Heliyon 8 (2022) e12013

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Review article

CellPress

Chemical characteristics of the sesquiterpenes and diterpenes from Lauraceae family and their multifaceted health benefits: A review

Haowei Feng^{a,1}, Yiping Jiang^{b,1}, Huihui Cao^{a,c}, Yuqi Shu^a, Xiaoyu Yang^a, Daoqi Zhu^{d,*}, Meng Shao^{a,e,**}

^a Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

^b Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China

^c Traditional Chinese Pharmacological, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine,

Southern Medical University, Guangzhou 510515, China

^d School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

e Tumushuke Hospital, The Third Division Hospital of Xinjiang Production and Construction Crops, Tumushuke 843900, China

ARTICLE INFO

Keywords: Lauraceae Sesquiterpenes Diterpenes Traditional application Biological activities

ABSTRACT

Lauraceae is a large family with significant economic and medicinal value. Bioactive ingredients from Lauraceae plants have contributed greatly to medicines, food nutrients and fine chemical products. In recent years, quite a few sesquiterpenes and diterpenes with unique structures have been achieved from Lauraceae and their potential benefits are embodied in a wide range of health areas. To our knowledge, there is no review to summarizes these constituents and their biological effects systematically. This current work aims to classify and ascribe the structural types and bioactivities of the identified sesquiterpenes and diterpenes. Herein, a total of 362 sesquiterpenes and 69 diterpenes were comprehensively complied. The various bioactivities could be recognized as cytotoxicity, anti-proliferation and/or anti-apoptosis, anti-inflammation, anti-oxidation, anti-bacterium, etc. This updated data could serve as a catalysis of these sesquiterpenes and diterpenes for the future medical and industrial applications.

1. Introduction

Lauraceae, a large family belonging to Magnoliidae, comprises 2000–2500 species grouped to 45 genera. Most plants of Lauraceae are pantropic evergreen arbor, distributed natively in mountain and rainforests of southern and southeastern Asian, Australia, Africa and Southern America (Figure 1). In China, there are 25 genera, 445 species spreading across the middle and low altitude mountains from Southwest to South region. Among them, *Sinosassafras* and *Sinopora* are endemic to China, while *Laurus* and *Persea* are the commercially cultivated genera (Figure 2A–C) [1].

Due to the multifaceted importance of Lauraceae plants, a broad range of studies on comprehensive phytochemical and bioactive of Lauraceae plants are carried out. Our literature retrieval manifested that the genera of *Cinnamonum*, *Persea*, *Laurus*, *Litsea*, *Lindera*, *Neolitsea* and *Ocotea* were intensively studied, while *Nectandra*, *Caryodaphnosis*, Beilschmiedia, Machilus, Crytocarya and Pleurothyrium barely had a handful of scientific investigations. Terpenes (monoterpenes, sesquiterpenes and diterpenes), phenylpropanoids, polyphenols (lignans, flavonoids, dibenzocycloheptanoids, coumarins and their glycosides), alkaloids, polysaccharides and aliphatics [2, 3, 4, 5] encompassed the predominant constituents of this family, and which pharmacological activities covering the antioxidation, antibiosis, anti-inflammation, cytotoxicity, neuroprotection, hepatoprotection, cytokine modulation and pain soothing [6, 7, 8, 9]. Although phenylpropanoids and polyphenols are the perceived best-known ingredients, sesquiterpenes and diterpenes have become the emerging representative constituents, as for their various unprecedent structures, multiple health-beneficial bioactivities and potential chemotaxonomic significance in the phytology study.

Up to now, there are several reviews concluded the traditional uses, phytochemistry and pharmacological activities of genus *Cinnamomum*, *C*.

¹ Equal contributions.

https://doi.org/10.1016/j.heliyon.2022.e12013

Received 4 March 2022; Received in revised form 15 September 2022; Accepted 23 November 2022

2405-8440/© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: zhudaoqi@163.com (D. Zhu), shaomeng_smu@163.com (M. Shao).

Figure 1. Distribution of Lauraceae plants around the world (the red zone, original map downloaded from http://bzdt.ch.mnr.gov.cn/index.html).

Figure 2. Three representative Lauracea plants in China. (A) Cinnamomum cassia Presl; (B) Cinnamomum burmannii (Nees) BL; (C) Cinnamomum camphora (L.); Presl.

Table 1. Examples of classic T	CM prescriptions of Laura	ceae plants.	
Herbal	Prescription name	Traditional and clinical uses	Documentation
Barks of C. cassia	You Gui Pills	Treating deficiency of kidney Yang, sour and cold waist and knees, low spirit, fear of cold, impotence, spermatorrhea, frequent and clear urination	Jing Yue Quan Shu
	Su Zi Jiang Qi Soup	Treating the reducing of Qi and relieving asthma, stuffy chest and diaphragm, eliminating phlegm and relieving cough	Tai Ping Hui Min He Ji Ju Fang
	Shi Quan Da Bu Soup	Treating lack of Qi and blood, fatigue, cough, ulcers and ulcers, metrorrhagia and leakage	Tai Ping Hui Min He Ji Ju Fang
	Gui Fu Du Zhong Soup	Treating cold, backache, green tongue, contraction of scrotum and trembling	Hui Yue Yi Jing
Twigs of C. cassia	Shen Qi Pills	Treating backache, soft feet, adverse urination or excessive urination, impotence, premature ejaculation, light and fat tongue	Jin Gui Yao Lue
	Gui Zhi Fu Zi Soup	Dispel wind, warm meridians, help Yang and remove dampness	Shang Han Lun
	Ma Huang Soup	Treating cold and aversion, fever, headache and body pain, panting without sweat	Shang Han Lun
Root tubers of Lindera aggregata	Si Mo Soup	Treating Qi descending, distended and stuffy of chest and diaphragm, short of breath	Ji Sheng Fang
	Suo Quan Pills	Nourishing Yin and kidney, treating frequency of urination and nocturnal enuresis caused by kidney deficiency	Fu Ren Liang Fang
	Ge Xia Zhu Yu Soup	Promoting blood circulation and removing blood stasis, treating accumulation of mass caused by blood stasis	Yi Lin Gai Cuo
Fruits of L. cubeba	Bi Cheng Qie Powder	Treating stabbing pain and cold on abdomen and heart, soft limbs	Bian Que Xin Shu
	Bi Cheng Qie Pills	Treating weakness of spleen and stomach, discomfort of chest and diaphragm, anorexia	Ji Sheng Fang

