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Abstract

Trax/Translin heteromers, also known as C3PO, have been proposed to activate RNA-induced 

silencing complex (RISC) by facilitating endonucleolytic cleavage of the siRNA passenger strand. 

We report on the crystal structure of hexameric Drosophila C3PO formed by truncated Translin 

and Trax, along with electron microscopic and mass spectrometric studies on octameric C3PO 

formed by full-length Translin and Trax. Our studies establish that Trax adopts the Translin fold, 

possesses catalytic centers essential for C3PO’s endoribonuclease activity and interacts 

extensively with Translin to form an octameric assembly. The catalytic pockets of Trax subunits 

are located within the interior chamber of the octameric scaffold. Truncated C3PO, like full-

length, exhibits endoribonuclease activity leaving 3′ hydroxyl-cleaved ends. We have measured 
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the catalytic activity of C3PO and shown it to cleave near stoichiometric amounts of substrate per 

second.

In the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) direct 

Argonaute 2 (Ago2) to cleave mRNA targets, resulting in post-transcriptional gene 

silencing1,2. In Drosophila, Dicer-2 initiates RNAi by processing long double-stranded 

RNA (dsRNA) into ~21-nucleotide (nt) long siRNA duplexes. Dicer-2 and R2D2 form a 

heteromeric complex, which facilitates transfer of siRNA onto Ago2, the catalytic 

component of the RNA-induced silencing complex (RISC)1–4. Following loading of siRNA 

duplexes into RISC, the passenger strand of duplex is cleaved by Ago2 and discarded, 

leaving the guide strand bound in the nucleic acid-binding channel5. Finally, the guide 

strand-bound Ago2 functions as the effector by recognizing and degrading the target 

mRNA1,2,6,7. Recently, a protein complex called C3PO (Component 3 Promoter of RISC) 

was shown to be a Mg2+-dependentendoribonuclease, which facilitates RISC activation by 

siRNA unwinding, as well as through removal of cleaved passenger strand8.

C3PO turns out to be the well-studied multimeric complex of Translin and Trax, where Trax 

acts as the catalytic subunit8. Previous studies on the Translin-Trax complex have 

implicated its role in diverse biological processes such as cell growth regulation, mRNA 

processing, spermatogenesis, neuronal development/function, regulation of genome stability 

and carcinogenesis, although their precise roles in some of these processes require further 

investigations9,10. Previous studies have shown that Translin and Trax behave distinctly, 

such that only Translin binds tightly to single-stranded DNA or RNA10–12, whereas only 

Trax possesses endoribonuclease activity8. Crystal structures of Translin have been solved 

from mouse (PDB code: 1KEY), human (PDB code: 1J1J) and fruit fly (PDB code: 2QRX), 

establishing that Translin adopts a seven α-helical bundle fold13–15, which aligns further 

into an octameric scaffold16. By contrast, the instability of Trax in isolation17, has hindered 

attempts at its structure determination. Based on modeling studies, Trax has been predicted 

to fold like Translin8. The lack of structural information on either Trax or C3PO has raised 

many unanswered questions: does Trax indeed fold like Translin? Why do they behave so 

differently given proposed similar folds? How does Trax interact with Translin? What is the 

ratio of Translin to Trax in multimeric C3PO and how does C3PO carry out its 

endoribonuclease activity? To begin to address these questions, we initiated a program of X-

ray crystallographic, electron microscopic, and mass spectrometric studies, supplemented by 

cleavage assays, on reconstituted D. melanogaster C3PO.

RESULTS

Crystal structure of C3PO composed of truncated Translin and Trax

We were able to obtain crystals for reconstituted C3PO by co-expressing recombinant full-

length Drosophila Translin and Trax in E. coli, but our attempts to obtain useful diffraction 

from these crystals was unsuccessful, even after extensive trials. To improve the diffraction, 

we attempted to obtain reconstituted C3PO following serial truncations of unstructured 

regions (based on secondary structure prediction) present at N- or C-termini in both Translin 

and Trax. One such C3PO, that is formed by Translin with 18-amino acids (aa) truncated at 
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the C-terminus (Fig. 1a) and Trax with 29-aa truncated at the N-terminus (Fig. 1a), gave 

large diffracting crystals suitable for structural studies. Anisotropic diffraction data 

extending to 3.4–3.9 Å in different directions was collected on a seleno-methionine-labelled 

C3PO crystal and was used to solve the structure (Table 1 and Supplementary Figs. 1a). The 

model building and sequence assignment was greatly helped by location of Se atoms in both 

Translin (2 SeMet sites) and Trax (5 SeMet sites) as shown in stereo in Supplementary Fig. 

