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ABSTRACT: Viscosity represents a key product quality indicator but
has been difficult to measure in-process in real-time. This is particularly
true if the process involves complex mixing phenomena operated at
dynamic conditions. To address this challenge, in this study, we
developed an innovative soft sensor by integrating advanced artificial
neural networks. The soft sensor first employs a deep learning
autoencoder to extract information-rich process features by compress-
ing high-dimensional industrial data and then adopts a heteroscedastic
noise neural network to simultaneously predict product viscosity and
associated uncertainty. To evaluate its performance, predictions of
product viscosity were made for a number of industrial batches
operated over different seasons. Furthermore, probabilistic machine
learning techniques, including the Gaussian process and the Bayesian
neural network, were selected to benchmark against the heteroscedastic
noise neural network. Through comparison, it is found that the proposed soft-sensor has both high accuracy and high reliability,
indicating its potential for process monitoring and quality control.

1. INTRODUCTION
The advancement and application of machine learning and
data-driven models are major themes within the 4th Industrial
Revolution. They are present in the development of many
novel technologies, with substantial interest on the implemen-
tation of these techniques into process industries. The
adoption of novel machine learning algorithms into manu-
facturing industries has yielded promising results and conveyed
the benefits of utilizing such techniques in areas including
scheduling, planning, and plantwide control.1 Increasingly, the
process industries form large parts of the global economy. As
ever, there is necessity for the development of efficient and
reliable systems in which profit can be maximized to allow for
companies to remain competitive within such environments.
The development and uptake of machine learning algorithms
promises to aid these developments.
In many chemical process industries, product analysis occurs

directly by extracting samples (offline analysis) and using
equipment to quantify a property indicative of product quality.
This process can be slow and inaccurate depending on the
conditions in which the sample and analysis are conducted, so
clearly, an opportunity for improvement is available for
product quality analysis. A soft sensor operated using real-
time data would provide extensive benefits in such an
environment by allowing predictions to be made in a fast

and reliable manner.2 For instance, quality control is
paramount to many formulated product industries to avoid
the viscosity of the final product falling outside the
predetermined acceptable boundaries; otherwise, the entire
batch must be discarded, effectively wasting the entire process
time. Not only does this lead to excessive losses due to material
wastage but it also incurs costs involved with safe disposal of
the defective products. Ideally, advanced in-line measuring
equipment should be available to monitor the progress of the
batch over the process time; however, these process analytical
techniques have not been widely applied in industrial systems
as they are expensive and difficult to be installed in an existing
plant.3

As a result, building soft sensors becomes a perfect
alternative solution. There are two general classes of soft
sensors, one being physics (e.g., first-principle model)-driven
and the other being data-driven.4 The physics-driven family
has predominantly been applied to the design and planning of
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processing plants focusing on ideal steady-state operation. The
data-driven soft-sensor overcomes this drawback as they are
built using the data obtained during plant operation, which
gives a better representation of the true process conditions,
allowing them to be described in a more meaningful manner.5

This provided means for widespread adoption of data-driven
soft sensors in batch operation systems with its most dominant
application being the prediction of process key performance
indicators.3

Specifically, real-time prediction of viscosity has historically
been a challenge within the consumer goods industry.6 The
difficulties stem from the current lack of understanding of
rheology within the context of highly viscous fluids, making it
impractical to derive any accurate physical models for viscosity
prediction.7 It is common for industrial processes to take
samples during a process to directly measure the viscosity.
However, this is time consuming and if poor batch quality is
observed, there is little opportunity to adjust the process to
prevent deviations of viscosity outside acceptable boundaries.
A solution to this can be applied with the usage of data-driven
models that find the underlying relations that lie within the
data recorded from a series of sensors on a plant and the
measured viscosity. These data-driven models are then used as
a soft-sensor for new process viscosity monitoring. In addition,
to mitigate false confidence, these data-driven soft sensors
should be able to make accurate estimations and represent the
uncertainty present within the data. The uncertainty present
within data is analogous to the uncertainty specified within the
instrument used to record the viscosity values and the natural
variation of the process itself.8

Therefore, in this work, we proposed a novel soft-sensor
constructed by integrating state-of-the-art artificial neural
networks to resolve the above challenges. Moreover, the
generalizability of this soft sensor was further explored by using
it to predict the viscosity of a different product variant. To
better demonstrate the contribution of this work, the rest of
this study is structured as follows. Section 2 describes the
problem statement, Section 3 outlines the methodology,
Section 4 presents the results alongside a thorough discussion,
and finally, Section 5 concludes the current research finding.

