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In subgingival plaque biofilms, Fusobacterium nucleatum is closely related to the
occurrence and development of periodontitis. Streptococcus gordonii, as an accessory
pathogen, can coaggregate with periodontal pathogens, facilitating the subgingival
colonization of periodontal pathogens. Studies have shown that F. nucleatum can
coaggregate with S. gordonii and colonize the subgingival plaque. However, most
studies have focused on monocultures or coinfection of species and the potential
impact of coaggregation between the two species on periodontal interactions to human
gingival epithelial cells (hGECs) remains poorly understood. The present study explored
the effect of coaggregation between F. nucleatum and S. gordonii on subgingival
synergistic virulence to hGECs. The results showed that coaggregation inhibited the
adhesion and invasion of F. nucleatum to hGECs compared with that in the F. nucleatum
monoculture and coinfection group. Coaggregation and coinfection with F. nucleatum
both enhanced S. gordonii adhesion to hGECs, but neither of the two groups affected S.
gordonii invasion to hGECs compared with S. gordoniimonoculture. The gene expression
levels of TLR2 and TLR4 in hGECs in the coaggregation group were higher than those in
the monoculture groups but lower than those in the coinfection group. Compared with
coinfection, the coaggregation inhibited apoptosis of hGECs and promoted the secretion
of the proinflammatory cytokines TNF-a and IL-6 by hGECs, showed a synergistic
inflammatory effect, while coaggregation inhibited the secretion of the anti-inflammatory
cytokine TGF-b1. Coaggregation enhanced the phosphorylation of p65, p38, and JNK
proteins and therefore activated the NF-kB and MAPK signaling pathways. Pretreatment
with a pathway antagonist/inhibitor decreased the phosphorylation levels of proteins and
the secretion of TNF-a and IL-6. In conclusion, coaggregation inhibited the adhesion and
invasion of F. nucleatum to hGECs. However, it enhanced the adhesion of S. gordonii to
hGECs. Compared with coinfection, coaggregation inhibited the apoptosis of hGECs. The
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coaggregation coordinately promoted the secretion of TNF-a and IL-6 by hGECs through
the TLR/NF-kB and TLR/MAPK signaling pathways while inhibiting the secretion of TGF-
b1, thus aggravating the inflammatory response of hGECs.
Keywords: coaggregation, Fusobacterium nucleatum, Streptococcus gordonii, synergistic virulence, human
gingival epithelial cells
INTRODUCTION

The oral microbiome is comprised of more than 700 prevalent
taxa at the species level (Dewhirst et al., 2010; Gao et al., 2018).
The physical and metabolic interactions between bacteria, as well
as bacteria and their hosts, promote the dynamic development of
microbial communities and form dental plaque biofilms.
Periodontitis is a common oral disease in which dental plaque
biofilms are the main pathogenic factor (Frencken et al., 2017;
Peres et al., 2019). In the process of dental plaque formation,
different types of bacterial species recognize and bind to each
other through coaggregation (Kolenbrander et al., 2010; Guo
et al., 2014). The gram-negative bacterium, Fusobacterium
nucleatum , is closely related to the occurrence and
development of periodontitis, which could coaggregate with
early and late colonizers (Kolenbrander et al., 2010; Okuda
et al., 2012; Park et al., 2017; Wu et al., 2021). Streptococcus
gordonii is commonly considered an early colonizer in the
formation of dental plaque biofilms (Jakubovics and
Kolenbrander, 2010; Nobbs et al., 2011; Jakubovics et al.,
2021). With accumulating evidence showing that S. gordonii
can coaggregate with periodontal pathogens, it has been newly
recognized as an accessory pathogen for facilitating the
subgingival colonization of periodontal pathogens (Daep et al.,
2011; Hendrickson et al., 2017; Kuboniwa et al., 2017; Brown
et al., 2018). Studies have shown that F. nucleatum can adhere to
S. gordonii by the outer membrane proteins RadD and CmpA,
which help F. nucleatum colonize the subgingival plaque (Kaplan
et al., 2009; Lima et al., 2017).

The first defense barrier of periodontal tissue against
microorganisms is gingival epithelial cells (GECs), which not
only form an attachment to the tooth surface, but also form a
physical and chemical barrier against infection (Kantrong et al.,
2019). GECs can bind to bacteria through special receptors on
the cell surface to release antimicrobial peptides such as human
b-defensins (hBDs), cytokines, or proteases to resist the invasion
of external risk factors and maintain epithelial microecological
balance (Handfield et al., 2008; Lee and Yilmaz, 2021). As an
opportunistic pathogen, F. nucleatum can not only adhere to and
invade GECs (Han et al., 2000; Gursoy et al., 2008; Stathopoulou
et al., 2010; Jung et al., 2017; Hung et al., 2018), but also promote
the invasion of the nonperiodontal pathogen Streptococcus
cristatus into GECs (Edwards et al., 2006). This suggests that
in the subgingival environment, F. nucleatum, which is located in
the same ecological locus as S. gordonii, may also influence the
adhesion or invasion of S. gordonii into GECs.

Studies have shown that comparedwith S. gordonii,Porphyromonas
gingivalis, and Aggregatibacter actinomycetemcomitans, F. nucleatum
gy | www.frontiersin.org 2
can effectively induce the inflammatory response ofGECs and trigger
high levels of interleukin (IL)-1b, IL-6, and IL-8, while S. gordonii
shows the lowest ability to induce inflammation (Stathopoulou et al.,
2010; Peyyala et al., 2012). Expression microarrays revealed that the
biological pathways in GECs significantly impacted by F. nucleatum
and S. gordonii included toll-like receptors (TLRs) and mitogen-
activated protein kinase (MAPK) signaling pathways (Hasegawa
et al., 2007). TLRs are innate immune pattern recognition receptors
(PRRs) that can identify the proteins, nucleic acids, lipids of
pathogenic microorganisms, and intermediate products and
metabolites synthesized in the reaction process, such as the
lipopolysaccharide (LPS) of gram-negative bacteria (Kantrong
et al., 2019) and the lipoteichoic acid (LTA) of the cell wall of
gram-positive bacteria (Saito et al., 2020). The downstream NF-kB
and MAPK signaling pathways could be activated through MyD88-
dependent pathways, inducing the expression of proinflammatory
cytokines (IL-1b, IL-6, IL-8, tumor necrosis factor [TNF]-a) and
anti-inflammatory cytokines (IL-10, transforming growth factor
[TGF]-b1), which play an important role in inflammation,
immune regulation, cell survival, and proliferation (Tartey and
Takeuchi, 2017).