1b and the known structure of Translin13. In the crystal, truncated C3PO is composed of six 

subunits, containing two copies of Trax and four copies of Translin (Figs. 1b and 1c). The 

six subunits are arranged as trimer of dimers, aligned side by side, thereby forming a 

concave bowl-like structure. The dimer in the middle of the hexameric assembly is formed 

by two copies of Translin (Translin-Translin homodimer), which in turn is bracketed on both 

sides by Translin-Trax heterodimers. The molecular weight (MW) of truncated hexameric 

C3PO present in the crystal is consistent with the estimated MW of ~150 kDa by gel 

filtration and multi-angle light scattering (MALS) measurements (Supplementary Fig. 2a).

One Translin-Trax heterodimer and one Translin molecule from the middle Translin-

Translin homodimer are present in the asymmetric unit and are related to rest of the complex 

via 2-fold crystallographic symmetry (Fig. 1b and 1c). Our structure of truncated hexameric 

C3PO provides the much anticipated structural information on Trax. Like Translin, the 

overall fold of Trax also involves a seven α-helical bundle, with structural superposition 

between Translin and Trax exhibits a rmsd of ~1.8 Å (Fig. 1d). For Trax, no electron density 

was found for 26-aa at the C-terminus and 29-aa present between α4 and α5. Electron 

densities for loops present between helical regions in Trax were not clear, so they were not 

included in the model. The overall structure of Translin in truncated hexameric C3PO is 

similar to that previously reported for Translin13–15. In Translin, no electron density was 

found for 7-aa at the N-terminus, 2-aa at the C-terminus and residues present in the loop 

between α6 and α7. Further, no major conformational change was observed in the Translin 

structure upon binding to Trax.

Views of the Translin-Trax heterodimer and the Translin-Translin homodimer in the 

structure of truncated hexameric C3PO are shown in Figs. 1e and 1f, respectively. Due to 

the similar fold of Translin and Trax, extensive complementarity exists in the surface 

features at the Trax-Translin interfaces, as observed between the Translin-Translin 

interfaces. All these interfaces are formed by a large number of non-polar and polar amino 

acids involved in hydrophobic and polar interactions, including salt-bridges and hydrogen 

bonds (Supplementary Figs. 3a, b, c, d).

Interestingly, three invariant acidic residues, Glu123 and Glu126 on α3 and Asp204 on α5, 

are present within 4 Å of each other, and form an acidic patch in the center of the Trax 

molecule (Fig. 1g). Previous studies showed that mutation of any one of these three acidic 

residues to Ala abolished C3PO RNA endonuclease activity and its RISC enhancer activity8. 

Mutations of other conserved acidic residues on Trax (E197A and E49A) or Translin 

(E208A and D202A) showed no such effects. In Trax, the acidic amino acid triad is 

expected to be the Mg2+ coordinating site that is required for RNA phosphodiester bond 

hydrolysis18. Trax is the first example of an RNase adopting such a fold. In our 

crystallographic structure of truncated hexameric C3PO, active sites for endoribonuclease 
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activity are located on the inner concave face and the two sites are ~50 Å apart from each 

other (see yellow arrows, Fig. 1h).

Mass spectra of full-length C3PO

If we assume that the ratio of 4 copies of Translin to 2 copies of Trax observed in 

crystallized truncated C3PO still holds for full-length C3PO, we would expect a calculated 

MW of ~182 kDa for a supposed full-length hexameric C3PO. However, both gel filtration 

and MALS for full-length C3PO show a MW of ~240 kDa, which is ~55–60 kDa higher 

than the expected value (Supplementary Fig. 2b). In order to fully elucidate the oligomeric 

status of C3PO, we carried out mass-spectrometric measurements on full-length C3PO. 

Non-denaturing MS analysis for full-length C3PO (Fig. 2a) showed the presence of Translin 

and Trax in the ratio of 6:2 and 5:3, with 6:2 as the major component based on simulation 

analysis (Figs. 2b,c). In either case, it indicates that the full-length C3PO is an octamer (Fig. 

2). Furthermore, MS analysis for truncated hexameric C3PO formed by the crystallization 

construct showed species with Translin:Trax ratios of 2:2, 4:2 and 6:2, with species 4:2 and 

2:2 as the major components (Supplementary Fig. 4). It is conceivable that only the complex 

from the 4:2 species packs in an orderly manner to form crystals as observed in our 

crystallographic structure of truncated hexameric C3PO.

We performed titration of 24-mer ssRNA with full-length C3PO to monitor if it binds to one 

or both forms (6:2 and 5:3 Translin:Trax species) of C3PO and then analyzed the titration-

products using mass-spectrometry. During titration, ssRNA concentration was varied from 0 

to 20.0 μM with a fixed concentration (3.3 μM) for full-length C3PO. Peak corresponding to 

the 6:2 C3PO species shifted completely from free to RNA bound-form at ~1 μM 

concentration of ssRNA, whereas for 5:3 C3PO species peak shifted only at ~2 μM 

concentration of ssRNA. This suggests weaker binding of ssRNA to 5:3 C3PO compared to 

6:2 C3PO species (Supplementary Fig. 5).