Table 2. Sesquiterpenoids from the family Lauraceae

No.	Name	Species	Botanical parts	Ref.
Chain s	esquiterpenoids			
	Butanolides			
	(+)-(2 <i>E</i> ,3 <i>R</i> ,4 <i>S</i>)-2-(Dodec-11-ynylidene)-3-hydroxy-4-methylbutanolide	Machilus wangchiana	Barks	[29]
	(+)-(2 <i>E</i> ,3 <i>R</i> ,4 <i>S</i>)-2-(Dodec-11-enylidene)-3-hydroxy-4-methylbutanolide	Machilus wangchiana	Barks	[29]
	(+)-(2Z,3R,4S)-2-(Dodec-11-enylidene)-3-hydroxy-4-methylbutanolide	Machilus wangchiana	Barks	[29]
	(+)-(2Z,3R,4S)-2-(Dodec-11-ynylidene)-3-hydroxy-4-methylbutanolide	Machilus wangchiana	Barks	[29]
	(-)-(2Z,3S,4S)-2-(Dodec-11-ynylidene)-3-hydroxy-4-methylbutanolide	Machilus wangchiana	Barks	[29]
	ent-Litsenolide C ₁	Machilus wangchiana	Barks	[29]
	2-(1-Methoxy-11-dodecenyl)-penta-2,4-dien-4-olide	Lindera obtusiloba	Stems	[30]
	(2Z,3S,4S)-2-(11-Dodecenylidene)-3-hydroxy-4-methylbutanolide	Lindera obtusiloba	Stems	[30]
	(2E,3R,4R)-2-(11-Dodecenylidene)-3-hydroxy-4-methoxy-4-methylbutanolide	Lindera obtusiloba	Stems	[30]
)	Isoreticulide	Cinnamomum reticulatum	Leaves	[31]
	Tenuifolide A	Cinnamomum tenuifolium	Stems	[32]
	Isotenuifolide A	Cinnamomum tenuifolium	Stems	[32]
	Tenuifolide B	Cinnamomum tenuifolium	Stems	[32]
	Secotenuifolide A	Cinnamomum tenuifolium	Stems	[32]
	Litseasesquibutenolide	Litsea verticillata	Leaves, Twigs	[33]
	Other chain sesquiterpenoids			
	(2E,6E)-2,6-Dimethyl-10-methylene-dodecatrienoic acid	Ocotea minarum	Leaves	[34]
	Caparratriene	Ocotea caparrapi	Oil extract	[35]
	3S-(+)-9-Oxonerolidol	Cinnamomum camphora, Cinnamomum chartophyllum	Aerial parts	[36, 37
	Nerolidol	Ocotea caparrapi	Oil extract	[35]
onocy	rclic sesquiterpenoids			
	Litseane-type sesquiterpenoids			
	Litseaverticillol L	Litsea verticillata	Leaves, Twigs	[33]
	Litseaverticillol M	Litsea verticillata	Leaves, Twigs	[33]
	Litseaverticillol A	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol B	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol C	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol D	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol E	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol F	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol G	Litsea verticillata	Leaves, Twigs	[38]
	Litseaverticillol H	Litsea verticillata	Leaves, Twigs	[38]
	Litseachromolaevane B	Litsea verticillata	Leaves, Twigs	[39]
	Isolitseane A	Litsea verticillata	Leaves, Twigs	[40]
	Isolitseane B	Litsea verticillata	Leaves, Twigs	[40]
	Isolitseane C	Litsea verticillata	Leaves, Twigs	[40]
	Megastigmane-type sesquiterpenoids			
	Turpenionoside A	Cinnamomum cassia	Immature buds	[41]
	Wilsonol A	Cinnamomum wilsonii	Leaves	[42]
	(3 <i>S</i> ,4 <i>S</i> ,5 <i>S</i> ,6 <i>S</i> ,9 <i>S</i>)-3,4-Dihydroxy-5,6-dihydro- <i>β</i> -ionol	Cinnamomum wilsonii	Leaves	[42]
	(3S,5R,6R,7E,9S)-3,5,6,9-Tetrahydroxy-7-ene-megastigmane	Cinnamomum cassia	Leaves	[43]
	(3S,5R,6S,7E)-Megasifigma-7-ene-3,5,6,9-tetrol	Cinnamomum subavenium	Leaves	[44]
	Wilsonol B	Cinnamomum wilsonii	Leaves	[42]
	Wilsonol D	Cinnamomum wilsonii	Leaves	[42]
	Wilsonol G	Cinnamomum wilsonii	Leaves	[42]
	Wilsonol H	Cinnamomum wilsonii	Leaves	[42]
	$(3S, 5S, 6S, 9R)$ -3, 6-Dihydroxy-5, 6-dihydro- β -ionol	Cinnamomum wilsonii	Leaves	[42]
	(3S,5R,6S,7E,9R)-7-Megastigmene-3,6.9-triol	Cinnamomum cassia	Leaves	[43]
	Wilsonol E	Cinnamomum wilsonii	Leaves	[42]
	Wilsonol F	Cinnamomum wilsonii	Leaves	[42]
	Wilsonol C	Cinnamomum wilsonii	Leaves	[42]
	Lasianthionoside A	Cinnamomum wilsonii	Leaves	[42]
	(3S 5R 6S 7E)-3 5 6-Trihydroxy-7-megastigmen-9-one	Cinnamomum cassia	Barks	[45]
	Wilsonol I	Cinnamomum wilsonii	Leaves	[42]
	Wilsonol I	Cinnamomum wilsonii	Leaves	[42]
	(2P. QC) Magactiaman 5 and 2.0 dial 2.0 % D aluganyranogida	Cinnamomum wilsonii	Leaves	[42]
	(31, 33)-MCgasugman-3-Chc-3, 9-UI01 3-O-p-D-gluC0pyralloside		Leaves	42

Table 2 (continued)