Previous studies explored the inflammatory effect of bacteria
on GECs in monoculture or coinfection states. Coinfection is
only a physical mixture of bacteria that cannot truly reflect the
biological functions of bacteria in the flora. Interspecies physical
attachment initiates signal transduction cascades that trigger
important physical changes in partner species, which could not
be observed by monospecies or coinfected species experiments.
There is now strong evidence that cell-cell interactions could lead
to phenotypic adaptations that affect physiological and
pathological functions, such as adhesion, cooperation in
substrate utilization, environmental adaptation, and virulence
(Jakubovics et al., 2008a; Jakubovics et al., 2008b; Ramsey et al.,
2011; Meuric et al., 2013). In recent years, RNA-Seq has been
gradually applied to the analysis of transcriptional regulation
stimulated by interactions between bacteria. The transcriptional
responses of S. gordonii and F. nucleatum subsp. nucleatum to
coaggregation had been reported (Mutha et al., 2018). Among
the five subspecies of F. nucleatum, subsp. nucleatum and
polymorphum are both associated with apical periodontitis and
periodontitis (Han, 2015). But F. nucleatum subsp. polymorphum
showed the greatest ability to increase phagocytic capacity of
neutrophils and to block superoxide generation (Kurgan et al.,
2017). Our previous study, for the first time, reported that
coaggregation between F. nucleatum subsp. polymorphum, and
S. gordonii altered bacterial transcriptional profiling and
attenuated the immune responses of macrophages (Liu et al.,
2021), which may provide some insights into the present study.
April 2022 | Volume 12 | Article 879423
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In a subgingival plaque, F. nucleatum and S. gordonii coexist
in a limited ecological site through coaggregation. However, it is
still unclear how coaggregation between F. nucleatum and S.
gordonii influences the subgingival synergistic virulence to GECs.
This study built coaggregation model of F. nucleatum subsp.
polymorphum and S. gordonii to explore the effects of
coaggregation on subgingival synergistic virulence to hGECs
and analyze the relevant mechanisms. We aimed to deepen the
understanding of coaggregation regulation between F. nucleatum
and accessory pathogen, providing a new experimental basis for
the inhibition of dental plaque biofilm formation and the
prevention or treatment of periodontal disease.
MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
F. nucleatum subsp. polymorphum ATCC 10953 was grown in
brain heart infusion (BHI) broth (Difco, USA) supplemented
with 5 mg/ml hemin (Sigma-Aldrich, USA), 1 mg/ml vitamin K
(Sigma-Aldrich, USA), and 0.5% yeast extract (Difco, USA). S.
gordonii DL1 was grown in BHI broth. Both bacterial strains
were grown under anaerobic conditions (N2 90%, CO2 5%, H2

5%) at 37°C.

Coaggregation of F. nucleatum subsp.
polymorphum and S. gordonii
Coaggregation assays were performed in modified coaggregation
buffer (CAB) containing 150 mMNaCl, 1 mM Tris HCl pH 8, 0.1
mM CaCl2, and 0.1 mM MgCl2 as previously described (Kaplan
et al., 2009; Kaplan et al., 2014; Lima et al., 2017). The bacterial
cells were collected at the late exponential phase of growth. The
optical density at 600nm (OD600nm) of F. nucleatum subsp.
polymorphum was measured to be 0.80 (~109 CFU/mL), and
the OD600nm of S. gordonii was around 0.65 (~109 CFU/mL). The
colony-forming units (CFUs) of bacteria was quantified by
incubating F. nucleatum subsp. polymorphum on 5% sheep
blood agar plates and incubating S. gordonii on BHI agar
plates in serial dilutions under anaerobic conditions. Bacterial
cells were cleaned and resuspended in CAB to a final
concentration of ~2×109 CFU/mL. Equal numbers of bacterial
cells from each species were added together and vortexed for 10
seconds in a new reaction tube. The suspensions were settled at
room temperature for 10 min to allow the bacteria to coaggregate
with each other. The reaction tube was centrifuged at low speed
(100×g) for 1 min to pellet coaggregated bacterial cells while
leaving the nonaggregated cells in the supernatant. The
supernatant was collected carefully for OD600nm measurement.
The coaggregation index (C.I.) was calculated as follows (Kaplan
et al., 2009; Kaplan et al., 2014): C.I. = (OD600nm(Fnp) +
OD600nm (Sg)-OD600nm (Fnp-Sg))/[OD600nm (Fnp)+OD600nm

(Sg)]. In this formula, OD600nm(Fnp) and OD600nm (Sg) were
the optical density of F. nucleatum subsp. polymorphum and S.
gordonii respectively, while OD600nm (Fnp-Sg) was the optical
density of the supernatant after coaggregation. Because saliva is
the common coaggregation buffer in the oral cavity, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
coaggregation index of F. nucleatum subsp. polymorphum and
S. gordonii in different concentrations of artificial saliva
(Phygene, China) was also calculated. The coaggregation and
autoaggregation of the two bacterial species in CAB at different
time points were also evaluated and observed with phase contrast
microscopy. The autoaggregation index was calculated as follows
(Nagaoka et al., 2008; Karched et al., 2015; Toh et al., 2019):
(OD600nm (time zero value)- OD600nm (sample value))/(OD600nm

(time zero value).

Confocal Laser Scanning Microscopy
Identification of Coaggregation of
F. nucleatum subsp. polymorphum
and S. gordonii
F. nucleatum subsp. polymorphum and S. gordonii were cultured
to the late-exponential phase. Bacterial cells were washed three
times and resuspended in sterile PBS. For visualization, F.
nucleatum subsp. polymorphum was stained green with 5-(and-
6)-carboxyfluorescein succinimidyl ester (CFSE) (Thermo
Fisher, USA), while S. gordonii was stained red with hexidium
iodide (Thermo Fisher, USA) according to the manufacturer’s
instructions. Samples were incubated for 15 min in darkness at
room temperature. Fluorescently stained bacteria were washed
three times with sterile PBS and resuspended in CAB. The
coaggregated F. nucleatum subsp. polymorphum and S.
gordonii (Fnp-Sg) were obtained as described above. Coculture
of the two species (Fnp+Sg) in PBS, where they did not
coaggregate with each other but only mixed physically, were
used as controls. After coaggregation reactions, 10 mL of
coaggregated Fnp-Sg was transferred to a glass slide and
covered with a cover glass. The coaggregation and coculture
samples were visualized by an Olympus confocal microscope
(FV3000, Olympus, Japan) using excitation (Ex) at 492 nm and
emission (Em) at 517 nm for CFSE and Ex/Em = 518 nm/600 nm
for hexidium iodide.