Negative staining electron microscopy

To further investigate structural details of C3PO, we used negative-staining electron 

microscopy and single particle analysis on the full-length C3PO and produced a three-

dimensional (3D) reconstruction. Images collected from the full-length C3PO particles 

(Supplementary Fig. 6a) have a strong resemblance to the projections computed from the 3D 

reconstructions. Some of the class averages strongly indicate the presence of 4-fold 

symmetry in the particles (Fig. 3a). In the reconstruction, the full-length C3PO shows a 

“squashed nutshell” like shape (Fig. 3b) at a resolution limit of ≈ 15 Å (Supplementary Fig. 

6b).

EM reconstruction and proposed models of full-length C3PO

Visual inspection of electron microscopy density map for full-length C3PO suggested 

presence of four dimeric molecules of Translin-Translin and Translin/-Trax aligning side-

by-side and forming a closed octameric C3PO. It thus appears likely that our 

crystallographic structure of truncated C3PO (Fig. 4a) corresponds to three quarters of the 

3D EM map (Fig. 3b), with density corresponding to one dimer missing between the two 

Translin-Trax heterodimer segments. Since the C3PO particles become distorted due to the 
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drying process associated with negatively stained samples, the EM envelope resembles a 

squashed-nutshell (Fig. 3b), and therefore it was necessary to decrease the curvature 

between Translin/Trax and Translin molecules in individual dimers, so as to accommodate 

them into the EM density map. In the EM envelope, we first fitted three dimers aligning 

them side-by-side as seen in the hexameric truncated C3PO structure. We then fitted a 

Translin-Translin homodimer into the remaining EM density (Fig. 3b). Given the similar 

fold observed for Translin and Trax, as well as the limited resolution of the electron 

microscope, it was not possible to differentiate between Trax and Translin in the EM map. 

Because of the mentioned distortions of the particles, there is an apparent gap between 

adjacent dimers and also around the 4-fold axis of the particles (Fig. 3b).

Based on the crystallographic structure of truncated C3PO, the subunits composition from 

MS studies and the overall envelope density for full-length C3PO obtained from EM studies, 

we generated three-dimensional models for full-length octameric C3PO. Starting from the 

truncated hexameric C3PO crystal structure, we have modeled either a Translin-Translin 

homodimer resulting in a 6:2 Translin:Trax octamer (Fig. 4b), or a Translin-Trax 

heterodimer resulting in a 5:3 Translin:Trax octamer (Fig. 4c), into the remaining space 

between the two Trax-Translin heterodimers in the current crystallographic structure (Fig. 

4a). For modeling, each individual set of dimers were slightly rotated in such a way that 

alignment of four dimers lead to a closed octameric model for full-length C3PO.

RNase activity of full-length and truncated C3PO

Recombinant full-length (fl), truncated (t), and E123A/E126A mutant (m) C3PO complexes 

were incubated with two 21-nt RNAs of different sequence (Fig. 5a). RNA cleavage was 

observed by full-length and truncated C3PO, but not mutant C3PO. At high RNA 

concentrations (1.5 μM), full-length C3PO complex cleaved under multiple turnover 

conditions at a rate of approximately 0.7 s−1, whereas truncated C3PO cleaved 

approximately 2 orders of magnitude slower (Supplementary Fig. 7). The cleavage reaction 

was also Mg2+-dependent and abrogated by addition of EDTA (data not shown).

C3PO is an endonuclease generating 3′-OH products

Single-nucleotide resolution of the RNA cleavage products showed bands that did not co-

migrate with RNA products obtained by hydrolysis (H) or RNase T1 cleavage of the starting 

substrate (Fig. 5a). Alkaline hydrolysis yielded 2′,3′-cyclic-phosphate and 2′ and 3′ 

monophosphate termini, whereas RNase T1 generated 3′ phosphate ends, suggesting that 

C3PO leaves 3′ hydroxyl and 5′ phosphate ends. In order to interrogate the 3′ end of the 

C3PO cleaved products, we performed periodate oxidation/β-elimination reactions on a 

chimeric substrate that contains a 12-nt RNA segment flanked by DNA residues to enhance 

gel resolution of cleavage products. Periodate-oxidation requires vicinal 2′,3′–hydroxyl 

groups. We find that C3PO-cleaved RNA fragments were substrates for oxidation/β-

elimination resulting in products of 1-nt altered gel mobility (Fig. 5b), thereby 

demonstrating that C3PO cleavage left 2′,3′ hydroxyl termini.

Although C3PO cleavage occurred rapidly within the RNA segment of the chimeric 

substrate, we also observed DNA cleavage. When we compared the cleavage of 40-nt RNA 
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and DNA single-stranded substrates, the RNA was cleaved about 76-times faster by full-

length C3PO than the same sequence of DNA (data not shown), even though electrophoretic 

mobility shift assays showed that these substrates bound with similar affinity 

(Supplementary Fig. 8).