Tuble 2	(continued)			
No.	Name	Species	Botanical parts	Ref.
53	(3S,4R,9R)-3,4,9-Trihydroxymegastigman-5-ene	Cinnamomum wilsonii	Leaves	[42]
54	(1R,2R)-4-[(3S)-3-Hydroxybutyl]-3,3,5-trimethylcyclohex-4-ene-1,2-diol	Cinnamomum cassia	Leaves	[43]
55	(1R,2R)-4-[(3R)-3-Hydroxybutyl]-3,3,5-trimethylcyclohex-4-ene-1,2-diol	Cinnamomum cassia	Leaves	[43]
56	Wilsonol K	Cinnamomum wilsonii	Leaves	[42]
57	Wilsonol L	Cinnamomum wilsonii	Leaves	[42]
58	Apocynol A	Cinnamomum wilsonii	Leaves	[42]
59	(+)-(6 <i>S</i> ,7 <i>E</i> ,9 <i>Z</i>)-Abscisic ester	Cinnamomum wilsonii	Leaves	[42]
60	Asicariside B ₁	Cinnamomum subavenium	Leaves	[44]
61	Staphylionoside D	Litsea cubeba	Twigs	[46]
62	Vomifoliol 9-O-β-D-glucopyranoside	Litsea cubeba	Twigs	[46]
63	Dihydrovomifoliol-9-Ο-β-D-glucopyranoside	Litsea cubeba	Twigs	[46]
	Bisabolane-type sesquiterpenoids			
64	3,4-Dihydroxy- β -bisabolol	Machilus zuihoensis	Stem woods	[47]
65	rel-(5R,7R)-l0-Desmethyl-1-methyl-1,10-dioxo-1,10-seco-11-eudesmene	Ocotea corymbosa	Unripe fruits	[48]
66	Azoridione	Laurus azorica	Aerial parts	[49]
67	(+)-β-Sesquiphellandren-12-oic acid	Ocotea minarum	Leaves	[34]
68	(+)-2-Methyl-6 [4-oxo-2-cyclohexen-1-yl]-2-(E)-heptenoic acid	Ocotea minarum	Leaves	[34]
69	(-)-Lanceolic acid	Ocotea minarum	Leaves	[34]
70	4-oxo-Lanceolic acid	Ocotea minarum	Leaves	[34]
71	4-Hydroxy-1,10-seco-muurol-5-ene-1,10-dione	Cinnamomum cassia	Barks	[50]
72	6-(2-Hydroxy-6-methylhept-5-en-2-yl)-3-(hydroxymethyl)-	Lindera benzoin	Leaves	[51]
	4-oxocyclohex-2-en-1-yl acetate			
73a/b	3-(Hydroxymethyl)-6-(5-(2-hydroxypropan-2-yl)-2-	Lindera benzoin	Leaves	[51]
	methyltetrahydrofuran-2-yl)-4-oxocyclohex-2-en-1-yl acetate			
74	(-)-Curcumen-12-oic acid	Ocotea minarum	Leaves	[34]
75	2-Methyl-6-(p-tolyl)heptane-2,3-diol	Cinnamomum chartophyllum	Aerial part	[52]
76	Litseachromolaevane A	Litsea verticillata, Cinnamomum cassia	Twigs, Barks, Leaves	[39, 50]
77	Cinnacasside A	Cinnamomum cassia	Barks	[45]
78	Bisabolene oxide	Phoebe porosa	Oil extract	[53]
79	$(1S, 3S, 5R, 6S)$ -11-O- β -D-Glucopyranosyl-14- <i>oxo</i> -dihydrophaseate	Litsea cubeba	Twigs	[54]
80	– ^a (CAS: 1300726-66-2)	Lindera strychnifolia	Roots	[55]
81	– ^a (CAS: 1300726-67-3)	Lindera strychnifolia	Roots	[55]
82	_ a,b	Lindera strychnifolia	Roots	[55]
	Elemane-type sesquiterpenoids			
83	Hiiranlactone C	Neolitsea hiiranensis	Leaves	[56]
84	Isofuranogermacrene	Lindera strychnifolia	Roots	[57]
85	Sericealactone	Neolitsea hiiranensis	Roots	[58]
86	Hiiranlactone A	Neolitsea hiiranensis	Leaves	[56]
87	de-O-Methylsericealactone	Neolitsea hiiranensis	Leaves	[56]
88	Linderolide F	Lindera strychnifolia	Roots	[59]
89	8-Hydroxyisogermafurenolide	Lindera strychnifolia	Roots	[28]
90	Hiiranlactone B	Neolitsea hiiranensis	Leaves	[56]
91	Hiiranlactone D	Neolitsea hiiranensis	Leaves	[56]
92	Isosericenine	Neolitsea sericea	Leaves	[60]
93	Lauroxepine	Laurus nobilis	Fruits	[61]
94	Spirafolide	Laurus nobilis	Fruits	[61]
	Germacrane-type sesquiterpenoids			
95	Litseagermacrane	Litsea verticillata	Leaves, Twigs	[39]
96	Shiromodiol-diacetate	Parabenzoin trilobum = Lindera triloba	Leaves	[62]
97	Shiromodiol-monoacetate	Parabenzoin trilobum = Lindera triloba	Leaves	[62]
98	Shiromool	Parabenzoin trilobum = Lindera triloba	Leaves	[62]
99	Costunolide	Laurus nobilis	Leaves	[63]
100	Anhydroperoxycostunolide	Laurus nobilis	Leaves	[64]
101	Lucentolide	Laurus nobilis	Leaves	[64]
102	Deacetyl laurenobiolide	Laurus nobilis	Leaves	[65]
103	Cyclodeca [b]furan,4,7,8,11-tetrahydro-3,6,10-trimethyl	Lindera strychnifolia	Roots	[57]
104	Sericenine	Neolitsea sericea	Leaves	[66]
105	Sericenic acid	Neolitsea sericea	Leaves	[66]
106	Deacetylzeylanine	Neolitsea parvigemma	Stems	[67]
107	Parvigemonol	Neolitsea parvigemma	Stem	[67]

Table 2 (continued)

Tuble				
No.	Name	Species	Botanical parts	Ref.
108	Linderalactone	Neolitsea hiiranensis, Neolitsea zeylanica, Lindera strychnifolia, Neolitsea parvigemma	Roots, Stems	[58, 68, 69, 70]
109	Litsealactone	Lindera strychnifolia	Roots	[71]
110	Zeylanane	Lindera strychnifolia	Roots	[71]
111	Parvigemone	Lindera strychnifolia, Neolitsea parvigemma	Roots, Stems	[72, 73]
112	Linderanlide C	Lindera aggregata	Root tubers	[74]
113	Zeylaninone	Neolitsea acutotrinervia = N. aciculata	Roots	[75]
114	Acutotrinol	Neolitsea acutotrinervia $= N$. aciculata	Roots	[75]
115	Pseudoneoliacine	Neolitsea hiiranensis Neolitsea villosa	Leaves, Roots	[56, 76]
116	Neoliacinolide A	Neolitsea hiiranensis, Neolitsea aciculuta	Leaves	[56, 77]
117	Neoliacine	Neolitsea aciculuta	Leaves	[77]
118	Linderoline	Lindera strychnifolia	Roots	[59]
119	Neoliacinolide B	Neolitsea aciculuta	Leaves	[77]
120	Neoliacinolide C	Neolitsea aciculuta	Leaves	[77]
121	Neoliacinic acid	Neolitsea aciculuta	Leaves	[77]
122	Linderanine B	Lindera aggregata	Root tubers	[74]
123	Linderanine A	Lindera aggregata	Root tubers	[74]
124	Linderanlide A	Lindera aggregata	Root tubers	[74]
125	Litseacassifolide	Litsea cassiaefolia	Barks	[78]
126	Pseudovillosine	Neolitsea kedahensis	Stems	[79]
127	Linderanlide B	Lindera aggregata	Root tubers	[74]
128	Acutotrinone	Neolitsea acutotrinervia $= N$. aciculata	Roots	[75]
129	(+)-Villosine	Neolitsea hiiranensis, Neolitsea villosa	Leaves, Roots	[56, 76]
130	Acutotrine	Neolitsea acutotrinervia $= N$. aciculata	Roots	[75]
131	Linderane	Neolitsea zeylanica, Lindera strychnifolia, Cryptocarya densiflora	Barks, Roots	[68, 71, 80]
132	Litseaculane	Lindera strychnifolia	Roots	[71]
133	Linderanlide D	Lindera aggregata	Root tubers	[74]
134	Linderanlide E	Lindera aggregata	Root tubers	[74]
135	Zeylanane	Lindera strychnifolia	Roots	[71]
136	Linderadine	Lindera strychnifolia	Roots	[71]
137	Pseudolinderadin	Cryptocarya densiflora	Barks	[80]
138	Zeylanidine	Neolitsea zeylanica, Neolitsea parvigemma,	Roots, Stems, Leaves,	[68, 70, 81]
139	Deacetylzeylanidine	Neolitsea parvigemma	Stems	[70]
140	(+)-Linderadine	Neolitsea Hiiranensis, Neolitsea villosa	Roots	[58, 76]
141	Neolitrane	Neolitsea parvigemma	Stems	[73]
142	Neolinderane	Neolitsea zeylanica, Lindera strychnifolia	Roots	[68, 71]
143	Pseudoneolinderane	Neolitsea parvigemma, Neolitsea villosa	Stems, Roots	[70, 76]
144	Zeylanicine	Neolitsea zeylanica, Neolitsea parvigemma,	Roots, Stems, Leaves	[68, 70, 81]
145	Neolindenenonelactone	Lindera aggregata	Roots	[82]
	Humulane-type sesquiterpenoids			
146	Litseahumulane B	Litsea verticillata	Leaves, Twigs	[39]
147	Litseahumulane A	Litsea verticillata	Leaves, Twigs	[39]
148	Humulene Epoxide III	Phoebe porosa	Oil extract	[53]
149	(2E,9E)-6,7-cis-Dihydroxyhumulan-2,9-diene	Cinnamomum cassia	Barks	[45]
	Other monocyclic sesquiterpenoids			
150	Isolinderalactone	Lindera aggregata	Roots	[83]
151	Zeylanine	Neolitsea zeylanica	Roots	[68]
Bicyclic	sesquiterpenoids			
	Oplopanane-type sesquiterpenoids			
152	Oplopanone	Neolitsea acuminatissima	Roots	[7]
	Oppositane-type sesquiterpenoids			
153	Octahydro-4-hydroxy-3R-methyl-7-methylene-R- (1-methylethyl)-1H-indene-1-methanol	Litsea verticillata	Leaves, Twigs	[39]
154	1 β ,7-Dihydroxyl opposit-4(15)-ene	Cinnamomum cassia	Buds	[41]
155	1 β ,11-Dihydroxyl opposit-4(15)-ene	Cinnamomum cassia	Buds	[41]
	Cyperane-type sesquiterpenoids			
156	(+)-Faurinone	Lindera glauca	Twigs	[84]