Culture and Infection of Human Gingival
Epithelial Cells In Vitro
Human gingival epithelial cells (hGECs) were obtained from the
American Type Culture Collection (ATCC CRL-3397) and
incubated in DMEM containing 10% fetal bovine serum (FBS)
(Gibco, USA) at 37°C in the presence of 5% CO2 (Huang et al.,
2020). Cells were seeded at 3.5 × 105 cells per well in 6-well cell
culture plates (Corning, USA). hGECs were infected with F.
nucleatum subsp. polymorphum monoculture (Fnp), S. gordonii
monoculture (Sg), coinfection of F. nucleatum subsp.
polymorphum and S. gordonii (Fnp+Sg), and coaggregation of
F. nucleatum subsp. polymorphum and S. gordonii (Fnp-Sg) at an
MOI of 100, respectively. The coinfection of F. nucleatum subsp.
polymorphum and S. gordonii (Fnp+Sg) was only a physical
mixture of bacteria in PBS where they did not coaggregate with
each other. To ensure the number of bacterial cells in
coaggregates was similar with monocultures, the coaggregates
were resuspended in PBS, vigorously vortexed and disrupted
until no visible pellet existed with validation under a microscope
(Liu et al., 2021). The CFU of the coaggregates were determined
April 2022 | Volume 12 | Article 879423
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by incubating the resuspension solution on 5% sheep blood agar
plates and BHI agar plates in serial dilutions. The volumes of
bacterial cells used in the coaggregation group were adjusted to
ensure the number of bacterial cells in coaggregates were similar
with monoculture groups. After incubation at 37°C in 5% CO2

for 4 hours, the culture medium containing bacteria was
removed, and the bacteria were washed with PBS three times
to remove planktonic bacteria. Cells in each well were added to 2
mL of DMEM containing 10% FBS, 200 mg/mL metronidazole
(Solarbio, China) and 300 mg/mL of gentamicin (Solarbio,
China) and incubated at 37°C in 5% CO2 for 60 min, 90 min,
and 120 min to test the antibiotic treatment time for completely
killing of extracellular bacteria in all groups. In detail, hGECs
infected with Fnp, Sg, Fnp+Sg, and Fnp-Sg of the same antibiotic
treatment time were digested and mixed together. The effect of
killing extracellular bacteria was confirmed by incubating the
digested cells mixture on a plate containing 10% sterile sheep’s
blood at 37°C with 90% N2 + 5% CO2 + 5% H2 for 2-3 days. If
bacterial colonies grew on the plate, it meant not all groups
achieved a complete killing of extracellular bacteria. After killing
the extracellular bacteria, cells were washed with PBS three times
and incubated at 37°C in 5% CO2 for different time points. The
experiment was performed three times.

Confocal Laser Scanning Microscopy
(CLSM) Evaluation of hGEC Infection
by F. nucleatum subsp. polymorphum
and S. gordonii In Vitro
To examine bacterial infection, CFSE-labeled F. nucleatum
subsp. polymorphum and S. gordonii were cocultivated with
hGECs for 4 hours on cell slides. After infection, hGECs were
washed 3 times with PBS to remove planktonic bacteria. The cells
were fixed with 4% paraformaldehyde for 15 min and treated
with 0.1% Triton X-100 (Beyotime, China) for 10 min. The
cytoskeleton was stained with phalloidin (Thermo Fisher, USA)
for 30 min, and the nucleus was stained with DAPI (ZSGB-BIO,
China). All CLSM images were obtained by an Olympus confocal
microscope using Ex/Em = 492 nm/517 nm for CFSE, Ex/Em =
540 nm/565 nm for phalloidin and Ex/Em = 340 nm/488 nm
for DAPI.

Adhesion and Invasion Assay
hGECs were infected with Fnp, Sg, Fnp+Sg, and Fnp-Sg at a MOI
of 100. After 4 hours of infection, the cells were washed 3 times
with PBS to remove the planktonic bacteria and lysed in sterile
water for 90 min to release intracellular bacteria. The total
number of F. nucleatum subsp. polymorphum and S. gordonii
adhering to and invading hGECs was counted by serial dilution
and plating on BHI agar supplemented with yeast extract, hemin,
and vitamin K. The agar plates were incubated anaerobically at
37°C with 90% N2 + 5% CO2 + 5% H2 for 2-3 days. For the
invasion assay, after 4 hours of infection, the cells were washed 3
times with PBS to remove planktonic bacteria and treated with
fresh DMEM supplemented with 10% FBS, 200 mg/mL
metronidazole, and 300 mg/mL gentamicin for 120 min to kill
extracellular bacteria. Cells were lysed in sterile water for 90 min
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and the number of intracellular bacteria was determined by serial
dilution and plating as described above.

Cell Viability of hGECs Infected by
F. nucleatum subsp. polymorphum
and S. gordonii
hGECs were inoculated into a 96-well plate (200 mL/well) at a
density of 1.0×104 cells per well. Fnp, Sg, Fnp+Sg and Fnp-Sg
were added to cells at an MOI of 100. hGECs without any
bacterial stimuli were used as the blank control group (control).
After 4 hours, samples were treated with DMEM supplemented
with 10% FBS, 200 mg/mL metronidazole, and 300 mg/mL
gentamicin for 120 min and fresh DMEM supplemented with
10% FBS was added. The proliferation activity of hGECs was
determined by the Cell Counting Kit-8 (CCK8 kit, Dojindo,
Japan). After the addition of 10 mL of CCK8 solution to each well,
the plate was incubated at 37°C in 5% CO2 for 1-4 h. The
absorbance at 450 nm (OD450nm) was detected by a microplate
reader. The effect of antibiotics alone on the proliferation activity
of hGECs was also determined.

Cell Apoptosis of hGECs Infected by
F. nucleatum subsp. polymorphum
and S. gordonii
hGECs were inoculated into a 6-well plate at 3.5×105 cells per
well. Bacterial stimuli were added as described above and hGECs
without any bacterial stimuli were used as blank control. After
antibiotic treatment, cells were cultured at 37°C in 5% CO2 and
digested with trypsin without EDTA at different time points.
Cells were washed with PBS twice and collected in flow
cytometry tubes with 1~5×105 cells by centrifugation at 1000
rpm for 5 min. An Annexin V-FITC Apoptosis Kit (BD, USA)
was used to detect the apoptosis of hGECs according to the
manufacturer’s instructions. After 500 mL of binding buffer was
used to resuspend the cells, 5 mL of Annexin V-FITC was added
and mixed gently. Samples were placed on ice for 15 min, mixed
with 5 mL of propodium iodide (PI) and then detected by
Beckman Coulter CytoFLEX immediately using Ex/Em = 488
nm/530 nm. Cells without Annexin V-FITC and PI were used as
negative controls.

RT–qPCR of the mRNA Expression Levels
of TLR2 and TLR4 in hGECs Infected by
F. nucleatum subsp. polymorphum
and S. gordonii
The expression levels of TLR2 and TLR4 in hGECs were
determined by quantitative reverse transcription PCR (RT–
qPCR). Total RNA was isolated from hGECs using RNAzol
according to the manufacturer’s protocol (Sigma-Aldrich, USA).
The concentrations of RNA samples were determined by a
NanoDrop 2000C Spectrophotometer (Thermo Fisher, USA).
cDNA was synthesized using PrimeScript RT Master Mix
(Takara, Japan). RT–qPCR analysis was performed in a 20-mL
reaction mixture containing 10-mL of master mix (Hieff qPCR
SYBR Green Master Mix, Yeasen) using a Light Cycler 480
(Roche Applied Science, Germany). The reaction product was
April 2022 | Volume 12 | Article 879423
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quantified by the standard curve method. Levels of GAPDHmRNA
served as internal controls. The primer sequences were as follows (F/
R): TLR2 (ATCAGGCTTCTCTGTCTTGTG/TCTGTAG
G T C A C T G T T G C T A A T G ) ; T L R 4 ( G G A A G
GAGCAGAATCAGGATATG/CTCCATTCACTCCAC
TAACCAC); and GAPDH (AATCCCATCACCATCTTCCAG/
AAATGAGCCCCAGCCTTC).