2. PROBLEM STATEMENT
This study focuses on a batch mixing process (shown in Figure
1a) for consumer goods product production.9 The aim is to
develop a robust soft-sensor for final viscosity prediction using
real-time process sensors’ recordings. Three data sets are

collected from a manufacturing site and are referred to as the
α, β, and γ data sets, respectively, where the first two were
obtained from the same process line and the latter being
obtained from a similar, but different process (i.e., producing a
product variant). These data sets contain 30, 16, and 11
batches, respectively. Each batch contains 28 sensors recording
temperatures, pressures, and flowrates at different locations in
the process. The actual batch process generates around 7000
times series data points, and real-time data are recorded once
per second (α data set) or once per two seconds (β and γ data
sets). Figure 1b shows an example of the batch data.
In this work, the α data set was used for soft-sensor

construction and cross-validation, the β data set was used for
soft-sensor validation, and the γ data set was used to examine
the soft-sensor’s generalizability. To build an effective soft-
sensor, this work proposes an in-depth examination of the use
of nonlinear dimensionality reduction techniques in con-
junction with various machine learning regression models for
viscosity prediction where latent variable modeling,10 advanced
neural networks,11 and Gaussian processes12,13 are used. These
techniques become especially useful when the relationships
between the available process measurements and the output
variable are best represented by nonlinear functions.

3. METHODOLOGY
3.1. Methodology Overview. Dimensionality reduction is

necessary in this case to mitigate problems associated with
high-dimensional data analysis14 and to improve accuracy of
the data-driven soft sensor. Dimensionality reduction removes
multicollinearity, improves the capability of the model to
generalize to new data sets, and will eliminate redundant
features whilst retaining important statistical relationships
expressed within the data. Here, we offer the usage of an
autoencoder for dimensionality reduction as opposed to
traditional linear decomposition techniques such as principal
component analysis (PCA) and partial least squares (PLS).
Although the use of autoencoders is well demonstrated in a
number of recent studies for data compression and outlier
detection,15 for instance,16 proposed an autoencoder for
complex multiscale heterogeneous material simulation, the
implementation in batch process soft-sensing and monitoring
has not been well explored. Once key process features are
extracted through dimensionality reduction, we adopted either
a heteroscedastic noise neural network (HNN), a Bayesian
neural network (BNN), or a Gaussian process (GP) to make
accurate viscosity predictions and meaningful uncertainty

Figure 1. Diagram of the process under study (a) and example normalized sensor data for batch 1 of the α data set of the full process time (b).
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estimations. Successful predictions should have an error ∼10%
to the industrial data considering the practical measurement
errors within the factory. In addition, to effectively identify the
best structure for the autoencoder, HNN, and BNN, Bayesian
optimization is performed to optimize the hyperparameters of
these models.
The primary reason to choose the three machine learning

methods is to compare the validity of the assumptions behind
the frequentist approach and probabilistic models. Hetero-
scedastic neural networks (i.e., the frequentist approach)
assume a nonconstant variance in the residuals enabling the
model to express data uncertainty, whereas both the
probabilistic models (BNN and GP) naturally express
uncertainty, both within the data and that which arises due
to a lack of information (i.e., information uncertainty). With
regard to the GP and BNN, we compare the technicalities of
parametric versus nonparametric models with the BNN output
being a function of its architecture.
3.2. Data Preparation. Regularly, within the recording of

original data for batch process systems, redundancy exists. This
usually manifests in the form of batch data sets (i.e., real-time
measurements of process variables) that are not full rank.
Therefore, it can be assumed that a reduced data set exists that
is sufficiently representative of the inherent characteristics of
the original data set. In our previous work,9 PLS was used to
identify commonly important sensors and critical time regions
that are preliminarily related to product viscosity within the
data sets, leaving us with only information relevant to soft-
sensor construction. This initial data analysis reduced all 3 data
sets to a 3-rank tensor of N batches, T timesteps, and J sensors
(N being dependent on the data set), where T and J are 300
and 8, respectively (reduced from 7000 timesteps and 28
sensors recorded in the original recordings). Before being used
for training or validation purposes, the three-rank tensors are
timewise unfolded to generate a matrix for soft-sensor
construction.
It is possible to employ well established techniques that

utilize linear transformations such as PLS and PCA when
attempting to identify a latent space representative of the
original data set. This, however, may not accurately portray
and capture any nonlinear properties intrinsic to the process.17

Therefore, we propose the use of more novel nonlinear
dimensionality reduction techniques, namely, the autoencoder.
In an autoencoder, the subspace is identified without
correlation to the batch product quality (i.e., the target we
would like to predict, unlike in PLS); however, it is expected
that the autoencoder has the potential to fully express any
nonlinear relationships within the sensor data, thus reproduc-
ing a latent space more illustrative of the critical data selected
through initial data screening.
3.3. Autoencoder Construction. First, we will introduce

the structure of the autoencoder. For a given input (the
process data) matrix X, we obtain a projection Z and a
reconstruction X′. As illustrated in Figure 2, an autoencoder is
defined by two neural networks:18 an encoder which is defined
by a function F(X) = Z, where X and Z are the respective
inputs and outputs of the network and a decoder which is
defined by a function G(Z) = X′, where Z and X′ are the
respective inputs and outputs of the network. The training
objective of an autoencoder is defined by a cost function in
which the distance between the input and its reconstruction
error is to be minimized. Henceforth, the cost function
assumed for the construction of the autoencoder will be the