Table 2 (continued)

No.	Name	Species	Botanical parts	Ref.
157	Cinnamosim A	Cinnamomum cassia	Buds	[41]
158	3α -Hydroxyisoiphion-11 (13)-en-12-oic acid 5β -Hydroxy-4- oxo-11 (13)-dehydroiphionan-12-oic acid	Nectandra cissiflora	Barks	[85]
159	5β-Hydroxy-4-oxo-11 (13)-dehydroiphionan-12-oic acid	Nectandra cissiflora	Barks	[85]
160	Eudeglaucone	Lindera glauca	Twigs	[84]
	Eremophilane-type sesquiterpenoids			
161	4β , 5β , 7β - Eremophil-11-en-10 α -ol	Ocotea lancifolia	Leaves	[86]
162	10,11-Dihydroxyeremophilan-3-one 11- O - β -D-glucopyranoside	Lindera strychnifolia	Roots	[55]
163	(rel) -4 β ,5 β ,7 β -Eremophil-9-en-12-oic acid	Ocotea lancifolia	Leaves	[86]
164	(<i>rel</i>)-4β,5β,7β-Eremophil-1 (10)-en-12-oic acid	Ocotea lancifolia	Leaves	[86]
165	(rel)-4 β ,5 β ,7 β -Eremophil-1 (10)-en-2-oxo-12-oic acid	Ocotea lancifolia	Leaves	[86]
166	(<i>rel</i>)-4 β ,5 β ,7 β -Eremophil-9-en-12,8 α -olide	Ocotea lancifolia	Leaves	[86]
167	(rel) -4 β ,5 β ,7 β -Eremophil-9-en-12,8 β -olide	Ocotea lancifolia	Leaves	[86]
168	(<i>rel</i>)-4 β ,5 β ,7 β -Eremophil-9 α ,10 α -epoxy-12-oic acid	Ocotea lancifolia	Leaves	[86]
169	Valenc-l (l0)-ene-8,ll-diol	Litsea excelsa	Barks	[78]
	Cadinane-type sesquiterpenoids			
170	1β , 4β , 11 - Trihydroxyl- 6β -gorgonane	Cinnamomum cassia	Buds	[41]
171	rel-(45,65)-Cadina-1(10),7(11)-diene	Nectandra amazonum	Leaves	[87]
172	rel-(1R,4S,6S,10S)-Cadin-7 (11)-en-10-ol	Nectandra amazonum	Leaves	[87]
173	15-Hydroxy-α-cadinol	Cinnamomum cassia	Barks	[45]
174	(-)-15-Hydroxy-T-muurolol	Cinnamomum cassia	Barks	[45]
175	10-Hydroxyl-15- <i>oxo-α</i> -cadinol	Litsea verticillata	Leaves, Twigs	[39]
176	Cinnamoid B	Cinnamomum cassia	Barks	[45]
174	Cinnamoid C	Cinnamomum cassia	Barks	[45]
178	$(4\alpha, 10\beta)$ -4,10-Dihydroxy cadin-1 (6)-en-5-one	Cinnamomum cassia	Barks	[45]
179	Oxyphyllenodiol B	Litsea verticillata	Leaves, Twigs	[40]
180	1,2,3,4-Tetrahydro-2,5-dimethyl-8-(1-methylethyl)-1,2-naphthalenediol	Litsea verticillata	Leaves, Twigs	[40]
181	rel-(1R,4S)-7-Hydroxycalamenene	Ocotea elegans	Leaves	[88]
	Eudesmane-type sesquiterpenoids			
182	Cryptomeridol	Neolitsea hiiranensis	Roots	[58]
183	llicic acid	Lindera glauca	Twigs	[84]
184	(1 <i>S</i> ,2 <i>S</i> ,4 <i>aR</i> ,5 <i>R</i> ,8 <i>k</i> ,8 <i>as</i>)-Decahydro-1,5,8-trihydroxy-4 <i>a</i> ,8-dimethyl-methylene- 2-naphthaleneacetic acid methylester	Laurus nobilis	Leaves	[64]
185	rel-(1S,4S,5R,7R,10R)-10-Desmethyl-1-methyl-11-eudesmene	Ocotea corymbosa	Unripe fruits	[48]
186	$(3aS,5aR,6R,9S,9aS,9\beta S)$ -6,9-Dihydroxy-5 a ,9-dimethyl-3-methylidene-6. 3a,4,5,6,7,8,9 a ,9b-octahydrobenzo [g] [1]benzofuran-2-one	Laurus nobilis	Leaves	[64]
187	(3 <i>a</i> \$,5 <i>aR</i> ,6 <i>R</i> ,9 <i>R</i> ,9 <i>a</i> \$,9 <i>β</i> \$)-6-Hydroxy-9-methoxy-5 <i>a</i> ,9-dimethyl-3-methylidene- 3 <i>a</i> ,4,5,6,7,8,9 <i>a</i> ,9 <i>β</i> -octahydrobenzo [g] [1]benzofuran-2-one	Laurus nobilis	Leaves	[64]
188	$\it rel-(1S, 4R, 5R, 7R, 10R)-l0-Desmethyl-l0-hydroxy-1-methyl-3-oxo-ll-eudesmene$	Ocotea corymbosa	Unripe fruits	[48]
189	Lauradiol	Laurus azorica	Aerial parts	[49]
190	Linderolide B	Lindera strychnifolia	Roots	[59]
191	Linderolide D	Lindera strychnifolia	Roots	[59]
192	(1 <i>S</i> ,2 <i>S</i> ,4 <i>aR</i> ,5 <i>R</i> ,6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8 <i>aS</i>)-Decahydro-1-hydroxy-5,6,7,8-diepoxy-4 <i>a</i> ,8- dimethyl-methylene-2-naphthaleneacetic acid methylester	Laurus nobilis	Leaves	[64]
193	(3 <i>αS</i> ,5 <i>αR</i> ,6 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,9 <i>S</i> ,9 <i>αS</i> ,9 <i>βS</i>)-6,7,8,9-Diepoxy-5 <i>α</i> ,9-dimethyl-3- methylidene-5. 3 <i>α</i> ,4,5,6,7,8,9 <i>α</i> ,9 <i>β</i> -octahydrobenzo [g][1]benzofuran-2-one	Laurus nobilis	Leaves	[64]
194	γ-Selinene	Persea japonica	Stems	[89]
195	4(15)-Eudesmene-1 β ,7,11-triol	Cinnamomum cassia	Buds	[41]
196	1β , 6α -Dihydroxyeudesm-4(15)-ene	Cinnamomum cassia	Buds	[41]
197	Polydactin B	Lindera communis	Fruits	[90]
198	Eudesm-4(15)-ene-1 β ,6 α -diol	Litsea verticillata	Leaves, Twigs	[39]
199	7-epi-Eudesm-4(15)-ene-1α,6α-diol	Litsea verticillata	Leaves, Twigs	[39]
200	7- epi -Eudesm-4(15)-ene-1 β ,6 β -diol	Litsea verticillata	Leaves, Twigs	[39]
201	5 - <i>epi</i> -Eudesm-4(15)-ene-1 β , 6β -diol	Litsea verticillata	Leaves, Twigs	[39]
202	Costic acid	Nectandra cissiflora	Barks	[85]
203	Viscic acid	Nectandra cissiflora	Barks	[85]
204	Baynol C	Laurus nobilis	Leaves	[64]
205	Methyl-1 β ,2 β ,6 α -trihydroxy-5 α ,7 α H-eudesma-4(15),11(13)-dien-12-oate	Laurus nobilis	Leaves	[64]
206	Costic acid methyl ester	Ocotea caudata	Leaves	[91]
207	Keynosin	Laurus nobilis	Leaves	[64]
208	Hydroperoxide-magnolialide	Laurus nobilis	Leaves	[64]