Cytokine Detection
The hGECs were stimulated with Fnp, Sg, Fnp+Sg and Fnp-Sg as
described above. Cell-free supernatants were harvested and
stored at -80°C for cytokine assays. Cytokine levels (TNF-a,
IL-6, -8, -10 and TGF-b1) in the culture supernatants were
measured by ELISA kits (Neobioscience, Shenzhen, China)
according to the manufacturer’s instructions.

The Activation of the NF-kB and MAPK
Signaling Pathways in hGECs Infected
With F. nucleatum subsp. polymorphum
and S. gordonii
After removing the supernatant, the cells were washed twice with
PBS at 4°C. RIPA lysis buffer (Beyotime, China) containing 1%
protease inhibitor (Sigma–Aldrich, USA) and 1% serine protease
inhibitor (Sigma–Aldrich, USA) was added for 30 min to lyse cells
and extract proteins from each sample. The concentrations of total
proteins were detected by a BCA protein assay kit (Beyotime,
China) according to the manufacturer’s instructions. Protein
samples were mixed with 5× loading buffer (ThermoFisher, USA)
at a ratio of 4:1 and boiled at 99°C for 10 min. Samples were loaded
and run on SDS–PAGE gels (CWBIO, China) and transferred onto
PVDF membranes (Millipore, USA). Membranes were blocked
with 2% skimmilk (BD,USA) for 1 h at room temperature and then
incubated with anti-IKKa, anti-IKKb, anti-pIKKa/b, anti-p65,
anti-pp65, anti-p38, anti-pp38, anti-SAPK/JNK, anti-pSAPK/
JNK, and anti-GAPDH primary antibodies (Abcam, UK)
overnight at 4°C. After primary incubation, blots were washed
and incubated with secondary goat anti-rabbit or goat anti-mouse
HRP (Abcam, UK) for 1 hour. Membranes were washed and
exposed to chemiluminescent HRP substrate (Millipore, USA).
Images were obtained using the GeneGnome XRQ system
(Syngene, USA) and analyzed using ImageJ software.

The Inhibition of the NF-kB and MAPK
Signaling Pathways in hGECs Infected
With F. nucleatum subsp. polymorphum
and S. gordonii
Before bacterial stimuli, hGECs were pretreated the TLR2/4
signaling pathway antagonist OxPAPC (In vivoGen, USA) at 30
mg/mL, 400 nM p38 inhibitor SB 239063 (MCE, USA), 2 mM JNK
inhibitor SP600125 (MCE, USA), and 4 mM NF-kB signaling
pathway inhibitor BAY 11-7082 (MCE, USA) for 1 h. hGECs
treated without any inhibitors and bacterial stimuli were used as
blank controls, hGECs treated with inhibitors but without any
bacterial stimuli were used as negative controls, and hGECs treated
with Fnp-Sg infection but without any inhibitors were used as
positive controls. Total proteinswere extractedat 24hand48hafter
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
incubation. The phosphorylation of NF-kB pathway protein p65,
MAPK pathway protein p38 and JNKwas detected by western blot
as described above. The supernatant was collected and used to
detect the changes in the secretion of inflammatory cytokines
by ELISA.

Statistical Analysis
The bacterial counts data were log (10) transformed for subsequent
analysis. All data were presented as the mean ± standard deviation
and assessed for normality by Kolmogorov-Smirnov test. The
results showed that the data fitted a normal distribution.
Differences between two groups were analyzed by Student’s t
tests. Differences in the quantitative data between multiple groups
were evaluated by one-way ANOVA combined with Bonferroni’s
post hoc test. P values less than 0.05 were designated as significant
differences. Statistical analyses were conducted by SPSS Statistics
v.20 software (IBM, Inc., Chicago, IL, USA) andGraphPad Prism 9
software (GraphPad Software, Inc., San Diego, CA, USA).
RESULTS

The Coaggregation Between F. nucleatum
subsp. polymorphum and S. gordonii
Studies have confirmed that different bacterial strains coaggregate
adequatelywith eachother inCAB(Kaplanet al., 2009;Kaplanet al.,
2014). Saliva was also used as a coaggregation buffer, of which the
composition was complex and included various enzymes,
immunoglobulins, and mucins (Heller et al., 2017; Carpenter,
2020). In the present study, F. nucleatum subsp. polymorphum
coaggregated stronglywithS. gordonii in 10minwith largenumbers
of coaggregationclumps formedat thebottomof the centrifuge tube
and a clear upper suspension. The coaggregation index (C.I.) was
89.370% ± 3.269% (mean ± standard deviation). There was no
significant difference between coaggregation indices in CAB and
different concentrations of artificial saliva (Figure 1A). The
coaggregation was stable in 10-90 min with a range of
coaggregation indices from 89.370% ± 3.269% to 94.450% ±
1.161% (Figures 1B, C). Thus, CAB was used in the present study
to exclude the influence of saliva components on the results.
Autoaggregation is the adhesion of bacteria of the same strain,
which is common with oral bacteria (Khemaleelakul et al., 2006;
Merritt et al., 2009). It is mediated by autoagglutinins which is
related to surface proteins in general or related to carbohydrates,
particularly exopolysaccharides in some cases (Trunk et al., 2018;
Yakovlieva andWalvoort, 2020). Although F. nucleatum had been
extensively studied on coaggregation, little was known about its
autoaggregation. Previous studies showed the autoaggregation of F.
nucleatum was strain-dependent and occurs via both saliva-
dependent and -independent mechanisms (Merritt et al., 2009;
Karched et al., 2015). There were few studies focused on the
autoaggregation of S. gordonii. A previous study showed no
autoaggregation of S. gordonii (Levin-Sparenberg et al., 2016),
while another study showed an increased autoaggregation of S.
gordonii depending on the concentration of composite resin
containing surface reaction-type pre-reacted glass ionomer eluate
April 2022 | Volume 12 | Article 879423
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used (Shimazu et al., 2016). However, the specific mechanisms of
autoaggregation in F. nucleatum and S. gordonii still needed further
investigations. In the present study, the autoaggregation of F.
nucleatum subsp. polymorphum significantly increased at 20 min
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(Figure 1D) which was consistent with a previous study (Karched
et al., 2015). We chose 10 min as the coaggregation time in the
present studywhen there was little autoaggregation ofF. nucleatum
subsp. polymorphum and S. gordonii (Figures 1E, F).
A B
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C

FIGURE 1 | (A) Quantitative coaggregation assays between F. nucleatum subsp. polymorphum and S. gordonii in CAB and different concentrations of artificial saliva.
(B) The stability of coaggregation between F. nucleatum subsp. polymorphum and S. gordonii in CAB in 90 min. (C) Phase contrast microscopy images of coaggregation
between F. nucleatum subsp. polymorphum and S. gordonii in CAB at 0, 10 and 90 min (red arrows: coaggregates). (D) The autoaggregation of F. nucleatum subsp.
polymorphum at 90 min. (E) The autoaggregation of S. gordonii at 90 min. (F) Phase contrast microscopy images of autoaggregation of F. nucleatum subsp.
polymorphum and S. gordonii in CAB at 0, 10 and 90 min (red arrows: autoaggregates) (**p <0.01, ***p <0.001, ns: not statistically significant).
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CLSM images at low magnification showed coaggregation
between F. nucleatum subsp. polymorphum and S. gordonii in the
form of a large number of clumps (white arrows), while the
coculture F. nucleatum subsp. polymorphum and S. gordonii were
noncoaggregated and distributed separately (Figure 2A). Under
high magnification, the coaggregation group showed that F.
nucleatum subsp. polymorphum and S. gordonii cells adhered
to each other tightly and were distributed quite evenly
throughout coaggregates (Figure 2B).

