test sets

Datasets B and C are completely independent of the training set
and furthermore include 33 scans from a 3.0 T scanner. Based on
visual analysis the algorithm performs in a similar manner on both
these datasets as on dataset A, in spite of some differences (e.g.
reduced resolution and smoother gradients) in the 3 T data. To illus-
trate its performance in the absence of any manual annotations we
firstly condense the findings for each subject into a heatmap which
shows the proportion of tissue identified with specific probabilities
of ischemia and distances from the brain edge. These heatmaps are
shown in conjunction with clinical scores and noted injury patterns
as well as outcome at 2 years of age, to demonstrate the relationship
between the algorithm findings and the clinical data. Further details
on the heatmap construction are provided in Section 4.2.1.

Since clinical findings regarding the injury visible on MR have
been condensed into a single measure, the modified Barkovich score,
as described in Section 2.3, we further condense our algorithm find-
ings to one measure to determine whether there is a correlation with
the clinical score. This is described and illustrated in Section 4.2.2.

Dataset A is also included in all analysis detailed in this section.

4.2.1. Heatmaps
The heatmaps for each subject are created by traversing all voxels

within the brain mask and determining, for each one, the proba-
bility of ischemia p according to the algorithm, and the distance
d to the edge of the brain mask according to a 3D distance trans-
form. The probability p is converted to a probability category pc with
1 ≤ pc ≤ 10 by pc = �10p� while the distance d is similarly converted
to a category dc, 1 ≤ dc ≤ 10, by dc = �10d/maxd�, where maxd is
the maximum distance of any voxel to the edge of the brain mask.
A 10 × 10 matrix, M, is maintained, with element M(i,j) being incre-
mented when a voxel with pc = i and dc = j is encountered. When all
voxels are traversed, the matrix values are converted to percentages
of the grand sum of matrix entries, and visualised as a heatmap. Each
voxel of the heatmap therefore represents the proportion of brain
voxels detected with probability category pc and distance category
dc. In practice, this visualisation does not place sufficient empha-
sis on small regions which are detected with high probability of
being ischemia, because of the overwhelming majority of healthy
tissue voxels. Therefore, we employ a weighting system to empha-
size higher probabilities, whereby rather than simply incrementing
element M(i,j) by 1, for each voxel traversed, we increment it by
apc/10, where a is set empirically at 50. The value for a was chosen by
viewing the heatmaps alongside the determined probability values,

to make the heatmap as representative as possible of the algorithm
findings. This weighting is included purely to assist with visualisa-
tion in this condensed format and while the choice of weights is
empirical, we note (assuming weights increase with ischemia proba-
bilities) that weights cannot cause heat-maps to agree with clinically
identified injury patterns unless the underlying probabilistic image
is accurate.

Fig. 4 illustrates the heatmaps for all subjects. In each case the
X-axis denotes probability of ischemia while the Y-axis denotes
distance from the brain edge. Colours are limited to representing
regions from 0 to 1%, i.e. darkest red means 1% or more of the matrix
grand total is represented at this location. The leftmost column of
each heatmap is typically highly populated, since this represents the
(usually large) region of the brain with probability of ischemia < 0.1.
As an example of how to interpret the heatmaps, yellow/red towards
the top right suggests an injury towards the brain centre (basal
ganglia), while towards the bottom right suggests a more peripheral
(white-matter) injury.

The text on the upper part of each heatmap denotes the injury
pattern as per the clinician and the modified Barkovich score. Injury
patterns are as follows: NT (near-total), WM (white-matter), BGT
(basal-ganglia/thalamus), m (mild), s (severe), PH (parenchymal
haemorrhage), - - (no parenchymal injury). The text on the lower part
of the heatmap is the final algorithm score which will be described
in Section 4.2.2.

The borders of the heatmaps in Fig. 4 are colour coded to denote
the subject outcome (as described in Section 2.4).