Next, we compared the cleavage activity of C3PO between linear and circularized 25-nt 

RNA. Linear and circular RNAs were cleaved at the same rate, except that full-length C3PO 

was more active than truncated C3PO (Fig. 6a). Full-length C3PO cleaved the circular RNA 

so rapidly that its linearized form was undetectable, also indicating that the enzyme is highly 

processive. Surprisingly, when we tested circular RNA as short as 13 nt, they were still 

cleaved as fast as linear substrates (Supplementary Fig. 9).

Finally, we determined the minimum length of RNA that could be cleaved efficiently by 

full-length C3PO. RNAs as short as 7 nt were readily processed by full-length C3PO, but 

then the rate of cleavage dropped (Fig. 6b).

DISCUSSION

C3PO’s multimeric assembly

Our study reports on the first structural characterization of the Trax protein, which adopts 

the seven α-helical bundle characteristic of the Translin fold8 (Fig. 1d). Recently, amino 

acids Glu123, Glu126 and Asp204 of Trax have been identified as key residues involved in 

RNase activity of C3PO based on site-directed mutagenesis experiments8. Indeed, these 

acidic residues are found in close proximity to each other in the crystal structure of the 

truncated hexameric C3PO, residing within the center of the Trax fold (Fig. 1g). An earlier 

amino-acid sequence analysis had predicted formation of a leucine zipper motif within the 

N-terminal segment (residues 73 to 108) of human Trax9,10. Based on our structure of 

truncated D. melanogaster C3PO, this segment encompasses the loop bridging α1-α2 

helices and the α2 helix of Trax, thereby precluding leucine zipper formation for this N-

terminal segment.

Truncated C3PO adopts a hexameric topology composed of four Translin and two Trax 

molecules in the crystal structure (Fig. 1b, c), consistent with conclusions from gel filtration 

and light scattering studies (Supplementary Fig. 2a). The major interactions between 

subunits involve formation of Translin-Translin homodimers (Fig. 1f) and our first views of 

Translin-Trax heterodimers (Fig. 1e), with details of the primarily hydrophobic inter-subunit 

interactions at four distinct interfaces shown in Supplementary Figs. 3a–d. Translin and Trax 

not only fold similarly (Fig. 1d), but also bind neighboring molecules using common 

recognition principles (Figs. 1e,f).

The extensive Translin-Trax interaction interface provides an explanation for earlier reports 

on the “Trax stabilizer” role played by Translin10. Several independent studies have shown 

that targeted deletion of Translin would lead to nearly complete loss of Trax protein in 

organisms like yeast, fruit flies and mice10. In all these studies, the level of Trax mRNA 

remained normal suggesting that loss of Trax protein occurred during the post-translational 

stage. Consistent with this conclusion, stand-alone Trax has been shown to be prominently 
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unstable in vitro10, and in the absence of bound Translin, may be easily degraded in vivo. 

Significantly, we do not observe a Trax-Trax homodimer within the truncated hexameric 

C3PO topology.

Our gel filtration and light scattering (Supplementary Fig. 2), as well as mass spectroscopic 

(Fig. 2) and negative staining electron microscopic (Fig. 3) studies demonstrate that full-

length C3PO adopts an octameric topology. Further, mass spectroscopic studies establish 

that the major and minor species of full-length octameric C3PO adopt Translin:Trax ratios 

of 6:2 and 5:3, respectively (Fig. 2). Thus, the present study for the first time suggests the 

presence of two different species for full-length octameric C3PO in vitro. This finding raises 

the following question. Does either one or both of these species exist in vivo? If both species 

of C3PO were to exist, do they have distinct or redundant physiological functions? Although 

we do not currently have answers for these questions, available MS data on ssRNA complex 

formation sheds some light on this issue. The 6:2 C3PO species binds to ssRNA with 

apparently stronger affinity than does the corresponding 5:3 C3PO species (Supplementary 

Fig. 5).

All octameric C3PO particles exhibited uniformity under the electron microscope, 

suggesting that both 6:2 and 5:3 species could assemble in a similar octameric fashion. We 

therefore built three-dimensional models of full-length octameric C3PO starting with three 

dimers from the truncated hexameric C3PO crystallographic structure and then docked 

either a Translin-Translin homodimer or a Translin-Trax heterodimer to generate 6:2 (Fig. 

4b) and 5:3 (Fig. 4c) Translin:Trax species of C3PO. The octameric arrangement of Translin 

and Trax in the model of full-length C3PO resembles the octameric quaternary fold 

observed in crystal structures of Translin solved previously from human15 and mouse14, in 

which either 2 or 3 specific Translin subunits have been replaced by Trax subunits.

Our EM-based models of the octameric fold of full-length C3PO containing 6:2 (Fig. 4b) or 

5:3 (Fig. 4c) ratios of Translin:Trax require further testing, especially since we are unable to 

identify the positions and orientations of Translin and Trax within the EM density of full-

length C3PO. It is conceivable that we could have missed details such as unanticipated 

subunit-subunit interactions, as well as aspects of symmetry/asymmetry characteristic of the 

system, that could impact on the quaternary arrangements of subunits in full-length C3PO. 