The Effect of Antibiotics on Killing
Extracellular Bacteria and Cell
Proliferation of hGECs
The results showed that the number of extracellular bacteria
decreased with prolonged antibiotic treatment time (** p <0.01,
*** p <0.001). After 120 min, no visible bacterial colonies grew,
indicating the complete killing of extracellular bacteria among all
the groups with bacterial stimuli (Figure S1A). The CCK-8
results showed that antibiotic treatment had no significant
effect on the proliferation of hGECs (Figure S1B). Therefore,
the extracellular bacteria were killed by antibiotic treatment for
120 min in the present study.

The Infection of hGECs by F. nucleatum
subsp. polymorphum and S. gordonii
As the CLSM images showed, cell cytoskeleton was stained red
with phalloidin and the nucleus was stained blue with DAPI
(Figure 3A). There was a large number of F. nucleatum subsp.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
polymorphum infected- hGECs (Figure 3B), while S. gordonii
hardly infected hGECs (Figure 3C). Compared with the
coinfection group (Figure 3D), the number of F. nucleatum
subsp. polymorphum and S. gordonii that infected hGECs seemed
reduced in the coaggregation group (Figure 3E).

To furtherexplore the infectionofF.nucleatum subsp.polymorphum
and S. gordonii tohGECs,wequantified thebacteria that adhered to and
invaded hGECs by serial dilution and plating, respectively. The results
showed that coaggregation significantly inhibited F. nucleatum subsp.
polymorphumadhesionandinvasionofhGECs(**p<0.01, ***p<0.001)
(Figures 4A, C). For S. gordonii, coaggregation and coinfection both
enhanced the adhesion of hGECs,with the coinfection group showing a
stronger effect than the coaggregation group (* p <0.05, ** p <0.01, *** p
<0.001) (Figure 4B). Nevertheless, the invasion ability of S. gordonii in
hGECs was weak among all groups and neither coinfection nor
coaggregation influenced the invasion ability of S. gordonii (Figure 4D).

The Effect of Coaggregation Between
F. nucleatum subsp. polymorphum and
S. gordonii on the Proliferation Activity
and Apoptosis of hGECs
The results showed that the monocultures, coinfection, and
coaggregation of F. nucleatum subsp. polymorphum and S.
gordonii had no significant effect on the proliferation activity
of hGECs after 24 h of infection (Figure 5A). After 48 h of
infection, the proliferation activity of hGECs was significantly
reduced in both the coinfection and coaggregation groups with
no significant difference between the two groups (* p <0.05). The
A B

FIGURE 2 | CLSM images of the coculture (Fnp+Sg) and coaggregation (Fnp-Sg) of F. nucleatum subsp. polymorphum (green) and S. gordonii (red) at low
magnification (A) and high magnification (B). The white arrows show the coaggregates.
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monoculture of S. gordonii inhibited the proliferation activity of
hGECs after 72 h of infection (* p <0.05), while F. nucleatum
subsp. polymorphum monoculture had no significant influence
on the proliferation activity of hGECs at various time points.

As shown in Figure 5B, F. nucleatum subsp. polymorphum
showed a relatively weak ability to promote cell apoptosis after 2
h of infection and sustained through 24 h. After 12 h of infection,
the coaggregation and coinfection of F. nucleatum subsp.
polymorphum and S. gordonii significantly promoted hGECs
apoptosis compared with the other groups (### p <0.001, ** p
<0.01, *** p <0.001, #compared with the control group). There
was no significant difference between the coinfection and
coaggregation groups within 12 h of infection, however, the
coinfection group significantly promoted cell apoptosis at 24 h
compared with the coaggregation group (*** p <0.001). After 24
h of infection, the ability of S. gordonii to promote cell apoptosis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
was enhanced and was the strongest after 48 h. The images of
flow cytometry were shown in Figure S2.

The Effect of Coaggregation Between
F. nucleatum subsp. polymorphum and
S. gordonii on TLR2 and TLR4 mRNA
Expression Levels in hGECs
RT–qPCR was used to detect the effect of coaggregation between
F. nucleatum subsp. polymorphum and S. gordonii on the TLR2
and TLR4 mRNA expression levels in hGECs (Figure 6). The
results showed that after 6 h of infection, the TLR2 and TLR4
mRNA expression levels were significantly increased in the S.
gordonii monoculture, coinfection, and coaggregation groups
compared with the control group (#p < 0.05, ###p < 0.001).
After 24 h of infection, the TLR2 and TLR4 mRNA expression
levels were significantly decreased in the coaggregation group
A
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FIGURE 3 | CLSM images of F. nucleatum subsp. polymorphum and S. gordonii infection of hGECs for 4 h F. nucleatum subsp. polymorphum and S. gordonii
were stained green by CFSE. The cytoskeleton was stained red by phalloidin, and the nucleus was stained blue by DAPI. (A) Blank control group. (B) F. nucleatum
subsp. polymorphum monoculture group (Fnp). (C) S. gordonii monoculture group (Sg). (D) F. nucleatum subsp. polymorphum and S. gordonii coinfection group
(Fnp+Sg). (E) F. nucleatum subsp. polymorphum and S. gordonii coaggregation group (Fnp-Sg).
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compared with the coinfection group (***p <0.001). In the
present study, S. gordonii monoculture increased both TLR2
and TLR4mRNA expression levels in hGECs, while F. nucleatum
subsp. polymorphum monoculture had no significant influence
on the expression levels.