Table 2 (continued)

	_ ()			
No.	Name	Species	Botanical parts	Ref.
209	1β , 2β -Dihydroxy- 5α , 6β , 7α H-eudesma-4(15),11(13)-dien-12,6-olide	Laurus nobilis	Leaves	[64]
210	(3 <i>a</i> \$,5 <i>a</i> R,6 <i>\$</i> ,7R,9 <i>a</i> R,9 <i>β</i> \$)-6-Hydroxy-7-acetoxy-5 <i>a</i> -methyl-3,9- dimethylidene-3 <i>a</i> ,4,5,6,7,8,9 <i>a</i> ,9 <i>β</i> -octahydrobenzo[g] [1]benzofuran-2-one	Laurus nobilis	Leaves	[64]
211	Linderolide G	Lindera strychnifolia	Roots	[28]
212	Linderolide H	Lindera strychnifolia	Roots	[28]
213	Methylneolitacumone A	Neolitsea acuminatissima	Roots	[7]
214	Neolitacumone A	Neolitsea acuminatissima	Roots	[7]
215	Neolitacumone B	Neolitsea acuminatissima	Roots	[7]
216	Neolitacumone E	Neolitsea acuminatissima	Roots	[7]
217	12-Carboxyeudesman-3,11(13)-diene	Nectandra cissiflora	Barks	[85]
218	Linerenone	Lindera communis	Fruits	[90]
219	Santamarine	Laurus nobilis	Leaves	[64]
220	(3 <i>a</i> \$,5 <i>aR</i> ,6 <i>R</i> ,7 <i>R</i> ,9 <i>a</i> \$,9 <i>β</i> \$)-6,7-Dihydroxy-5 <i>a</i> ,9-dimethyl-3-methylidene- 4,5,6,7,9 <i>a</i> ,9 <i>β</i> -hexahydro-3 <i>a</i> H-benzo[g] [1]benzofuran-2-one	Laurus nobilis	Leaves	[64]
221	Linderagalactone E	Lindera aggregata	Root tubers	[92]
222	3-oxo-g-Costic acid	Nectandra cissiflora	Barks	[85]
223	Machikusanol	Persea japonica	Stems	[89]
224	γ-Eudesmol	Persea japonica	Stems	[89]
225	Carissone	Persea japonica	Stems	[89]
226	γ-Costic acid	Lindera glauca	Twigs	[84]
227	Magnolialide	Laurus nobilis	Leaves	[64]
228	3α-Peroxyarmefolin	Laurus nobilis	Leaves	[64]
229	Tubiferin	Laurus nobilis	Leaves	[64]
230	(1 <i>S</i> ,2 <i>S</i> ,4 <i>aS</i> ,7 <i>R</i> ,8 <i>aR</i>)-Decahydro-1,7-dihydroxy-4 <i>a</i> -methyl-,8- <i>bis</i> (methylene)-2-naphthaleneacetic acid methylester	Laurus nobilis	Leaves	[64]
231	(1 <i>S</i> ,2 <i>S</i> ,4 <i>aS</i> ,7 <i>R</i> ,8 <i>aR</i>)-Decahydro-1-hydroxy-7-acetoxy-4 <i>a</i> -methyl-,8- <i>bis</i> (methylene)-2-naphthaleneacetic acid methylester	Laurus nobilis	Leaves	[64]
232	Linderolide E	Lindera strychnifolia	Roots	[59]
233	Lindestrenolide	Lindera strychnifolia	Roots	[28]
234	Hydroxylindestrenolide	Lindera strychnifolia	Roots	[28]
235	Linderolide A	Lindera strychnifolia	Roots	[59]
236	Linderolide C	Lindera strychnifolia	Roots	[59]
237	Linderolide J	Lindera strychnifolia	Roots	[28]
238	Linderolide I	Lindera strychnifolia	Roots	[28]
239	3 -oxo-4, 5α H, 8β H-Eudesma-1,7 (11)-dien-8,12-olide	Lindera strychnifolia	Roots	[93]
240	3- <i>oxo</i> -5 <i>α</i> H,8 <i>β</i> H-Eudesma-1,4(15),7(11)-trien-8,12-olide	Lindera strychnifolia	Roots	[93]
241	Lindestrene	Lindera strychnifolia	Roots	[94]
242	Cinnamosim B	Cinnamomum cassia	Buds	[41]
243	Neolitacumone C	Neolitsea acuminatissima	Roots	[7]
244	1β -Acetoxyeudesman-4(15),7(11),8(9)-trien-8,12-olide	Neolitsea acuminatissima	Stem barks	[95]
245	(1 <i>S</i> ,2 <i>S</i> ,4 <i>aS</i>)-Decahydro-1-hydroxy-7-oxo-4 <i>a</i> ,8-dimethyl-methylene- 2-naphthaleneacetic acid methylester	Laurus nobilis	Leaves	[64]
246	11,13-Dehydrosantonin	Laurus nobilis	Leaves	[64]
247	Gazaniolide	Laurus nobilis	Fruits	[61]
248	7α H-10 β Me-eudesma-3,5-dien-11-ol	Litsea lancilimba	Fruits	[96]
249	Linderagalactone D	Lindera aggregata	Root tubers	[92]
250	8-Hydroxylindestenolide	Lindera aggregata	Root	[82]
251	1α,6/-Dihydroxy-5,10- <i>bis-epi-</i> eudesm-15-carboxaldehyde- 6- <i>O-β</i> -D-glucopyranoside	Cinnamomum subavenium	Leaves	[44]
252	Verticillatol	Litsea verticillata	Leaves, Twigs	[97]
253	(-)- <i>ent</i> - 6α -Methoxyeudesm-4(15)-en- 1β -ol	Neolitsea hiiranensis	Leaves	[56]
254	Eudesm-4(15)-ene-1 β ,6 α -diol	Litsea verticillata	Leaves, Twigs	[33]
255	a-Agaroturan	Phoebe porosa	Oil extract	[53]
256	(-)-Hydroxylindestrenolide	Lindera strychnifolia	Roots	[72]
257	3-oxo-Eudesma-I,4(15),II (13)triene12,6 α -olide	Laurus nobilis	Leaves	[98]
258	Bilindestenolide	Lindera strychnifolia	Roots	[99]
0.50	Isodaucane-type sesquiterpenoids	***		1007
259	Apnanamol II	Litsea verticillata	Leaves, Twigs	[39]
260	Salvialenone	Phoebe porosa	Oil extract	[53]
0.65	Gualane-type sesquiterpenoids			F 4 - 7
261	4α -10 α -Dihydroxy-5 β -H-guaja-6-ene	Cinnamomum cassia	Buds	[41]