Therefore, we emphasize that the models have been proposed from the perspective of 

stimulating further investigation.

C3PO’s nucleolytic activity

C3PO exhibits rapid sequence-independent endoribonucleolytic activity generating 3′-

hydroxyl and likely 5′-phosphate terminal ends. Its preferred substrate is RNA of 7-nt or 

longer, including short circular RNAs (Figs. 5a, 5b and Supplementary Fig. 7). The catalytic 

activity of C3PO resides solely with the Trax subunits as mutations of key amino acid acidic 

residues eliminates substrate cleavage.

We also noted that C3PO cleaved DNA, albeit at a reduced rate, which is generally 

consistent with a hydrolytic cleavage mechanism depending on hydroxide ions or water as 

nucleophiles (Fig. 5b). Gel shift analysis demonstrated at the same time that DNA and RNA 
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oligonucleotides were bound with similar affinity to C3PO, indicating that the cleavage rate 

differences are likely due to placement of DNA versus RNA residues at the active site 

(Supplementary Fig. 8). Cleavage activity of C3PO is also length-dependent as RNA 

substrates less than 7 nt were cleaved slower (Fig. 6b). Together, these results suggest that 

nucleotides surrounding the cleavage site contribute to substrate binding and possibly also 

catalytic cleavage. Binding of nucleic acid substrates to C3PO is presumably mediated 

through Translin, and it is known that Trax can directly affect the affinity of Translin for 

binding DNA versus RNA19–28. Additionally, Translin has been reported to localize in the 

nucleus under specific cellular conditions21. Thus it is plausible that the multiple roles 

ascribed to C3PO also involve its newly defined nucleolytic activity.

The catalytic pockets associated with individual Trax subunits are located within the hollow 

interior chamber of the full-length octameric C3PO barrel-like scaffolds modeled in Figs. 4b 

and 4c. There appears to be no obvious gap or channel large enough to allow entry of 

ssRNA into the central chamber. Meanwhile, our MS data showed that full-length C3PO 

particle maintains the octameric arrangement upon binding to ssRNA (Supplementary Fig. 

5). In the absence of a structure for the C3PO-RNA complex, one can only speculate that the 

octameric scaffold might undergo a conformational change, switching from a “closed state” 

to an “open state”, thereby providing RNA access to the catalytic pockets on Trax. As an 

alternative, the octameric scaffold might transiently open by partial dissociation of subunits 

prior to reclosure around the encapsulated RNA.

It was surprising to see short circular RNAs (13–25 nt) processed as efficiently as their 

linear counterparts. Given that the active site residues are positioned within the core of 

C3PO, these circular substrates must be able to feed through the opening pore 

(conformational switch model), because certainly the 13-nt circle was too small to assemble 

a C3PO complex around its strand (Fig. 6a and Supplementary Fig. 9). Solving a crystal 

structure with a nucleic acid substrate positioned inside C3PO should help clarify these 

remaining mechanistic questions.

ONLINE METHODS

Cloning, co-expression and purification

Full-length as well as truncated Translin (1-217) and Trax (30-298) were cloned at two 

different multiple cloning sites in sumo-pRSFDuet-1 vector (modified pRSFDuet-1 vector 

with N-terminal 6xHis and yeast sumo as fusion tag). The fusion tag (6XHis-SUMO tag) 

was attached only to Translin. All constructs were confirmed by DNA sequencing. Proteins 

were co-expressed in BL21 (DE3) E. coli cells in LB medium. The proteins were purified 

from the soluble fraction using Ni-chelating affinity and size-exclusion column 

chromatography (see Supplementary Methods for more details).

Crystallization and data collection

Crystals of C3PO obtained from SeMet-labeled truncated Translin and Trax were grown 

using the hanging-drop vapor-diffusion method by mixing the protein (40 mg ml−1 in 20 

mM Tris-HCl pH 8.0, 50 mM KCl) with an equal volume of reservoir solution containing 

0.35 M–0.7 M (NH4)2HPO4, 0.1 M Na-citrate pH 5.4–5.8 at 20 °C. For data collection, 
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crystals were flash frozen (100 K) in the mother liquor supplemented with 30% (v/v) 

glycerol as cryo-protectant. The diffraction pattern obtained from the C3PO crystal showed 

strong diffraction anisotropy. Diffraction data sets were collected using SeMet-labeled 

C3PO crystal at Se peak and inflection wavelengths on X29 beamline at National 

Synchrotron Light Source, Brookhaven National Laboratory, with the collected data sets 

integrated and scaled using the HKL2000 suite30.