The Effect of Coaggregation Between
F. nucleatum subsp. polymorphum
and S. gordonii on the Secretion of
Inflammatory Cytokines by hGECs
ELISA results showed that the secretion level of TNF-a by
hGECs in the coaggregation group was significantly higher
than that in other groups at 24 h of infection (***p <0.001,
###p <0.001, #compared with the control group), while no
difference was found between groups at 0.5 h, 2 h, and 6 h.
Afterwards, the secretion level of TNF-a in the coaggregation
group decreased with no difference compared with the
coinfection group (Figure 7A). The secretion level of IL-6
steadily reached the highest in the coaggregation group at 24 h
of infection, showing a significantly higher level than that in
other groups (***p <0.001, ###p <0.001, #compared with the
control group). The secretion level of IL-6 in the coinfection
group increased within 6 h and decreased at 24 h of infection.
However, the secretion level of IL-6 in the coinfection group
restored and was dramatically higher than that in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
coaggregation group at 48 h of infection (Figure 7B). As for
IL-8, F. nucleatum subsp. polymorphum monoculture and
coinfection groups resulted in high secretion levels at 24 h of
infection and then decreased. The coaggregation group did not
significantly promote IL-8 secretion at various time points
(Figure 7C). The secretion levels of TGF-b1 were higher in the
control and F. nucleatum subsp. polymorphum monoculture
groups than that in other groups at 48 h and 72 h of infection
(***p <0.001, ###p <0.001, #compared with the control group).
However, the secretion level of TGF-b1 in the coinfection group
increased significantly at 24 h with no difference compared with
the control and F. nucleatum subsp. polymorphum monoculture
groups and decreased afterwards (Figure 7E). No significant
difference was found in the secretion of IL-1b and IL-10 among
the groups (Figures 7D, F).

Activation of the NF-kB and MAPK
Signaling Pathways in hGECs Infected by
Coaggregation Between F. nucleatum
subsp. polymorphum and S. gordonii
The western blot and semiquantitative analysis results showed
that the phosphorylation level of p65 (p-p65) protein in the
coaggregation group was higher than that of the other groups
after 0.5 h and 2 h of infection (* p <0.05, ** p <0.01, *** p <0.001,
#p <0.05, ###p <0.001, #compared with the control group)
A B

DC

FIGURE 4 | The numbers of attached F. nucleatum subsp. polymorphum (A) and S. gordonii (B), internalized F. nucleatum subsp. polymorphum (C) and S.
gordonii (D) to hGECs with an MOI of 100 after 4 h of infection (*p <0.05, **p <0.01, ***p <0.001, ns: not statistically significant).
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(Figure 8). Moreover, the phosphorylation level of p38 (p-p38)
protein in the coaggregation group was higher than that of the
other groups after 6 h and 12hof infection (*p<0.05, ** p<0.01, *** p
<0.001, #p <0.05, ##p <0.01, ###p <0.001, #compared with the control
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
group) (Figure9).After12hof infection, thephosphorylation level of
JNK(p-JNK)protein in the coaggregationgroupwashigher than that
in the other groups (* p <0.05, ** p <0.01, *** p <0.001, #p <0.05, ##p
<0.01, ###p <0.001, #compared with the control group) (Figure 9).
A

B

FIGURE 5 | (A) The proliferation activity of hGECs infected by Fnp, Sg, Fnp+Sg and Fnp-Sg after 24, 48 and 72 h of infection (*p <0.05, ns: not statistically
significant). (B) The apoptosis rate of hGECs infected with Fnp, Sg, Fnp+Sg and Fnp-Sg after various time points (*p < 0.05, **p < 0.01, ***p < 0.001; #p < 0.05,
##p < 0.01, ###p < 0.001, compared with the control group).
A B

FIGURE 6 | TLR2 (A) and TLR4 (B) mRNA expression levels in hGECs infected with Fnp, Sg, Fnp+Sg and Fnp-Sg (*p < 0.05, ***p < 0.001, #compared with the
control group, # p < 0.05, ### p < 0.001, ns: not statistically significant).
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The Regulation of the NF-kB and MAPK
Signaling Pathways in hGECs by
Coaggregation Between F. nucleatum
subsp. polymorphum and S. gordonii
By pretreatment of hGECs with the TLR2/4 antagonist OxPAPC
for 1 h, the protein expression of p-p65, p-p38, and p-JNK in the
coaggregation group was decreased (Figures 10A, B). After
pretreatment with the NF-kB inhibitor BAY 11-7082, the
protein expression of p-p65 decreased significantly
(Figure 10C). Pretreatment with the p38 MAPK inhibitor SB
239063 decreased the p-p38 protein level; thus, the p-JNK
protein level showed a compensatory increase (Figure 10D).
Pretreatment with the JNK MAPK inhibitor SP 600125
significantly decreased the p-JNK protein level. Because the
targets of the inhibitor SP 600125 also included the upstream
kinases MKK3, MKK4, and MKK6 in the p38 MAPK
signaling pathway, the p-p38 protein level was decreased
significantly (Figure 10E).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
The changes in the secretion of inflammatory cytokines by
hGECs were also evaluated by ELISA. By pretreatment of hGECs
with antagonist or inhibitors, the levels of TNF-a and IL-6
decreased in the coaggregation group after 24 h and 48 h of
infection (** p < 0.01, *** p < 0.001) (Figures 11A, B, D, E), but
no significant difference was detected in the secretion of TGF-b1
(Figures 11C, F).
DISCUSSIONS

Coaggregation with early colonizers is important for the
colonization of F. nucleatum in the oral flora (Guo et al.,
2014). Although S. gordonii are generally considered early
colonizers and commensal organisms, increasing evidence
shows that they are becoming recognized as important
associated pathogens during the development of periodontal
disease (Croft et al., 2018). The metabolite of S. gordonii, 4-
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FIGURE 7 | The production of TNF-a, IL-6, IL-8, IL-1b, TGF-b1 and IL-10 in hGECs infected with Fnp, Sg, Fnp+Sg and Fnp-Sg, as assessed by ELISA (*p < 0.05,
**p < 0.01, ***p < 0.001; #p < 0.05, ##p < 0.01, ###p < 0.001, #compared with the control group, ns: not statistically significant).
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aminobenzoate/p-aminobenzoic acid (pABA), can increase the
subgingival colonization and intracellular survival of P. gingivalis
but decrease its pathogenicity (Kuboniwa et al., 2017). Therefore,
the interactions between bacterial species may affect bacterial
colonization and pathogenicity. Although studies have proven
that F. nucleatum can use the outer membrane proteins RadD
and CmpA to adhere to S. gordonii and colonize the same
ecological locus of the subgingival plaque (Kaplan et al., 2009;
Lima et al., 2017), this largely remains to be investigated. Here,
we evaluated the effects of coaggregation between F. nucleatum
subsp. polymorphum and S. gordonii on the subgingival
synergistic interactions to hGECs and analyzed the potential
mechanisms in the development of periodontal disease.