Specific heatmaps are referred to, throughout the remainder of
this work, by their MRI strength, row and column number in Fig. 4,
e.g. 3T:R2:C4 will refer to the heatmap from the 3 T data in row
2, column 4 of Fig. 4b. In virtually all heatmaps in Fig. 4, the pat-
tern of injury represented by the heatmap distribution corresponds
well with the pattern described by the clinician, indicating that the
algorithm has detected ischemia in the correct locations. One of the
most visually striking results is the different patterns evident in the
subjects that died, compared with survivors. Most of the heatmaps
in those subjects show strong patterns of dark red towards the
right hand side. Examining the non-surviving subjects with minimal
heatmap activity (e.g. 1.5T:R7:C1), we see that there are still notably
high values in the upper right area of the heatmap, suggesting a
smaller, but significant focal basal-ganglia/thalamus injury.

In the surviving subjects, only 3 have a statistically abnormal
result in their neurodevelopmental assessment at 2 years. For 2 of
these subjects (1.5T:R1:C3 and 1.5T:R2:C3) a relatively severe injury
was detected by the algorithm with the same injury pattern as that
noted by the clinician. The third case (1.5T:R3:C3) was determined
to be a basal-ganglia/thalamus injury by the clinician, and although
the heatmap shows some ischemia towards the brain centre, the
algorithm does not appear to have detected a very severe injury in
this case.

The remainder of the subjects had normal neurodevelopmental
assessments at 2 years, and for the majority of those the heatmap
shows no evidence of significant injury. There is no particular dis-
tinction between the normal [below mean] group and the normal
[above mean] group. A number of subjects with normal outcome
which do show evidence of some injury (as well as other selected
subjects) are included in Fig. 5 which (together with the heatmaps)
illustrates the relationship between ADC, heatmaps, and injury pat-
terns. (Subject 1.5T:R7:C5 is excluded, in spite of the apparent injury
detection, since this is subject 14, already seen in the upper row of
Fig. 3).

4.2.2. Algorithm and MRI scoring
As described in Section 2.3, the scans for each subject were

assessed and provided with a (modified) Barkovich score by two
experienced clinicians (FG, LdeV). To verify that the algorithm is
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Fig. 4. Per-subject heat maps which illustrate the findings of the algorithm at a glance. For each subject X-axis shows probability of ischemia, Y-axis shows distance to brain edge.
Section 4.2.1 provides detailed information. The white text to the upper-left is the clinician note on injury pattern. The digits following this indicate the modified Barkovich score,
while the number on the lower left indicates the algorithm score (see Section 4.2.2). The outline colour implies the outcome of the subject: black: subject died, yellow: abnormal,
green: normal [below mean], magenta: normal [above mean]. (a) Heat maps for subjects scanned on 1.5 Tesla scanner (Datasets A and B). Subjects from Dataset A (training set)
are denoted with an asterisk in the top right corner. (b) Heat maps for subjects scanned on 3 Tesla scanner. (Dataset C).

assessing the scans correctly we next condense its results into a
single score per subject, to determine whether these correlate with
the clinical scores. For each subject, the 10 × 10 matrix, M, used
to create the heatmaps in Fig. 4 was used as the basis for deriv-
ing the score. A straightforward method to convert M to a single
score, S, is simply to sum the elements in columns 2–10. Sinit =
∑10

i=1
∑10

j=2 Mij. This gives the (weighted) proportion of the brain tis-
sue that has probability > 0.1 of being ischemia (see Section 4.2.1).
Scores derived in this way have excellent correlation with clinical
scores (Pearson’s r = 0.81), but it was noted that subjects with
smaller localized basal-ganglia/thalamus injuries obtained lower
scores by this method, compared with those assigned by clinicians.
We therefore applied a weighting system, multiplying values in

the upper half of the matrix (central region of the brain) by 10
before adding them to the summation. S =