mean squared error; for an input of n datapoints, the error
=E x x( )

n
1 2 and the activation function applied to all

hidden layers is ELU (exponential linear unit) defined by

{= >
<x x x

e xELU( ) if 0
( 1) if 0x .19 A condition must be

enforced on the model to copy the input data as its output
(i.e., reconstruct the data set), in the interest of extracting
useful properties and characteristics from the process data.
The structure of an autoencoder is of critical importance to

its performance. It was clear that a maximum and minimum
limit must be imposed on the acceptable number of latent
variables that can be used within machine learning models to
predict batch quality. If these bounds are not set, significant
problems arise with trivializing the data by eliminating
correlations and causing difficulties with interpretation within
the predictive models. To identify the optimal autoencoder
structure, Bayesian optimization was employed to optimize the
number of layers and neurons within each layer as well as other
hyperparameters including the learning rate and the number of
epochs. A detailed introduction to Bayesian optimization can
be found in a previous study.20 It was found that there are two
specific structures resulting in the same minimum loss
function; henceforth, they were both adopted in this work
for further investigation and summarized in Table 1 and
named Autoencoder 1 and Autoencoder 2, respectively. These
two autoencoders represent 16 and 4 latent variables,
respectively. The methodology for constructing the autoen-
coder employed in this study does not require prior knowledge
of any previous data sets, meaning that the model structure and
hyperparameters were adaptable to the specific data set from
which the latent space was being extracted.
3.4. Data-Driven Regression Model Construction.

3.4.1. Heteroscedastic Noise Neural Network. Let us now
describe the details of how the HNN generates viscosity
predictions. HNNs employ the traditional approach to
predictive applications using artificial neural networks but
differ in that they use probabilistic modeling to represent the
data uncertainty, which results from the random nature of the
studied system, and is irreducible.21 The ability of HNNs to
provide a meaningful uncertainty estimate for each prediction
is attributed to their modified loss function (eq 1) in which a

Figure 2. Diagram of a general autoencoder and its respective
components.
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Gaussian negative log likelihood term is embedded within the
traditional ANN’s loss function:22
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where σ(xi) represents the estimated standard deviation of the
HNN for input (latent vector) xi; yi is the measured value of
viscosity for xi; and μ(xi) is the predicted viscosity for xi.
3.4.2. Bayesian Neural Network. BNNs are another variant

of ANNs built upon the belief that the frequentist approach to
ANN predictions does not fully characterize the data set (i.e.,
the model cannot be represented by a single structure with
fixed parameters), so it is necessary to represent the model
parameters with a probability distribution.23 The distributions
are applied to model parameters via Bayesian inference, where
the prior beliefs about the parameters are updated to posterior
distributions after new information becomes available. For
example, D corresponds to the newly available data and p(θ) to
the prior beliefs about the parameters, whose probabilities may
be updated upon receiving new data. This is expressed via
Bayes’ theorem:

| = | ×
P D

P D P
P D

( )
( ) ( )

( ) (2)

where P(θ) represents the probability that the prior beliefs
hold true, P(D | θ) is the probability of observing new data
given the prior beliefs and holds within the data uncertainty of
the model, P(D) is the probability that new data will be
observed, and P(θ | D) is the probability that the prior beliefs
hold, given the newly available data.24 In practice, a BNN is
trained approximately. One approach is encompassed by the
evidence lower bound (ELBO). The idea of the ELBO is to
learn an approximation of the true posterior. Maximization of
the ELBO, which acts as an objective function for BNN
training, minimizes the distance (specifically, the KL
divergence) between the true posterior and the approximation
that we seek to identify. Typically, the approximating posterior
is chosen to belong to the family of Gaussians such that once
identified the posterior distribution over parameters is
parameterized by a mean and variance. This is different to
the conventional ANN, which assumes a point estimate for

each model parameter. A detailed introduction to BNN
construction can be found in a previous study.25

3.4.3. Gaussian Process. A GP is a type of continuous
stochastic process defined as a set of random variables,
represented by matrix F, with inputs represented by matrix X
such that all finite subsets of the random variables follow a
multivariate normal distribution.26 A GP is considered to be
nonparametric, where the parameters of the model are set by
the input data set, from which it maps nonlinear features from
the input to the output matrices.27 Similar to the BNN, the GP
is fully probabilistic and relies on Bayesian inference for its
predictive ability. A difference between the BNN and the GP’s
application of Bayesian inference is that a GP applies a prior
over the input−output relationships as opposed to the BNN’s
application prior to unknown parameters. A prior in a GP is
specified through a mean and a covariance function where the
covariance function relates the covariance between random
variable pairs.26 In this work, the GP covariance function was
selected as a Matern 5/2 kernel, with the associated parameters
estimated by maximizing the marginal log likelihood.28 A
detailed introduction to GP construction can be found in a
previous study.29