Structure determination and refinement

The structure of C3PO was determined using the anomalous diffraction data collected at Se 

peak and inflection wavelengths. A total of nine Se sites were located and refined for 

phasing using SHARP3131 (see Supplementary Methods for more details). The initial 

experimental map showed clear density for the helical regions of the complex 

(Supplementary Fig. 1c). The issue of strong anisotropic diffraction was addressed by 

anisotropic scaling and ellipsoidal truncation using the NIH Diffraction Anisotropy Server32 

(www.doe-mbi.ucla.edu/~sawaya/anisoscale/anisotropy). Briefly, data residing outside an 

ellipse centered at the reciprocal lattice origin and having vertices at 1/3.9, 1/3.9 and 1/3.4 

Å−1 along a*, b* and c*, respectively, were removed (Supplementary Fig. 1a). After this 

ellipsoidal truncation, anisotropic scale factors were applied and in the end, a negative 

isotropic B factor was used to restore the magnitude of the high-resolution reflections 

diminished by anisotropic scaling. During the later stage of model building and refinement, 

anisotropically scaled data was used, which showed improved electron density map for the 

model.

The number and location of the selenium positions played a key role in identifying Translin 

(2 Se atoms) and Trax (5 Se atoms) molecules in the asymmetric unit (Supplementary Fig. 

1b). The final model has been refined to an Rwork of 27.0% and an Rfree of 33.8%. The final 

data collection and refinement statistics are given in Table 1. Also see in Supplementary 

methods.

Multi-angle light scattering (MALS)

Molar mass values of purified full-length C3PO and truncated C3PO were determined by gel 

filtration and MALS as described in Supplementary methods.

Mass spectrometry (MS)

For mass spectrometric analysis, full-length and truncated C3PO complexes were buffer 

exchanged into 1 M ammonium acetate at pH 8.0, using Amicon Ultra-0.5, Ultracel-10 

Membrane (Millipore). For the ssRNA titration experiments, concentration of ssRNA was 

varied from 0–2.0 μM at full-length C3PO concentration of 3.3 μM. The 24-mer ssRNA for 

MS analysis was purchased from Integrated DNA technologies. Nanoflow electrospray 

ionization (nESI-MS) was conducted on a high mass Q-ToF2 mass spectrometer (Waters)33 

(see Supplementary Methods for more details).

Negative stain electron microscopy

The purified full-length C3PO (protein concentration: 10 μg/ml) was applied to a glow 

discharged, carbon coated grids. The grids were washed with three drops of water, followed 
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by three drops of uranyl acetate, and dried. Images were collected under low dose conditions 

on a JEOL2100F electron microscope operating at an accelerating voltage of 200 kV 

(Supplementary Fig. 6a), using under focus values between 1 and 2 μm and a pixel size of 

3.06 Å. For random conical tilt reconstruction, image pairs were collected with a first image 

at a tilt of 55°, and a second at 0°.

The Fourier shell correlation curve shows good correlation of two independently 

reconstructed models, up to spatial frequencies that correspond to spacings of ~15 Å, 

according to the 0.5 correlation criterion (Supplementary Fig. 6b). A plot of the angular 

coverage of the data shows that all the views needed for a reconstruction were represented 

by the data (Supplementary Fig. 6c). EM image processing and labeling/tagging experiments 

were carried out as described in Supplementary Methods. Electron microscopy maps were 

displayed with the UCSF CHIMERA software package34, which was also employed to 

manually fit the Translin-Translin homodimer and Translin-Trax heterodimer in the EM 

map.

5′ end radiolabelling of oligonucleotides

Oligonucleotides were 5′ end radiolabelled using T4 polynucleotide kinase (PNK) (New 

England Biolabs) and γ-32P ATP (see Supplementary Methods for more details). Circular 

RNA was radiolabelled similarly, as linear RNA, prior to circularization using T4 Rnl1 

(Tuschl lab). Radiolabeled RNAs were denatured with 1 volume of stop buffer (8 M urea, 10 

mM EDTA, and bromophenol blue), incubated for 30 sec at 95°C and immediately chilled 

on ice, then separated by denaturing polyacrylamide gel. Radiolabelled bands were excised, 

gel extracted overnight in 0.4 M NaCl, ethanol precipitated and resuspended in H2O.

Partial alkaline hydrolysis, RNase T1, and exonuclease T treatment of oligonucleotides

RNA partial alkaline hydrolysis was performed by incubating 100 nM oligonucleotide with 

1.2 μg/μl yeast tRNA and 0.1 M Na2CO3, pH 9.2 for 30 sec at 95°C then chilling on ice. 

Partial RNase T1 or exonuclease T digestion of oligonucleotides were similarly treated: 100 

nM oligonucleotide is incubated in a 5 μl reaction containing yeast tRNA and 0.2 unit/μl 

RNase T1 or 5 units/μl exonuclease T. RNase T1 and exonuclease T digestions were 

incubated at 24°C for 1 and 10 min, respectively.