∑5
i=1

∑10
j=2 10Mij +

∑10
i=6

∑10
j=2 Mij. The final score, in the range of 1–10 is given by

Sfinal =
10S

S +
∑10

i=1 Mi1

As with the weighting parameter, a, used in heatmap genera-
tion, this weighting factor is chosen empirically to better align the
condensed algorithm score with those from the Barkovich system
of scoring. This is done purely for illustration purposes, to indicate
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Fig. 5. Examples showing representative ADC slices for a number of subjects along with the probabilistic algorithm findings. All ADC maps have the same contrast and brightness
settings to enable comparisons. Probabilities are colour coded from 0 to 1 according to the colour-bar shown on the right. Border colours represent outcome as described in
Section 4.2.1. The upper text represents the subject position in the heatmaps of Fig. 4. The lower text provides the clinician note and modified Barkovich score, as well as the
algorithm final score (Section 4.2.2).

that the algorithm detects the same regions of ischemia as the clin-
ician. The final scores are shown as additional information on the
heatmaps of Fig. 4. In addition, Fig. 6 shows them plotted against
the modified Barkovich scores given by the clinician. For informa-
tion, the subject outcome is also provided by colour-coding in this
figure.

Pearson’s correlation coefficient, r, is calculated for the data
in Fig. 6 at r = 0.84, which implies a significant correlation (p <
0.0001).

5. Discussion

A system has been developed to automatically identify ischemia
on neonatal DW MR images. While previous work has attempted this
task in animal models (Ghosh et al., 2011) and in stroke injuries in
neonates (Ghosh et al., 2014; Išgum et al., 2011), this is the first time
that the more diffuse and subtle hypoxic ischemic injuries have been
automatically identified and quantified in newborn infants. As part
of this development, 20 ADC maps were fully manually annotated by
2 independent observers, to provide system training and validation.
This enables us to examine their interobserver agreement as well as
the system performance compared with observer annotations. Fur-
thermore, for the larger database with a total of 74 subjects, from
both 1.5 T and 3.0 T scanners, the system findings are condensed to
a heatmap format and shown with clinical MR scores, noted injury
patterns and developmental outcome at 2 years to verify the rele-
vance of the system output. In this section the major findings in each
of these areas will be discussed.

5.1. Interobserver agreement

To our knowledge, this is the first time that neonatal ischemic
lesions have been fully manually delineated on MR images. The

annotation of the lesions was time-consuming and far from straight-
forward. When annotating on a per-pixel basis, there were many
occasions on which it could be debated whether ischemia was
present, as evidenced by the relatively high levels of interobserver
disagreement in some subjects (Fig. 2). This issue was exacerbated
by the fact that we did not place any restrictions on brightness or
contrast settings, which can make a significant difference to the
appearance of the image (see e.g. Fig. 3). However, in the clinic,
readers typically choose their own preferred settings and it was
decided to follow this practice when annotating. There is no specified
protocol on how to conclusively identify ischemia, which typically
results in disagreement among experts when such discussion arises.
In order to represent our application in this context, and also to
provide a benchmark for algorithm performance, we did not attempt
to force observers into consensus decisions. In spite of the moderate
levels of interobserver agreement, we note that the observers almost
always agreed in a general sense on the areas affected, but differed
on the boundaries they chose (additional examples are shown in the
supplementary material). It appears, therefore, that in most cases
our observers formed the same overall impression of the injury,
with differing boundaries attributable to factors such as contrast and
brightness settings and variation of injury severity within a subject,
which can cause milder injury to appear less significant. Agree-
ment in qualitative reporting or scores based on visual impressions
may not, it seems, translate to strong agreement in a pixel-by-pixel
delineation of the injury.