Table 2 (continued)

14010	(contraction)			
No.	Name	Species	Botanical parts	Ref.
262	Isocurcumol	Litsea cassiaefolia	Barks	[78]
263	Pseudoguaianelactone C	Lindera glauca	Roots	[100]
264	Alismol	Phoebe poilanei	Leaves	[101]
265	Pseudoguaianelactone A	Lindera glauca	Roots	[100]
266	Zaluzanin D	Laurus nobilis	Leaves	[63]
267	Dehydrocostuslactone	Lindera aggregata	Root tubers	[74]
268	Pseudoguaianelactone B	Lindera glauca	Roots	[100]
269	Lancilimbnoid C	Litsea lancilimba	Fruits	[96]
270	Pancherione	Litsea lancilimba	Fruits	[96]
271	Lancilimbnoid D	Litsea lancilimba	Fruits	[96]
272	Lancilimbnoid E	Litsea lancilimba	Fruits	[96]
273	Shiluone B	Litsea lancilimba	Fruits	[96]
274	Shiluone C	Litsea lancilimba	Fruits	[96]
275	(-)-(4 <i>S</i> ,7 <i>S</i> ,10 <i>S</i>)-2- <i>oxo</i> -Guaia-1(5),11(13)-dien-12-oic acid	Machilus wangchiana	Barks	[29]
	Caryophyllane-type sesquiterpenoids			
276	(+)-Caryophyllenol II	Laurus azorica	Aerial parts	[49]
277	(4R,5R)-4,5-Dihydroxycaryophyll-8 (13)-ene	Beilschmiedia tsangii	Roots	[102]
278	β -Caryophyllene oxide	Neolitsea hiiranensis	Leaves	[56]
279	Kobusone	Neolitsea hiiranensis	Leaves	[56]
	Spiroaxane-type sesquiterpenoids			
280	Linderagalactone B	Lindera aggregata	Root tubers	[92]
281	Linderagalactone C	Lindera aggregata	Root tubers	[92]
282	Lindenanolide G	Lindera chunii	Roots	[103]
283	Linderolide M	Lindera strychnifolia	Roots	[28]
	Other bicyclic sesquiterpenoids			
284	Chromolaevanedione	Litsea verticillata	Leaves, Twigs	[40]
285	Lindenanolide E	Lindera chunii	Roots	[103]
286	Linderagalactone A	Lindera aggregata	Root tubers	[92]
287	Porosadienone	Phoebe porosa	Oil extract	[53]
Tricyclic	e sesquiterpenoids			
	Bergamotene-type sesquiterpenoids			
288	(+)-(<i>E</i>)- <i>exo-a</i> -Bergamoten-12-oic acid	Ocotea minarum	Leaves	[34]
	Campherenane-type sesquiterpenoids			
289	Campherenol	Cinnamomum camphora	Woods	[104]
290	Campherenone	Cinnamomum camphora	Woods	[104]
	Aristolane-type sesquiterpenoids			
291	Aristofone	Lindera communis	Fruits	[90]
	Rearranged cadinane-type sesquiterpenoids			
292	Cinnamoid D	Cinnamomum cassia	Barks	[45]
293	Cinnamoid E	Cinnamomum cassia	Barks	[45]
294	Mustakone	Cinnamomum cassia	Barks	[45]
	Gymnomitrane-type sesquiterpenoids			
295	(+)-5-Hydroxybarbatenal	Beilschmiedia tsangii	Roots	[102]
	Clovane-type sesquiterpenoids			
296	Clovane -2β , 9α -diol	Cinnamomum cassia	Barks	[45]
	Aromadendrane-type sesquiterpenoids			
297	$(6\alpha,7\alpha)$ -4 β -Hydroxy-10 α -methoxyaromadendrane	Neolitsea hiiranensis	Leaves	[56]
298	Espatulenol	Ocotea lancifolia	Leaves	[86]
299	(-)-ent-4 β -Hydroxy-10 α -methoxyaromadendrane	Neolitsea hiiranensis	Leaves	[56]
300	4β ,10 α -Dihydroxyaromadendrane	Neolitsea hiiranensis	Leaves	[56]
301	Pipelol A	Neolitsea hiiranensis	Leaves	[56]
302	Spathulenol	Neolitsea hiiranensis	Leaves	[56]
303	Hiiranepoxide	Neolitsea hiiranensis	Leaves	[56]
304	Epiglobulol	Lindera communis	Fruits	[90]
305	Aromadendrane-4 β ,10 α -diol	Cinnamomum cassia	Buds	[41]
306	Aromadendrane-4 α , 10 α -diol	Cinnamomum cassia	Buds	[41]
307	1-Epimeraromadendrane- 4β ,10 α -diol	Cinnamomum cassia	Buds	[41]
	Caryolane-type sesquiterpenoids			
308	Caryolane-1,9β-diol	Cinnamomum cassia	Barks	[45]

Table 2 (continued)