3.4.4. Metrics for Comparison. It is essential that
appropriate metrics are chosen to evaluate the probabilistic
predictive models. This allows for a consistent, transparent
comparison between each model. The objective is to accurately
predict batch quality and associate each prediction with an
uncertainty metric representing the confidence of the model in
its predictions. Hereafter, the following metrics will be defined
to establish a consistent method of comparison between soft
sensor models.
The accuracy of the predictive models will be estimated

using the mean average percentage error (MAPE):

=
| |

=

xy

y
MAPE

( )i

i

N
i

i1 (3)

The distribution of potential viscosity values is measured as
the percentage uncertainty, which can also be interpreted as a
scaled coefficient of variation:

=
=

x
x

PPU
3 ( )

( )i

N
i

i1 (4)

It is important to note that the PPU was not considered to
be a priority in determining the best performing model as long
it is approximately 25−40%. This range represents the
variation of the data generating process, which has been
estimated from offline viscosity measurements within the
factory.
Intuitively, the model’s uncertainty estimate should also

cover the deviation from the mean prediction to the
industrially measured viscosities with a given probability. The
probability with which a model achieves this is known as the
coverage probability. The overall probability that a model’s
prediction will lie within a region close to the true viscosity
measurement is known as the coverage probability.30 This
region is defined by the model’s uncertainty boundaries, and
the coverage probability is expressed as:

= > | |x xP yCP (3 ( ) ( ) )ii i (5)

Given that the predictive distributions constructed by the
soft sensor are (approximated) as Gaussian, and both the CP

Table 1. Representation of the Parameters Used for the
Construction of the Autoencoders

hidden
layer

number of
nodes learning rate epochs

autoencoder 1:16 latent
variables

1 1404 1.477 × 10−3 782
2 94
3 50
4 16
5 50
6 94
7 1404

autoencoder 2:4 latent
variables

1 977 2.836 × 10−3 884
2 231
3 48
4 4
5 48
6 231
7 977
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and PPU are defined with 3σ(xi), in theory, CP > 0.997.30

However, because of the limitations of samples and potential
for the true data generating distributions to be unsatisfactorily
described by a Gaussian, a credible predictive model was
deemed to satisfy CP > 0.8.
3.4.5. Model Training and Validation. The HNN and the

BNN utilized the same Bayesian optimization scheme as the
autoencoder in order to identify their best structure and
hyperparameters.31 All the predictive models were trained
using the α data set, which consists of 30 batches. The model
structure performance was evaluated using cross-validation
techniques, namely, “leave 2 out” cross-validation.32 This
involved isolating a subset of two unique batches from the
original set for validation and forming a new data set

containing the other 28 batches, which was used for training.
Overall, there are 435 combinations of training and validation
subset splits to train on and predict, so the average
performance is calculated by averaging over the different
combinations. This method increases the accuracy in
estimating the general predictive capabilities of a given
model structure because it minimizes bias from evaluating on
a single training and validation split. Once cross-validation of
the soft sensors was completed and the model structure was
selected, the β and γ data sets were used to validate and
compare performance of all the three soft sensors.
It is worth noting that when the soft sensor is applied to

monitor a process with a different product or a different
sampling time, it is possible that the soft-sensor’s performance

Table 2. Structures and Performance of the Soft Sensors alongside the Cross-Validation Results on the α Data seta

regression model HNN BNN GP

number of hidden layers 2 2 N/A
number of nodes [layer 1, layer 2] [31, 3] [2 J, 2]
learning rate 0.0125 0.01
activation function Sigmoid ReLU
number of epochs 160 100 + 50 J
MAPE % [training, validation] − 16 LV [7.8, 10.0] [9.4, 12.1] [9.9, 9.3]
PPU % [training, validation] − 16 LV [28.9, 28.3] [0, 5.53] [23.1, 22.9]
CP [training, validation] − 16 LV [1, 1] [0, 0.22] [1, 0.94]
MAPE % [training, validation] − 4 LV [10.2, 12.0] [10.7, 11.6] [11.1, 9.7]
PPU % [training, validation] − 4 LV [36.3, 36.4] [0, 2.8] [25.3, 25.3]
CP [training, validation] − 4 LV [1, 1] [0, 0.16] [1, 0.99]

aJ refers to the number of latent variables. Results are dependent on the use of the specific autoencoder (one with 16 latent variables, the other with
4 latent variables).

Figure 3. HNN soft sensor predictions against the measured values for data sets β (a) and γ (b) with 16 latent variables, and for data sets β (c) and
γ (d) for 4 latent variables. Error bars represent one standard deviation.
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is deteriorated. However, in this study, based on the industrial
experience, it is confirmed that data sets β and γ are sufficiently
similar to data set α such that the quantitative metrics are the
same (MAPE ≤ 15%, 20 ≤ PPU ≤ 30, CP ≥ 0.8). It should be
also noted that unlike the constraints on the CP and MAPE,
the constraint on the PPU was not definitive and was intended
to act as a guide, so small deviations were acceptable.
In this work, the autoencoder and HNN models were

implemented using PyTorch v1.10.0; the GP models used GPy
v1.9.9, and the BNN models were constructed using torchbnn
v1.2.0. Mathematical operations and data formatting were
completed using NumPy v1.20.3, Pandas v1.3.4, and
Matplotlib v3.4.3.