We theorise that many of the regions of disagreement represent
partial ischemia, since in biological terms ischemia occurs at a
cellular level and therefore can occur to varying degrees within a
fixed volume (i.e. a voxel) of tissue containing very many cells. Con-
sideration of such ‘partially ischemic’ regions is likely to form part of
a qualitative report or severity score, but it is not obvious whether
they should be identified conclusively as ischemia in a binary annota-
tion. It has become clear, in this respect, that binary markings are not
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Fig. 6. Correlation of scores derived from the subject heat maps (see Section 4.2.2) with (modified) Barkovich scores assigned by a clinician. Subject outcome is shown by
colour/shape coding.

the ideal way to interpret these images and that probabilistic out-
puts, such as those provided by the algorithm may, in fact, be a more
natural way to quantify injury. In clinical practice it is unfeasible to
manually annotate scans with binary markings, much less with prob-
abilistic ones, which demonstrates an urgent need for an automatic
tool which can provide quantitative, consistent and reproducible
annotations.

5.2. Algorithm performance versus annotations

As described in Section 4.1 and illustrated in Fig. 2 the algorithm
binary results compare well with those of observer 2, showing a
similar range of sensitivities and specificities as well as F1-scores. A
paired t-test on the F1-scores shows that the differences between the
algorithm and observer 2 performances are not significant (p = 0.2),
indicating that with this dataset, there is no statistical distinction
between them.

The algorithm has its best performance on subject 14 (see Fig. 3,
upper row) where it can be seen that the visually dominant injury
is more typical of stroke than of hypoxia ischemia where injury pat-
terns tend to be more diffuse and subtle. The nature of this stroke
injury (large and focal with sharp edges) makes it very easy for both
the algorithm and observers to identify and agree upon. Although it
has not been tested, the algorithm performance on this subject sug-
gests that it would also work well on data from a neonatal stroke
cohort.

The worst algorithm performance coincided with large interob-
server differences (Fig. 3, lower row), illustrating the difficulty of
analysing performance accurately in the presence of such disagree-
ment. For this reason analysis of consensus regions only was also car-
ried out and the results are provided in the supplementary material.
This analysis demonstrates that algorithm performance is markedly
improved when only regions of observer consensus are evaluated.
It also illustrates a case where the algorithm detects white-matter
injury that was missed by both observers, demonstrating the value of
the type of exhaustive and quantitative analysis that the automated
system provides.

5.3. Algorithm performance on independent test sets

Datasets B and C consist of 54 subjects which are entirely inde-
pendent of the training data, and include both 1.5 T data as well as

3.0 T data. This enables us to perform independent testing on a large
dataset with scans from different imaging protocols. The ability to
perform well on both 1.5 T and 3 T data, with very different imaging
protocols, is significant, since many machine learning algorithms
perform poorly on data which does not originate from the same
source as the training set.

The heatmaps of Fig. 4 illustrate the algorithm performance,
and it is notable that the algorithm shows very similar results
and patterns on all data (1.5 T and 3.0 T), with the ischemia
detections corresponding well with noted clinical injury patterns and
outcome.

Fig. 5 shows representative slices from a varied group of subjects,
including some of those where the heatmap may not seem to corre-
spond precisely with the provided injury pattern or the outcome. In
subjects 1.5T:R4:C5 and 1.5T:R7:C3 the clinician has noted a white-
matter injury, while the heatmap shows the ischemia to be quite
central (towards the top right of the heatmap), which usually sug-
gests a detection in the basal-ganglia/thalamus region. In both these
cases the injury is predominantly to the corpus callosum (see Fig. 5)
which is relatively centrally located rather than peripheral, account-
ing for the heatmap pattern. This demonstrates a limitation of the
heatmap, in that the location information relates only to distance
from the brain edge.

Subject 3T:R5:C3 is noted to have a severe basal-ganglia/
thalamus injury, in spite of which the subject has a positive develop-
mental outcome. The heatmap looks dissimilar to heatmaps of those
subjects that died with similarly labelled injuries, however, and in
Fig. 5 it can be seen that the injury is much less focal and severe in
this subject (compared to e.g. 1.5T:R7:C1 or 3T:R2:C2 in the same
figure). This results in only moderate probabilities of ischemia, albeit
across a larger region, and a different pattern on the heatmap, sug-
gesting that the algorithm distinguishes well between injuries which
result in different outcomes.