No	Name	Species	Botanical parts	Pof
NO.	Lindenane-tune sesquitemenoids	species	Botanical parts	Kei.
309	Linderolide K	Lindera strychnifolia	Roots	[28]
310	Linderolide N	Lindera strychnifolia	Roots	[20]
311	Linderolide O	Lindera strvchnifolia	Roots	[72]
312	Linderolide P	Lindera strvchnifolia	Roots	[72]
313	Linderolide O	Lindera strvchnifolia	Roots	[72]
314	Linderolide R	Lindera strychnifolia	Roots	[72]
315	Linderolide T	Lindera strychnifolia	Roots	[72]
316	Strychnilatone 2,6-dihydroxyxanthone	Lindera strychnifolia	Roots	[72]
317	Linderanlide F	Lindera aggregata	Root tubers	[74]
318	Lindenanolide A	Lindera strychnifolia	Roots	[28]
319	Lindenene	Lindera strychnifolia	Roots	[28]
320	Lindenenol	Lindera strychnifolia	Roots	[28]
321	Lindeneol	Lindera chunii	Roots	[103]
322	Lindeneyl acetate	Lindera chunii	Roots	[103]
323	Lindenanolide H	Lindera chunii	Roots	[103]
324	Strychinstenolide 6-O-acetate A	Lindera chunii	Roots	[103]
325	Strychinstenolide 6-O-acetate B	Lindera chunii	Roots	[103]
326	Strychnilactone	Lindera strychnifolia	Roots	[59]
327	Shizukanolide	Lindera strychnifolia	Roots	[28]
328	Chloranthalactone D	Lindera strychnifolia	Roots	[28]
329	Linderolide S	Lindera strychnifolia	Roots	[72]
330	Lindenanolide G	Lindera strychnifolia	Roots	[72]
331	Linderolide U	Lindera aggregata	Roots	[83]
332	Linderolide L	Lindera strychnifolia	Roots	[28]
333	Lindenenol	Lindera aggregata	Roots	[83]
334	Menelloide C	Lindera strychnifolia	Roots	[72]
335	Linderanoid A	Lindera aggregata	Roots	[27]
336	Linderanoid B	Lindera aggregata	Roots	[27]
337	Linderanoid C	Lindera aggregata	Roots	[27]
338	Linderanoid D	Lindera aggregata	Roots	[27]
339	Linderanoid E	Lindera aggregata	Roots	[27]
340	Linderanoid F	Lindera aggregata	Roots	[27]
341	Linderanoid G	Lindera aggregata	Roots	[27]
342	Linderanoid H	Lindera aggregata	Roots	[27]
343	Linderanoid I	Lindera aggregata	Roots	[27]
344	Linderanoid J	Lindera aggregata	Roots	[27]
345	Linderanoid K	Lindera aggregata	Roots	[27]
346	Linderanoid L	Lindera aggregata	Roots	[27]
347	Linderanoid M	Lindera aggregata	Roots	[27]
348	Linderanoid N	Lindera aggregata	Roots	[27]
349	Linderanoid O	Lindera aggregata	Roots	[27]
350	Lindenanolide I	Lindera chunii	Roots	[105]
351	Lindenanolide F	Lindera chunii	Roots	[103]
352	Aggreganoid A	Lindera aggregata	Roots	[106]
353	Aggreganoid B	Lindera aggregata	Roots	[106]
354	Aggreganoid C	Lindera aggregata	Roots	[106]
355	Aggreganoid D	Lindera aggregata	Roots	[106]
356	Aggreganoid E	Lindera aggregata	Roots	[106]
357	Aggreganoid F	Lindera aggregata	Roots	[106]
	Other tricyclic sesquiterpenoids			
358	Oreodaphnenol	Phoebe porosa	Woods	[107]
359	Cinnamoid A	Cinnamomum cassia	Bark	[45]
360	Subamol	Cinnamomum subavenium	Roots	[108]
361	Reticuol	Cinnamomum reticulatum	Leaves	[109]
362	Tenuifolin	Cinnamomum reticulatum, Cinnamomum tenuifolium	Leaves, Stems	[31, 32]

 $^{\rm a}\,$ The compound name was not given in the reference. $^{\rm b}\,$. The CAS number was not given in the reference.

Figure 3. Chemical structures of the sesquiterpenes isolated from Lauraceae.

cassia or *C. verum* [5, 10, 11]; but no comprehensive review specially focuses on the characteristic sesquiterpenes and diterpenes covering the whole family, even though their quantity and variety are greatly enriched in recent years. Herein, we presented a compilation aimed to systematically classify the structural type of sesquiterpenes and diterpenes isolated from Lauraceae and figure out their potential beneficials to human health. Databases and primary sources including SciFinder, ScienceDirect, Web of Science, PubMed, CNKI, PhD and MSc dissertations were conducted with the query words "pharmacological", "phytochemistry", "sesquiterpenes", "diterpenes", "healthy", "traditional usage", "medicinal" and the names of each genera and species of Lauraceae, etc. We look forward to this article can provide some valuable scientific reference for the further studies and utilization of these functional components.

2. Traditional application

Lauraceae plants possess great economic value, extend beyond the nutritional, industrial and medicinal applications. Avocado or called as alligator pears, is a kind of green- to purple-skinned pulpy nutty fruit of *Persea americana* which is rich in healthy fats and oils and recognized as beneficial for all ages [12]. The stem woods of some high trees from *Ocotea, Nectandra, Persea* [13], *Beilschmiedia* [14], *Machilus* and *Phoebe* [15] are precious timbers for architecture, shipbuilding and home furnishing. Oil-rich barks, leaves and fruits of *Cinnamonum, Litsea, Lindera, Laurus, Neolitsea* and *Cryptocarya* species are applied widely as spices, perfume, natural preservatives, pesticides, agrochemicals, disinfectants, as well as the corrective agents in food, beverage and cosmetics [11, 16, 17, 18]. Moreover, as the important industrial raw materials, natural borneol can be acquired from *Cinnamonum camphora* [19] or *C*.

japonicum [20] and camphor is found in *C. camphora* [19] and *C. osmo-phloeum* [21].

In terms of the officinal purpose, the barks and twigs of *Cinnamonum cassia*, the root tubers of *Lindera aggregata* and the fruits of *Litsea cubeba* have long been used in Traditional Chinese Medicine (TCM) for dispersing body cold, relieving stomach pain, treating of kidney disease, impotence, dysmenorrhea, diabetes and some inflammatory disorders [22, 23, 24, 25]. On the basis of folk usage, people further find out that the essential oil distilled from *C. cassia* is of significant antibacterial, spasmolytic and sedative activities [26]. Some representative classic TCM prescriptions and their functions with the above-mentioned herbs are listed in Table 1.

3. Phytochemistry

3.1. Sesquiterpenoids

To date, a total of 362 sesquiterpenes had been acquired from the plant materials of 12 genera and 44 species in Lauraceae family. Among them, *megastigmane-*, *germacrane-*, *eudesmane-* and *lindenane-*type sesquiterpenoids account for a fairly large proportion. Besides, a number of dimers and polymers discovered recently were further amplified the diversity of Lauraceae sesquiterpenoids [27, 28]. Hydroxyl, carbonyl, methyl, glycosyl and phenzyl substitutions with different configurations, as well as double bonds or epoxy groups are found to be the most common structural characteristics in sesquiterpenes. These compounds exhibit the extraordinary chemo-diversity and can be sketchily classified into acyclic, monocyclic, bicyclic and tricyclic system in the light of carbon rings, or assigned to sesquiterpene alcohols, aldehydes and

Table 3. Diterpenoids from the family Lauraceae.