The multilayer model of hGECs infected with P. gingivalis, A.
actinomycetemcomitans, F. nucleatumor S. gordonii showed thatP.
gingivalis invaded intracellularly and spread cell to cell, A.
actinomycetemcomitans and F. nucleatum remained extracellular
and showed intercellularmovement through themultilayer,whileS.
gordonii remained extracellular and predominantly associatedwith
the superficial cell layer (Dickinson et al., 2011). Although the study
established a multilayer structure of hGECs to stimulate the actual
oral environment, oral bacteria usually did not infect hGECs in
monocultures. The interactions between oral bacteria may
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
influence adhesion to and invasion of hGECs. A previous study
reported that F. nucleatum could promote noninvasive
Streptococcus cristae and Streptococcus sanguinis adhesion to and
invasion of hGECs (Edwards et al., 2006). Studies on the
polymicrobial infections of hGECs showed that F. nucleatum
improved the adhesion and invasion of periodontal pathogens P.
gingivalis and A. actinomycetemcomitans in hGECs (Saito et al.,
2009; Saito et al., 2012; Li et al., 2015). At the same time,P. gingivalis
has been confirmed to inhibit F. nucleatum invasion of hGECs by
gingipain when in a coinfection state (Jung et al., 2017). Current
studies have mostly focused on monoculture infection or
polymicrobial infection with periodontal pathogens, and the
effects of the interactions between F. nucleatum and S. gordonii
on the adhesion and invasion of hGECs remain to be investigated.
In the present study, coinfection with F. nucleatum subsp.
polymorphum improved S. gordonii adhesion to hGECs more
significantly than coaggregation with F. nucleatum subsp.
polymorphum, indicating that different mechanisms functioned
during the two types of infections. As for F. nucleatum subsp.
polymorphum, coaggregation with S. gordonii significantly
inhibited the adhesion and invasion of hGECs. Based on a
previous study reporting that F. nucleatum could survive in
hGECs for no more than 12 h (Ji et al., 2010), it was speculated
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FIGURE 8 | The phosphorylation levels (A) and semiquantitative analysis (B) of proteins in NF-kB signaling pathways in hGECs infected with Fnp, Sg, Fnp+Sg and
Fnp-Sg (*p < 0.05, ***p < 0.001; #p < 0.05, ###p < 0.001, #compared with the control group; ns: not statistically significant).
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that coaggregation may improve the extracellular survival of F.
nucleatum subsp. polymorphum by inhibiting its adhesion and
invasion of hGECs.

In our study, infection time within 24 h was considered
appropriate for evaluations because after 48 h of infection, the
cell proliferation activity was significantly inhibited in both
coaggregation and coinfection groups. Meanwhile, the cell
apoptosis rate was significantly increased in S. gordonii
monoculture, coaggregation, and coinfection groups after 48 h
of infection, with the highest cell apoptosis rate nearly 80% in S.
gordonii monoculture group. This may be related to the
exhaustion of media nutrients caused by the accumulated
amount of S. gordonii in these three groups, making it
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
challenging for hGECs proliferation and survival. In the present
study, F. nucleatum subsp. polymorphum significantly promoted
hGECs apoptosis after 2 h and sustained through 24 h of infection
(Dickinson et al., 2011), which was consistent with the previous
study. However, a weak ability to induce cell apoptosis was found
in S. gordonii before 12 h, possibly because of a symbiotic
relationship between S. gordonii and hGECs in the early stage
of infection. According to the previous study, P. gingivalis could
activate the phosphoinositide 3-kinase (PI3K) signaling pathway
to inhibit the apoptosis of hGECs when coinfected with F.
nucleatum, facilitating the intracellular survival of P. gingivalis
and F. nucleatum (Maekawa et al., 2014). This suggested that
bacteria in monoculture or coinfection resulted in different
April 2022 | Volume 12 | Article 879423
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FIGURE 9 | The phosphorylation levels (A) and semiquantitative analysis (B) of proteins in MAPK signaling pathways in hGECs infected with Fnp, Sg, Fnp+Sg and
Fnp-Sg (*p < 0.05, **p < 0.01, ***p < 0.001; #p < 0.05, ##p < 0.01, ###p < 0.001, #compared with the control group; ns: not statistically significant).
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regulatory mechanisms of cell apoptosis. In the present study,
coaggregation of F. nucleatum subsp. polymorphum and S.
gordonii showed similar effects on hGECs proliferation activity
with coinfection, while coaggregation showed an inhibitory effect
on cell apoptosis at 24 h of infection compared with coinfection.
This suggested that, compared with coinfection of the two species,
coaggregation inhibited hGECs apoptosis which may facilitate the
intracellular survival of bacteria and favor a prolonged cell
inflammation induction.

F. nucleatum and lipopolysaccharide can stimulate the
secretion of proinflammatory cytokines and chemokines,
leading to inflammation and bone resorption (Huang et al.,
2004; Hasegawa et al., 2007; de Andrade et al., 2019; Kantrong
et al., 2019). The outer membrane proteins FadA and Fap2 of F.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
nucleatum are involved in both bacterial coaggregation
mediation and infection of various host cells which induce
inflammatory responses (Xu et al., 2007; Ikegami et al., 2009;
Fardini et al., 2011). Lipoteichoic acid and lipoprotein are the
main virulence factors of S. gordonii in bacterial infection and
inflammatory responses (Bi et al., 2017). Studies have shown that
F. nucleatum significantly promotes the secretion of IL-6, IL-8,
and IL-1b in hGECs, with no significant effect on IL-10 secretion,
while S. gordonii has no significant effect on the secretion of IL-6,
IL-8, IL-1b, and IL-10 at 4 h or 24 h of infection (Ji et al., 2007;
Stathopoulou et al., 2010) and even inhibits IL-6 and IL-8
secretion during 8 h of infection (Hasegawa et al., 2007).
Another study showed that F. nucleatum significantly
promoted the secretion of TNF-a and IL-1b, while S. gordonii
April 2022 | Volume 12 | Article 879423
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FIGURE 10 | The regulations of the NF-kB and MAPK signaling pathways in hGECs by coaggregation between F. nucleatum subsp. polymorphum and S. gordonii
by western blot. hGECs were pretreated with the TLR2/4 antagonist OxPAPC for 2 h (A) and 12 h (B), the NF-kB inhibitor BAY 11-7082 (B) for 2 h (C), the p38
MAPK inhibitor SB 239063 for 12 h (D) and the JNK MAPK inhibitor SP 600125 for 12 h (E).
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promoted the secretion of TNF-a, IL-6, IL-8, and IL-1b after 24
h of infection (Dickinson et al., 2011). The inconsistency of the
results may be because of the different MOIs, bacterial
subspecies, or epithelial cell models (monolayer or
multilayers). Most studies in vitro investigated the secretion
levels of inflammatory cytokines by bacterial stimuli were
within 24 h of infection. In the present study, we found that
the secretion levels of inflammatory cytokines in each group had
a relatively consistent trend of variety from 0.5 h to 24 h
(Figure 9). However, not all groups maintained the original
trend after 48 h, especially for IL-6 secretion level in the
coinfection group, which was dramatically increased and
higher than the coaggregation group after 48 h of infection.
The precise reason for this fluctuation in IL-6 secretion level was
not clear. However, during the experiment, we observed that the
floating debris or dead cells were much more obvious in the three
groups infected with S. gordonii monoculture, coinfection and
coaggregation of F. nucleatum subsp. polymorphum and S.
gordonii after 48 h of infection. Combined with the significant
decrease in cell proliferation activity and significant increase in
cell apoptosis after 48 h in the present study, these results may all
be related to the exhaustion of media nutrients caused by the
accumulated amount of S. gordonii in these three groups.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
Therefore, in the present study, we focused on analyzing and
concluding the changes of secretion levels of inflammatory
cytokines among the groups within 24 h of infection.
Nevertheless, the results showed that compared with
coinfection, coaggregation between F. nucleatum subsp.
polymorphum and S. gordonii promoted hGECs to secrete the
proinflammatory factors TNF-a and IL-6 at 24 h of infection,
while inhibiting the secretion of the anti-inflammatory factor
TGF-b1. Different from studies in vitro, animal studies usually
took a long-term evaluation of host responses (Polak et al., 2009;
Polak et al., 2012; de Molon et al., 2014). An animal study
showed that at 42 days post-infection, coinfection with F.
nucleatum and P. gingivalis synergistically promoted the loss of
periodontal bone tissue and aggravated inflammatory responses
in rats (Polak et al., 2009). Animal experiments with long-term
evaluations could be used to explore and verify the specific
mechanisms for further study.