Subject 1.5T:R3:C3 is of particular interest since the outcome at
2 years was abnormal, while the heatmap does not suggest a very
severe injury. The injury in this case was quite complex, with lesions
in the anterior thalami, cerebral peduncles and corpus callosum,
however the lesions are each relatively small and although the
algorithm detects them correctly, neither the heatmap nor the final
algorithm score reflects the fact that multiple different tissues were
affected in numerous different areas of the brain. This is further evi-
dence that the heatmap is lacking in location-specific information
which would provide additional prognostic power.
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In general the algorithm score (Section 4.2.2) correlates well with
the clinician score, as evidenced in Fig. 6. In terms of outcomes,
we can see that the scores of both clinician and algorithm provide
a reasonable distinction between those that died and those that
survived. Distinguishing between different normal outcomes is not
to be expected since healthy children develop at different rates with
many contributing factors. Unfortunately, since our data contains
only 3 subjects with abnormal development we are unable to make
any claim regarding the algorithm’s ability to predict this outcome
at present. Future work should endeavour to include data with a
broader spectrum of outcome categories.

5.4. Future work

The system described provides the first step in developing assis-
tive software to aid clinicians in the assessment and decision making
process in a complex but crucially important application. While we
have demonstrated here that binary algorithm detections are com-
parable to those of a human expert it should be noted that by
thresholding the probabilistic findings, valuable information regard-
ing varying injury severity is lost. The heatmaps and algorithm scores
make better use of the variable ischemia probabilities, weighting
strong probability categories more heavily. Although we have shown
that these correlate well with clinical information and outcome, they
were constructed to validate the algorithm findings only and we do
not envisage such calculations to be the end-goal of the method. In
fact, as discussed in Section 5.3, by reducing the per-voxel findings
of the algorithm in this way, valuable quantifiable spatial and prob-
abilistic information is lost, which we anticipate could be utilised in
a much more detailed prognostication system. We envisage a sys-
tem where the probability of ischemia for each voxel, along with
its location within the brain, is taken into account. While the dis-
tance from brain-edge provides a rough estimate of which tissues
have been affected, more precise location information is desirable
(as seen in Section 5.3), in order to estimate the injury severity
and predict prognosis. Application of an automatic tissue segmenta-
tion method (such as those described in Išgum et al., 2015) to the
data, in combination with image registration (T1/T2 to DW), would
define the tissue boundaries precisely. The white-matter might also
be divided into regions of importance in this application, such as the
corpus callosum. A supervised learning system is envisaged whereby
this detailed location information is combined with the probabil-
ity (severity) of ischemia at each voxel to learn, from existing data,
what outcome may be expected for the subject. Additional infor-
mation could be incorporated by specific analysis of the posterior
limb of the interior capsule (PLIC), which has been shown to be
important in prognostication (Martinez-Biarge et al., 2011; Ruther-
ford et al., 1998), and by consideration of the timing of the scan
when examining ADC values. Automatic analysis of other methods of
injury assessment, such as the electroencephalogram (EEG), which
measures brain function and has been shown to be independently
predictive of outcome (Weeke et al., 2016) could also be incorporated
in future systems to provide a comprehensive analysis of the injury
severity.

Since the described method has been shown to work well in the
detection of diffusion restriction in brain tissue it is also likely to
be applicable in other conditions which affect the neonatal brain in
a similar way, such as neonatal stroke (see Fig. 3, upper row) or
hypoglycemia (Burns et al., 2008). A method to obtain consistent,
quantitative results from neonatal DW images provides the poten-
tial to detect previously unknown relationships between particular
injury types/locations, clinical course and specific developmental
delays. This information is vital for prognostication and informed
clinical decision-making regarding critical issues such as redirec-
tion of care or suitability for neuroprotective or neuroregenerative
therapies.
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