C3PO nuclease reactions

Unless otherwise indicated, reactions were performed in 10 μl with 100 nM C3PO and 100 

nM oligonucleotide in reaction buffer (20 mM Tris-HCl (pH 8.0), 50 mM KCl, 5 mM 

MgCl2 and 10% glycerol) for 5 min at 24°C. Reactions were stopped with 1 volume of stop 

buffer. 2–4 μl of the reaction was separated on a denaturing sequencing-type polyacrylamide 

gel in 0.5 × TBE buffer at 60 W for 2 hrs. The gels were dried on Whatman paper, 

visualized using a phosphorimager screen (Fujifilm FLA-5000) and analyzed using 

ImageGauge v4.1 software (Fujifilm).

Oxidation and β-elimination reactions

Periodate oxidation and β-elimination was performed as described35,36. C3PO-digested 

oligonucleotides were recovered by phenol-chloroform and ethanol precipitation, then dried 
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and resuspended in borax buffer, pH 8.6. NaIO4 (28.6 mM final) was added and the 

reactants were incubated for 10 min in the dark at 24°C, followed by addition of glycerol 

(5% final) for 10 more min. The samples were concentrated in a SpeedVac (Eppendorf) to 5 

μl. Borax buffer, pH 9.5 was added and the samples were incubated for 90 min at 45°C (See 

Supplementary methods for more details). Samples were ethanol precipitated twice and 

resuspended in H2O and an equal volume of stop buffer. 4 μl of each sample were separated 

by denaturing polyacrylamide gel electrophoresis.

Kinetic determination of the catalytic activities of C3PO was carried out as outlined in 

Supplementary Methods. Procedure for Removal of 3′ and 2′,3′-cyclic phosphates from 

partially alkaline-hydrolysed oligonucleotides is described in Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall structure of truncated hexameric C3PO, Trax-Translin interactions and an active 

center in Trax for endoribonuclease activity. (a) Lengths of wild-type Translin and Trax and 

truncated constructs that yielded crystals of C3PO. (b) Ribbon representation of truncated 

C3PO with two molecules of Trax colored in pink and four molecules of Translin colored in 

different shades of cyan. (c) Surface representation of truncated C3PO in the same view and 

color-coded as in (b). (d) Structural superposition of Trax (pink) and Translin (cyan) shown 

in ribbon representation. (e) Heterodimer of Trax and Translin as seen in the truncated 

C3PO structure (f) Homodimer of Translin positioned between the two heterodimers of Trax 

and Translin in the truncated C3PO structure. (g) Electrostatic surface and ribbon 

representation of Trax showing presence of three acidic residues (shown in box) along one 

face in the center of the Trax molecule. An enlarged view of this region is shown in a box. 

(h) Electrostatic surface representation of truncated C3PO showing location of active sites 

within the inner concave face (indicated by yellow arrows) for the endoribonuclease activity.
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Figure 2. 
Mass spectra and simulated spectrum of the full-length C3PO. (a) Mass spectrum of the full-

length C3PO at high collision energy (80 V). The full-length C3PO undergoes gas-phase 

dissociation such that free monomers of translin (blue hexagons) and Trax (yellow stars) are 

observed at low m/z (left inset) leaving 'stripped' complexes at high m/z (right inset). Two 

stripped complexes for the 6:2 (translin:Trax) complex are observed because either translin 

(pink squares) or Trax (beige squares) can dissociate. Similarly, for the 5:3 (translin:Trax) 

complex, stripped complexes without translin (light blue oval) or Trax (pink squares) are 

observed. (b) Mass spectrum showing the m/z region of a (6,600–9,200). Translin:Trax 

complexes with 6:2 (red squares) and 5:3 (blue ovals) stoichiometries are identified. A 

similar spectrum was obtained at a collision energy of 50 V. (c) Simulated mass spectrum of 

the 6:2 and 5:3 translin:Trax C3PO was generated automatically using an algorithm (F. 

Stengel, A.J. Baldwin, M.F. Bush, H. Lioe, N. Jaya et al., unpublished data) implemented in 

Python, which suggests the presence of 63% and 37% occurrence of these two species, 

respectively. The measured spectrum obtained at collision energy 50 V is overlaid on the 

observed spectrum.
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Figure 3. 
Classification and averaging of negatively-stained particle images and fit of octameric C3PO 

into 3D EM map. (a) Montage of nine panels for comparison between reprojection of the 

reconstruction (image I) with the corresponding class average (image II) showing a 

representative particle in that class (image III). (b) Docking of the octameric full-length 

C3PO (Translin:Trax ratio of 6:2) model in the 3D EM map. Trax (pink) and Translin (cyan) 

molecules are shown in ribbon representation. Both 6:2 and 5:3 Translin:Trax models of 

C3PO could be fitted satisfactorily within the EM envelope. Top and side views related by a 