It was reported that the NF-kB and MAPK signaling
pathways were involved in IL-8 secretion by hGECs infected
with F. nucleatum (Huang et al., 2004). TLR2 and TLR4
simultaneously mediated the secretion of IL-6 and TNF-a by
hGECs infected by F. nucleatum, which also activated the NF-kB
and MAPK signaling pathways (Park et al., 2014). Compared
April 2022 | Volume 12 | Article 879423
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FIGURE 11 | The secretion levels of inflammatory cytokines by hGECs pretreated with antagonist or inhibitors at 24 h (A–C) and 48 h of infection (D–F) (**p < 0.01,
***p < 0.001, ##p < 0.01, ###p < 0.001, #compared with the control group, ns: not statistically significant).
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with hGECs infected by F. nucleatum monoculture, coinfection
with P. gingivalis or A. actinomycetemcomitans significantly
reduced the secretion of IL-8 and inhibited host inflammatory
responses after 4 h of infection (Li et al., 2015). In the present
study, western blot results verified significant activation of NF-
kB in the coaggregation group at 0.5 h and 2 h, as well as
significant activation of MAPK at 6 h and 12 h of infection. This
indicated that both NF-kB and MAPK signaling pathways were
involved in the regulatory effect of coaggregation of the two
species on inflammatory responses, with NF-kB activation at an
earlier stage of infection. However, an absence of an effect on IL-
8 was observed based on the phosphorylation of p65. Although
IL-8 is a classical downstream of the NF-kB signaling pathway,
the regulatory mechanism of IL-8 seems to be complex. A
previous study showed MK2 was involved in regulating the
TNF-induced expression of IL-8 by p38 MAPK in human lung
microvascular endothelial cells at a post-transcriptional level (Su
et al., 2008). Another study showed the stimulation of synovial
fibroblasts with IL-6 and TNF-a cooperatively inhibited the
induction of IL-8 (Valin et al., 2020). It was speculated that a
more complex mechanism in IL-8 secretion existed induced by
coaggregation of F. nucleatum subsp. polymorphum and
S. gordonii.

In the present study, no significant changes in TLR4 gene
expression levels were observed in hGECs infected by F.
nucleatum subsp. polymorphum monoculture. This may be
because a relatively lower MOI was used than previous studies
in which the MOI was 200 or 1000 (Ji et al., 2009; Sun et al.,
2010). The MOI was limited to 100 in the present study because
the number of S. gordonii was the same as that of F. nucleatum
subsp. polymorphum for coaggregation. S. gordonii at a larger
MOI grew exponentially and caused cell apoptosis or death
rapidly because of the accelerated consumption of nutrients. At
the transcriptional level, the coaggregation of F. nucleatum
subsp. polymorphum and S. gordonii upregulated the
expression levels of TLR2 and TLR4 in hGECs, but the
expression levels were lower than those in hGECs infected by
coinfection of the two species. This may indicate that the
activation of the NF-kB and MAPK signaling pathways in
hGECs infected by coaggregation of the two species did not
occur through the upregulation of TLR2 and TLR4, but through
the enhanced bacterial virulence induced by coaggregation.
Moreover, compared with hGECs infected with coinfection
bacteria, coaggregation inhibited the secretion of the anti-
inflammatory cytokine TGF-b1, suggesting that coaggregation
of F. nucleatum subsp. polymorphum and S. gordonii could
aggravate the cellular inflammatory response through a two-
way regulation of proinflammatory and anti-inflammatory
cytokines. Interestingly, the secretion of TGF-b1 did not
change with the use of related pathway antagonists/inhibitors.
The underlying mechanism of the regulation of TGF-b1
secretion in hGECs induced by coaggregation still needs to
be investigated.
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By RNA-Seq, Mutha et al. (Mutha et al., 2018) found that by
comparison with monocultures, 16 genes were regulated
following coaggregation in F. nucleatum subsp. nucleatum
whereas 119 genes were regulated in S. gordonii. In both
species, genes involved in amino acid and carbohydrate
metabolism were strongly affected by coaggregation (Mutha
et al., 2018). Our previous transcriptome results indicated up-
regulated genes associated with protein export systems and
repressed arginine biosynthesis in S. gordonii after
coaggregation might help enhance and maintain a symbiotic
relationship with F. nucleatum subsp. polymorphum (Liu et al.,
2021). In F. nucleatum subsp. polymorphum, genes related to LPS
or peptidoglycan biosynthesis were downregulated, which might
reduce the immunogenicity of F. nucleatum subsp. polymorphum
and improve bacterial survival within macrophages (Liu et al.,
2021). Besides, the coaggregation of F. nucleatum subsp.
polymorphum and S. gordonii exhibited significantly decreased
levels of propanoic acid and butyric acid than dual-species co-
cultures (Liu et al., 2021). The symbiotic lifestyle and metabolic
changes of F. nucleatum subsp. polymorphum and S. gordonii
after dual-species coaggregation may contribute to the regulatory
effect on the synergistic virulence to hGECs in the present study.
In further study, bacterial mutants should be constructed for
more rigorous conclusions and validations.

In contrast to previous studies that only considered S. gordonii
as an early colonizer, our study revealed that the functions of S.
gordonii coaggregated with F. nucleatum subsp. polymorphum in
the periodontal virulence. The regulatory effect of interactions
between F. nucleatum subsp. polymorphum with S. gordonii in
the process of periodontal diseases may be more fully interpreted.
In further studies, animal models of the colonization of
coaggregated bacteria on the tooth surface or gingival sulcus
are needed to investigate of the potential mechanism.

CONCLUSIONS

In summary, the coaggregation between F. nucleatum subsp.
polymorphum and S. gordonii inhibited the adhesion and
invasion of F. nucleatum subsp. polymorphum to hGECs but
enhanced the adhesion of S. gordonii to hGECs. Coaggregation
between F. nucleatum subsp. polymorphum and S. gordonii
coordinately promoted the secretion of the proinflammatory
cytokines TNF-a and IL-6 by hGECs through the TLR/NF-kB
and TLR/MAPK signaling pathways, while inhibiting the
secretion of the anti-inflammatory cytokine TGF-b1, thus
aggravating the inflammatory response of hGECs.
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