4. RESULTS AND DISCUSSION
The final model structures of the HNN and BNN after
Bayesian optimization were extracted and summarized in Table
2. The cross-validation performance of the three soft sensors is
also listed in Table 2. It is noted that for very few sets using 16
latent variables, the GP does not perform well. This will be
discussed in detail in Section 4.2.1.
4.1. Results of the HNN-Based Soft-Sensor. The final

structure of the HNN used for validation was identical for both
the 16 and 4 latent variable autoencoders with the exception of
the size of the input layer. The HNN structure, activation
function, epochs, MAPE, PPU, and CP are shown in Table 2.
4.1.1. Validation Using 16 Latent Variables. The

predictions of the soft sensor have been plotted in Figure 3
with error bars representing one standard deviation. As shown
in Figure 3a, the soft sensor is capable of predicting β data set’s
batch quality to a high degree of accuracy on data derived from
the same process as the training set (α), with an average
MAPE of 11.3%. Similarly, the uncertainty estimations average
to ±26.0% for three standard deviations (±8.67% for one
standard deviation). Notably, 88% of the datapoints for the
measured viscosities are contained within 2 standard devitaions
of the predictions. This means that the soft sensor’s predictions
are lying within the acceptable range of values determined
from the experimental procedure; the expected standard
deviation of measurements taken for the viscosity is >±8%
because of the standard experimental errors (i.e., uncertainties
of measurement equipment and human error in experiments).
The significance of this is such that the soft sensor has
successfully replicated the error within the process data in its
predictions without overfitting the measurement noise. The
MAPE, PPU, and CP for the HNN’s validation results of the β
data set can be found in Table 3.
A similar conclusion can be drawn of the model capacity to

predict the batch quality of the γ data set (different product
variant, see Figure 3b) as to that of the β data set. The results
indicate slightly worse performance on γ with an average
MAPE of 15.5%; this, however is expected due to the data
being derived from a different process. The model also seems

to provide less overlap between measured data points and the
uncertainty associated with the predictions, with only 55% of
them overlapping for two standard deviations. However, this
value is increased to 100% for three standard deviations,
indicating that the soft sensor is still able to provide a
reasonable degree of reliability. The MAPE, PPU, and CP for
the HNN’s validation results of the γ data set can be found in
Table 3.
4.1.2. Validation Using Four Latent Variables. The

predictions of the soft sensor have been plotted on Figure
3c, d with error bars representing one standard deviation.
From Figure 3, it is clear that the four latent variable HNN
model possesses satisfactory predictive capabilities with
averaged MAPE values of 8.3% and 10.1% pertaining to the
β and γ data sets, respectively. The model predictions and the
measured values have significant overlap for almost every batch
using one standard deviation (displayed as error bars). These
results suggest a high degree of accuracy for the model’s
predictions, which provide confidence in the HNN’s
proficiency in predicting batch quality.
However, it is noted that there is little difference in the

HNN’s predictions across the different batches in the γ data
set. There are several possible explanations for this behavior,
one of which is that this reflects a lack of information being
captured in the dimensionality reduction process; as can be
seen in later sections of the paper, this is a recurring issue
discussed in length. In this analysis, it is evident that the 4 LV
HNN is a promising contender for its use in early estimation of
batch quality for industrial processing. A quick comparison
with the 16 LV HNN results reveals a decrease in MAPE and
an increase in PPU; this is to be expected as using less
information to train the HNN will lower the risk of overfitting
to the training data set (corresponding to the lower MAPE),
but will also lower the confidence of its prediction
(corresponding to the higher PPU); hence, it will increase
the model’s accuracy but reduce its confidence in its
application to new data sets, provided the nature of the new
data set shares similarities with the training data set. However,
as MAPE is a more important metric than PPU, the current
result suggests that the 4 LV-based HNN soft-sensor is more
promising for future industrial applications.
Overall, it was anticipated that the HNN would provide

better performance on the α and β data sets than on the γ data
because of them both being obtained from the same process
line, meaning their characteristics should be similar. Even
though the data sets were obtained at different times of the
year with different recording frequencies (α data set recorded
once per second, β data set recorded once per two seconds),
the performance on the β data set would indicate that this had
little effect on the model’s capacity to accurately predict batch
quality, thus meaning that the inherent features of the process
data are similar. In Figure 3a, d, it can be seen that there is little
variety in the estimation of viscosity made by the HNN soft-
sensor. This could be attributed to the nature of the
autoencoder as viscosity is not taken into account when
extracting the feature space of the data set provided. This
leaves the possibility that the important physical relations
between the sensor data and the viscosity, that are necessary
for making accurate predictions, are partially lost when
reducing the dimensionality. A second explanation could be
that there is no identifiable difference between the features of
each batch that would give rise to a reason for the model to
predict largely different viscosities, as ideally all the batches