90° rotation are shown in left and right panels, respectively.
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Figure 4. 
Models of full-length octameric C3PO (6:2 and 5:3 Translin:Trax) based on the crystal 

structure of truncated hexameric C3PO (4:2 Translin:Trax). (a) Crystal structure of 

truncated hexameric C3PO (4:2 Translin:Trax) with Translin in cyan and Trax in pink. (b) 
Model of the full-length octameric C3PO (6:2 Translin:Trax) generated by addition of a 

homodimer of Translin (cyan) into the crystal structure of truncated C3PO. (c) Model of the 

full-length octameric C3PO (5:3 Translin:Trax) generated by addition of a heterodimer of 

Translin (cyan) and Trax (pink) into the crystal structure of truncated C3PO.
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Figure 5. 
C3PO ribonuclease activity generates products with 2′ and 3′ hydroxyl termini and requires 

Glu123 and Glu126 residues in Trax. (a) Two 5′ 32P-labelled 21-nt oligoribonucleotides 

were incubated with indicated recombinant C3PO complex and protein concentration: full-

length (fl), truncated (t), and the catalytic mutant C3PO (m) in which two glutamic acid 

residues of Trax were converted to alanine (E123A, E126A). The reactions were stopped 

and reaction products were separated by 18% denaturing polyacrylamide gel electrophoresis. 

Alkaline hydrolysis treatment of RNA substrate generates products with 2′,3′-cyclic and 2′ 

and 3′ monophohosphate ends, which resolve into doublets towards the bottom of the gel. 

Doublet bands were bracketed, and the upper band represents fragments with 2′ or 3′ 

phosphate and the lower band the 2′,3′-cylic phosphate product; RNase T1 generated 3′ 

phosphate ends only. The mobility of C3PO-digested fragments was reduced compared to 

their 2′ or 3′ phosphorylated derivatives. (b) A chimeric DNA/RNA oligonucleotide: 

5′ 32pTATCG-

AGGTGAACATCACGTACGCGGAAUACUUCGAAATGTCCGTTCGGT, containing 12 

internal RNA residues (underlined), was incubated with indicated concentrations of C3PO. 

Half of the reaction solution was subjected to periodate oxidation and β-elimination reaction. 

For comparison, partial alkaline-hydrolysed RNA was first 3′-dephosphorylated using T4 

polynucleotide kinase and then subjected to oxidation andβ-elimination. The identities of 

RNA and DNA residues are shown; italicised residues indicate that the 3′-end contains a 

phosphate due to β-elimination. Abbreviations: T1, partial RNase T1 digest; H, partial 

alkaline hydrolysis; In, input RNA, “…”, bands representing subsequent RNA bases towards 

the 3′ end of the oligonucleotide sequence.
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Figure 6. 
C3PO endoribonucleolytic activity is length-dependent. (a), Recombinant C3PO complexes 

retain endoribonucleolytic cleavage of circularized RNA. Indicated concentrations of C3PO 

were incubated with a 25-nt linear or circular radiolabelled RNA containing a single 

guanosine residue. Circular RNA was validated by its reduced migration (arrows) upon 

linearising digestion by RNase T1, and its resistance to exonuclease T. (b), RNA length 

dependence of C3PO cleavage. Radiolabelled poly(GU) oligoribonucleotides ranging from 4 

to 12 nt in length were subjected to full-length C3PO cleavage at indicated times. The 

identities of the shortest C3PO-digested fragments are shown. For assignment of cleavage 

products, the 12-nt substrate was subjected to partial alkaline hydrolysis or RNase T1 

digestion, both followed by treatment with T4 PNK to remove 2′ and 3′ phosphate and 2′,3′ 

cyclic phosphate ends. Reactions were stopped and separated on an 18% denaturing 

polyacrylamide gel. Abbreviations: T1, partial RNase T1 digest; H, partial alkaline 

hydrolysis; E, partial Exonuclease T digest.
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Table 1

Data collection and refinement statistics.

Truncated C3PO (SeMet)

Data collection

Space group P6122

Cell dimensions

 a, b, c (Å) 196.03, 196.03, 155.19

 α, β, γ(°) 90, 90, 120

Inflection Peak

Wavelength (Å) 0.9794 0.9792

Resolution (Å) 30.0–3.4 (3.52–3.40) 50.0–3.8 (3.94–3.80)

Rsym or Rmerge 21.4 (86.5) 24.0 (85.3)

I/σI 11.4 (2.7) 10.8 (2.4)

Completeness (%) 99.8 (99.8) 99.9 (99.9)

Redundancy 14.4 (11.0) 21.4 (15.8)

Refinement

Resolution (Å)

 low resolution 20

 high Resolution (a*, b*, c*)# 3.9, 3.9, 3.4

No. of Reflections (total/test) 19572/999

Rwork/Rfree 27.0/33.8

No. atoms

 Protein 4718

 Ligand/ion -

 Water -

B-factors

 Protein 89.4

R.m.s deviations

 Bond lengths (Å) 0.016

 Bond angles (°) 0.864

One crystal was used for both data sets.

Values for highest resolution shell are shown in parenthesis.

#
After anisotropic correction, high resolution data beyond these limits were excluded during refinement.
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