Table 3. Results of the HNN-Based Soft-Sensor When
Validating on β and γ

data set MAPE % PPU % CP

16 latent variables β 11.3 26.0 1
γ 15.5 26.8 1

4 latent variables β 8.3 35.1 1
γ 10.1 30.4 1
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should be operated under similar conditions so that product
quality should be close to the specification target.
4.2. Results of the GP-Based Soft Sensor. 4.2.1. Vali-

dation Using 16 Latent Variables. For GP training, Batch 26
presented itself as an outlier, and thus, the MAPE and PPU
were calculated both with and without its inclusion. Including
Batch 26, the MAPE and PPU for the α data set were 147.8%
and 185.8%, respectively. Excluding the outlier, the values
become much closer to the expected results being 9.25% and
22.92%. The coverage probability was in the acceptable range
with its value being 0.94. It is worth noticing that Batch 26 was
not found to be an outlier when building the HNN soft-sensor,
suggesting that the GP soft sensor could be more sensitive to
changes of data and may be valid within a narrower operational
range.
Unfortunately, the model failed to generalize with respect to

accurately predicting the viscosity of the β and γ batches with
the mean absolute percentage error of β being close to
29,000% and γ being close to 1600%. The coverage probability
for both scenarios was 0. Upon further investigation into why
this occurred, it was observed that there was a large degree of
separation between the data sets identified in terms of the
latent space. This could have caused the model to incorrectly
identify and misinterpret correlations, resulting in large
inaccuracies in the predictions of the batch viscosities.
4.2.2. Validation Using Four Latent Variables. The

predictions of the GP soft sensor have been plotted in Figure
4 with error bars representing one standard deviation. The
results are as shown below in Figure 4a, b and are tabulated in
Table 4.

Unlike when using 16 latent variables, the use of smaller
latent spaces drastically improved the performance of the GP
soft sensor, making it a competitive option. The predictive
capabilities of the GP are satisfactory with MAPE and PPU
values of 10.5% and 26.0% for the β data set and 10.3% and
23.8% for the γ data set. These uncertainty estimates are fairly
representative of the data uncertainty contained within the

data set, which has been evaluated to be approximately 30%
(three measurement standard deviations). In accordance with
the comparison metrics, a model can be defined to be suitable
if CP > 0.8. This is fulfilled by the GP, possessing high
coverage probabilities of 0.94 when validating on the β data set
and a value of 1 when validating on the γ data set. In Figure 4b,
it was observed that predictions on γ maintained a relatively
constant value with little deviation from a set point, whereas β
predictions exhibited increased variation. This phenomenon
was observed within the other machine learning models and is
discussed in Section 4.4. Overall, this outcome provides
confidence in the GP soft sensor, presenting high accuracy and
high coverage probabilities while generalizing well to data sets
obtained during different seasons and process lines.
In addition, a further investigation reveals that the MSE (i.e.,

mean squared error) in the reconstruction of the autoencoder
is similar for the 16 and 4 LV; therefore, it can be interpreted
that the decompositions capture similar amounts of
information. This is reinforced by the sparsity in the 16 LV
latent space, indicating that a degree of redundancy exists when
compared to the 4 LV latent space, which was found to be
more densely populated. It is known that GPs perform well
with low dimensional input spaces because of the non-
convexities associated with GP training, so it is intuitive that
the GP will perform worse using the larger latent space.
4.3. Results of the BNN-Based Soft-Sensor. The BNN

structure, activation function, epochs, MAPE, PPU, and CP are
shown in Table 2, where the testing results indicate poor
uncertainty coverage. Although the percentage errors seem
acceptable, the lack of capability for the model to estimate the
inherent error associated with its predictions leads to a lack of
reliability in its application as a soft sensor.
4.3.1. Validation Using 16 Latent Variables. The

predictions of the BNN soft sensor have been plotted in
Figure 5 with error bars representing one standard deviation.
From Figure 5, it can be reasoned that the BNN-based soft
sensor fails to serve its purpose as, for predictions on both the
β and γ data sets, the coverage is unacceptably low with values
of 0.56 and 0.18, respectively. This result is significant in that
there is an unreasonable overconfidence in the soft sensor’s
predictions, which fails to represent the hypothesized
probability distribution of viscosity values. Despite this, the
MAPE of the β data set is comparable to that of the HNN
boasting a value of 10.3%; however, as can be seen in Figure
5a, there is little variation in the value of the predictions

Figure 4. GP soft-sensor predictions against the measured values for batch data for data sets β (a) and γ (b) using a GP with four latent variables.
The error bars represent one standard deviation.

Table 4. Results of the GP-Based Soft Sensor When
Validating on β and γ

data set MAPE PPU CP

4 latent variables β 10.5 26.0 0.94
γ 10.3 23.8 1.0
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generated by the BNN model as it has seemingly chosen a
mean viscosity value from the inputted training data as an
attempt to increase the accuracy of the soft sensor. When the γ
data set is used for validation, the responsiveness of the model
output to model input is increased over data set β. This is
shown by Figure 5b; a potential reason for this occurrence is
that the γ data are obtained from a different product than the
training data so there may be noticeable variability between the
input data provided to the BNN.
4.3.2. Validation Using Four Latent Variables. The

predictions of the soft-sensor have been plotted in Figure 5
with error bars representing one standard deviation, and the
important metrics are shown in Table 5.
Similar to the conclusion of the BNN-based soft sensor

model developed using 16 latent variables, constructing the
model using 4 latent variables results in a failure to serve its
purpose. The BNN consistently generated low uncertainty
estimations giving rise to low coverage probabilities as defined

previously in Section 3.3.1 thus, it follows that little reliability
can be held in the model’s predictions of batch quality. In
addition, the model suffers from an identical problem to the
BNN trained using 16 latent variables where the selection of a
mean viscosity value would be prioritized when reducing error
rather than attempting to replicate the true trend. A possible
reason for the model’s failure to replicate the viscosity trend is
that there is too little information available within the latent
variables provided. Evidence to support this is found in Figure
5b, where the soft sensor predictions (constructed using 16
latent variables) vary significantly. Therefore, it may be true
that for a BNN, larger latent spaces are required to develop a
more accurate soft sensor.
4.4. Soft Sensor Comparison and Selection. From the

results shown in Section 4.3, it is clear that the BNN-based soft
sensor fails regarding its functionality for batch quality
prediction because of its poor representation of the inherent
uncertainties present within the data sets. Therefore, the
selection process is reduced to a comparison of the HNN-
based soft-sensor and the GP-based soft-sensor and between
using 4 and 16 latent variables. Given that the GP-based soft-
sensor is unable to function accordingly when using the 16 LV
derived from the autoencoder, only the 4 LV model will be
considered for this application. It is noticed that for some data
sets the HNN-based soft-sensor yields nonvarying batch
quality predictions over all the batches, as shown in Figure
3d. A similar behavior of predicting constant viscosity was also
observed for the BNN- and GP-based models, so it is not

Figure 5. Plots of the soft sensor predictions against the measured values for batch data for data sets β (a) and γ (b) using the BNN with 16 latent
variables and for data sets β (c) and γ (d) with 4 latent variables. The error bars represent one standard deviation.

Table 5. Results of the BNN-Based Soft-Sensor When
Validating on β and γ

data set MAPE PPU CP

16 latent variables β 10.3 6.0 0.56
γ 17.6 8.6 0.18

4 latent variables β 12.3 3.9 0.06
γ 10.0 2.1 0.18
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possible to disregard the importance of this phenomena, and
any physical significance must be investigated. The uncertainty
associated with the industrial viscosity measurements is
moderately high, and it is plausible that the model is unable
to determine any statistically significant difference between
viscosity of each batch for a given data set, which would give
rise to a constant (i.e., averaged) viscosity prediction. Notably,
when validating on the γ data set using four latent variables, all
three machine learning models’ predictions were almost
invariant; to determine the cause of this, the extracted latent
space for this data set was studied, revealing almost constant
values across all the batches. Therefore, it is possible that the
true viscosity of this data set is the same over all batches, but
due to measurement error, they were recorded as different
values. Within the scope of this study, preference is given to
varying batch quality predictions because it cannot be
confirmed that the explanation of a universally constant
viscosity is true.
It is noted that the uncertainty estimates for each of the

models under study lies within the 30 to 40% region for three
standard deviations. This is acceptable because it reflects the
inherent uncertainty in the obtained industrial data, which is
estimated to be between ±8 and ±13.3% for one standard
deviation (see Section 3.4.4). Therefore, there is no apparent
difference between the different model capabilities in
estimating the uncertainty associated with a prediction, and
so this metric is neglected from further analysis in this
comparison. The coverage probability for all GP- and HNN-
based models is close to 100% in all cases; this, alongside the
reasonably low MAPEs, provides confidence that all models are
suitable for the desired application, so the selection of the most
appropriate soft sensor becomes strictly a case of which model
provides the lowest percentage errors with varying viscosity
predictions for the γ and β data sets.
Both the GP (4 LV) and HNN (16 LV and 4 LV) soft

sensors display satisfactory predictive capabilities. When
predicting the β and γ data sets, the GP has a MAPE of
10.5% and 10.3%, respectively. The HNN models (16 LV and
4 LV) possess MAPEs of 11.3% and 8.3% for the β data set,
respectively, and 15.5% and 10.1% for the γ data set. Although,
very useful in determining the effectiveness of a model, the
MAPE does not convey outliers within the data set. Ideally, the
chosen model should be consistent in its predictions over all
batches (accounting for expected variation between batches),
and so, the results from each model are inspected for such
outliers. It was determined that no model gave unreasonable
predictions for a batch in any data set; the highest individual
batch MAPE values are 23%, 27%, and 27% for the 16 LV
HNN, 4 LV HNN, and the GP model, respectively. Thus, it is
concluded that no model provides any outliers significant
enough to warrant concern in the model’s consistency.
Using the average MAPE results, the 16 LV HNN-based

soft-sensor provides the worst results; however, given that all
three considered models provide similar MAPE’s, any further
conclusion based on these small differences would be specific
to this case study and so will not be made. The GP model
provides almost identical MAPEs for both the γ and β data
sets, even though the process from which γ is obtained differs
from both α and β. This implies that the GP model is well
generalized, thus removing the restriction of its use in
processes similar to that of the training data set (α). The 4
LV HNN model gives slightly better MAPE results for the β
predictions but slightly worse predictions for the γ data set,

indicating that it is slightly less generalized; however, as this
increase in MAPE is small, it is not reasonable to regard this as
conclusive evidence outside of this case study. Therefore,
through the current comparison, it was found that the 16 LV
HNN soft sensor, the 4 LV HNN soft sensor, and the 4 LV GP
soft sensor can provide good prediction accuracy and reliability
for viscosity prediction. However, specific to the comparison of
the GP and HNN, the HNN’s predictive ability is found to be
more robust with respect to the changing of latent space
dimensions, whereas the GP is only applicable to a low latent
space dimension. As previously discussed, a lower latent space
dimension may contain less information of the original process.
Thus, using a soft senor which is applicable for higher latent
space dimensions may offer greater flexibility and provide
additional benefits if more data sets are available. As a result,
the HNN could be considered as a better option in such cases.
Finally, to highlight the performance of the current soft-

sensor, a soft-sensor designed in our previous work was used as
a benchmark.33 In our previous work, MPLS was used as a
linear dimensionality reduction technique feeding into either
an HNN, BNN, or GP. The MPLS-GP results are used to
benchmark with the results obtained from this autoencoder
study as this soft sensor model performed the best with regard
to the quantitative metrics. Comparing the MPLS-GP results
with those of the 4 LV autoencoder-based HNN model, it can
be found that the MPLS model provides a lower coverage of
residuals because of increased confidence in its predictions
(12% and 9% lower CPs for β and γ). Also, the MAPE of the
autoencoder model is decreased by 1.7% and 1.3% for β and γ,
respectively. Using the quantitative metrics to compare the two
dimensionality reduction methods appears to suggest a slight
improvement favoring the autoencoder; however, it has been
observed that the MPLS-GP suffers from stoic predictions,
more so than the autoencoder models. The MPLS-GP requires
a smaller latent space to achieve its optimal predictions, so the
lack of responsiveness could indicate loss of information when
reducing the dimensionality of the input data so drastically. In
contrast, the autoencoder study presents the HNN’s ability to
use both larger and smaller spaces, increasing the model’s
robustness.

5. CONCLUSIONS
In conclusion, autoencoders are a viable dimensionality
reduction method and can be used in conjunction with
machine learning regression models to build a robust soft
sensor able to predict the outcomes of industrial processes
such as batch quality. In our previous work,33 a PLS-based
dimensionality reduction model was investigated but the
robustness of the model was limited, presenting flaws in the
sensor’s responsiveness and generalization capabilities. This is
mainly because the investigated product is a highly viscous,
non-Newtonian fluid; thus, using an autoencoder proved useful
because the viscosity and the process variables are nonlinearly
related. As shown in this work, the autoencoder can effectively
produce small latent spaces, which accurately represent large
data sets, thus removing the problems associated with high
dimensionality model regression. Through the use of data-
driven models and nonlinear dimensionality reduction
techniques, it is possible to reduce the capital cost in expensive
process analytical equipment, whilst identifying a high-quality
solution to industrial problems. Through cross-validation, it is
seen that the HNN and GP models have both high accuracy
and high reliability when predicting viscosity.
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The developed soft sensors were also found to be able to
predict different processes operated over a broad time span
with a relatively large viscosity variation, thus presenting a
significant benefit over conventional linear regression-based
dimensionality reduction and modeling methods. From the
proposed machine learning models (HNN, BNN, and GP), it
was concluded that the BNN was inadequate in its
implementation as a soft sensor, whereas the HNN and GP
succeeded in meeting all requirements defined by the metrics
proposed in this work. Specifically, both models had high
probability coverages, low errors, and uncertainty estimates
that capture the variance in data generation. Meanwhile, the
HNN offers extra flexibility when the number of latent
variables cannot be firmly determined. Overall, this work
demonstrates the innovative combination and potential impact
of advanced artificial neural networks on industrial data
analysis and batch process monitoring.
Finally, in terms of the practical use of the soft sensor, the

soft sensor was trained and validated using the critical region
and sensors identified. The critical time region is located
shortly after the premixing phase of the batch (close to the
beginning), and through latent variables analysis, it is found
that there exists distinct difference between the critical region
and the noncritical region. As a result, by monitoring the
change of latent variables in real-time, it is feasible to activate
the soft sensor in real-time for early batch quality predictions.
Moreover, a statistics-based activator can be designed to
systematically identify when to switch on and off the soft
sensor. This will be investigated in future work.
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