	······································			
No.	Name	Species	Botanical parts	Ref.
Hemiketal-ty	ype diterpenoids			
363	Cassiabudanol A	Cinnamomum cassia	Barks	[110]
364	Cassiabudanol B	Cinnamomum cassia	Barks	[110]
365	Secoperseanol	Persea indica	Aerial parts	[111]
366	Cinncassiol D ₁	Cinnamomum cassia	Barks	[112]
367	Cinncassiol D ₁ glucoside	Cinnamomum cassia	Barks	[112]
368	Cinncassiol D ₂	Cinnamomum cassia	Barks	[112]
369	Cinncassiol D ₂ glucoside	Cinnamomum cassia	Barks	[112]
370	Cinncassiol D ₃	Cinnamomum cassia	Barks	[112]
371	Cinncassiol D ₄	Cinnamomum cassia	Barks	[113]
372	Cinneassiol D_4 glucoside	Cinnamomum cassia	Barks	[113]
373	Indicol	Persea indica	Branches	[114]
374	Vignaticol	Persea indica	Branches	[114]
375	Perseanol	Persea indica	Branches	[114]
376	18-Hydroxyperseanol	Cinnamomum cassia	Stem barks	[115]
377	(185)-3-Dehydroxycinncassiol D ₃	Cinnamomum cassia	Leaves	[43]
378	(18S)-3-Dehydroxycinncassiol D ₃ glucoside	Cinnamomum cassia	Leaves	[43]
379	(<i>18S</i>)-3,5-Didehydroxy-1,8- dihydroxycinncassiol D ₃	Cinnamomum cassia	Leaves	[43]
380	(18S)-3-Dehydroxy-8- hydroxycinncassiol D ₃	Cinnamomum cassia	Leaves	[43]
381	19-Dehydroxy-13- hydroxycinncassiol D ₁	Cinnamomum cassia	Leaves	[43]
382	(18S)-1-Hydroxycinncassiol D_1	Cinnamomum cassia	Leaves	[43]
383	(18R)-1-Hydroxycinncassiol D ₁	Cinnamomum cassia	Leaves	[43]
384	16- <i>Ο-β</i> -D-Glucopyranosyl- perseanol	Cinnamomum cassia	Leaves	[43]
385	(18S)-Cinncassiol D ₁	Cinnamomum cassia	Leaves	[43]
386	(18S)-Cinncassiol D ₃	Cinnamomum cassia	Leaves	[43]
387	(E)-3-Dehydroxy-13(18)-ene-19- O - β -D glucopyranyl-cinncassia D ₃	Cinnamomum cassia	Leaves	[43]
388	Cinnacetal A	Cinnamomum cassia	Twigs and Leaves	[116]
389	Cinnacetal B	Cinnamomum cassia	Twigs and Leaves	[116]
390	Cinnzeylanine	Cinnamomum cassia, Cinnamomum cassia	Barks	[117, 118]
391	Cinnzeylanol	Cinnamomum cassia, Cinnamomum cassia, Persea indica	Barks, Terminal Twigs	[117, 118, 119]
392	Cinncassiol B	Cinnamomum cassia	Barks	[120]
393	Cinncassiol B 19- <i>Ο-β-</i> D- glucopyranoside	Cinnamomum cassia	Barks	[120]
394	epi-Cinnzeylanol	Persea indica	Branches	[121]
395	Cinnzeylanone	Persea indica	Branches	[121]
396	Ryanodol	Persea indica	Terminal twigs	[121]
397	Ryanodol 14-monoacetate	Persea indica	Branches	[121]
398	18-Hydroxycinnzeylanine	Cinnamomum cassia	Barks	[122]
399	Garajonone	Persea indica	Branches	[123]
400	2,3-Didehydrocinnzeylanone	Persea indica	Branches	[123]
Ketal-type d	iterpenoids			
401	Cinncassiol F	Cinnamomum cassia	Stem barks	[115]
402	Cinnamomol A	Cinnamomum cassia	Leaves	[124]
403	Cinnamomol B	Cinnamomum cassia	Leaves	[124]
404	Cinncassiol E	Persea indica	Aerial parts	[111]
Lactone-type	e diterpenoids			
405	Anhydrocinnzeylanine	Cinnamomum cassia, Persea indica	Barks, Branches	[118, 123]
406	Anhydrocinnzeylanol	Cinnamomum cassia	Barks	[118]
407	Cinncassiol A	Cinnamomum cassia	Barks	[118]
408	2,3- Dehydroanhydrocinnzeylanine	Cinnamomum cassia	Barks	[122]
409	1-Acetylcinnacassiol A	Cinnamomum cassia	Barks	[122]
410	18S-Cinncassiol A 19- O - β -D-	Cinnamomum cassia	Barks	[122]

Table 3 (continued)

No.	Name	Species	Botanical parts	Ref.
411	<i>18R</i> -Cinncassiol A 19- <i>O-β</i> -D-glucopyranoside	Cinnamomum cassia	Barks	[122]
412	Anhydrocinnzeylanone	Persea indica	Branches	[123]
413	Epianhydrocinnzeylanol	Cinnamomum cassia	Barks	[125]
414	Cinnacasol	Cinnamomum cassia	Twigs	[126]
415	Cinnacaside	Cinnamomum cassia	Twigs	[126]
416	Cinnacasiol H	Cinnamomum cassia	Barks	[125]
417	Cinncassiol G	Cinnamomum cassia	Stem barks	[115]
418	16-O-β-D-Glucopyranosyl-19- deoxycinncassiol G	Cinnamomum cassia	Stem barks	[116]
419	Cinncassiol G ₂	Cinnamomum cassia	Leaves	[127]
420	Cinnamomol C	Cinnamomum cassia	Leaves	[43]
421	Cinnamomol D	Cinnamomum cassia	Leaves	[43]
422	Cinnamomol E	Cinnamomum cassia	Leaves	[43]
423	Cinnamomol F	Cinnamomum cassia	Leaves	[43]
424	Cinnamomol F glucoside	Cinnamomum cassia	Leaves	[43]
Diketone-typ	pe diterpenoids			
425	Cinncassiol C ₁	Cinnamomum cassia	Barks	[128]
426	Cinncassiol C ₁ 19- <i>O</i> -β-D- glucopyranoside	Cinnamomum cassia	Barks	[129]
427	Cinncassiol C ₂	Cinnamomum cassia	Barks	[129]
428	Cinncassiol C ₃	Cinnamomum cassia, Persea indica	Barks, Fruits	[129]
Other diterp	enoids			
429	Kaurenoic acid	Pleurothyrium cinereum	Leaves	[130]
430	Cubelin	Persea indica	Fruits	[131]
431	Phytol	Lindera glauca	Aerial parts	[132]
432	trans-Phytol	Neolitsea hiiranensis	Leaves	[133]

lactones according their oxidation degree. Their detailed skeleton types, names, plant resources, applied botanical parts and chemical structures are listed in Table 2 and Figure 3, respectively.

3.2. Diterpenes

Based on the existed scientific research, 69 diterpenes were summed up in this review. Most diterpenes possess unprecedent, cage-like tricyclic or tetracyclic rigid carbon skeletons with multiple highly oxidized and modified functionalities. According to the different oxidation degree, these compounds can be divided into hemiketal-, ketal-, lactone- and diketone-type. Along with the deep-going research, eight sub-types of diterpene skeletons are categorized as: 11,12-seco-ryanodane (cinncassiol A type), ryanodane (cinncassiol B type), 7,8-seco-ryanodane (cinncassiol C type), isoryanodane (cinncassiol D type), 10,13-cyclo-12,13seco-isoryanodane (cinncassiol E type), 12,13-seco-isoryanodane (cinncassiol F type), 11,12-seco-isoryanodane (cinncassiol G type) and 6,10cyclo-12,13-seco-isoryanodane (cinnamomane). Among them, ryanodane diterpenes featured with a complex polyoxygenated 6/5/5/6/5 pentacyclic fused ring system prove to be the most characteristic chemical types. Notably, the distribution of ryanodane diterpenoid is so confined in Cinnamomum cassia, Cinnamomum zeylanicum and Persea indica that they can be regarded as the chemotaxonomic markers of the above species. All these compounds are summarized in Table 3 and their corresponding structures are detailed in Figure 4.

The key biosynthetic pathways of representative diterpenes were also summarized in this review. Both **388** and **389** have the same cinnamaldehyde structural fragment, their respective intermediates **a** and **b** are cascade oxidized by **373**. Then intermediates **a** and **b** with cinnamaldehyde, produce **388** and **389** through a step of acetalization at 5-OH, 16-OH and 4-OH, 5-OH, respectively. As for **401–403**, a ketone intermediate ii is formed by **375**, which the ether linkage between C-11 and C-6 of the hemiketal group is hydrolyzed under the catalysis of acid. **402** is produced by ii through aldol, retro-aldol, oxidation reaction and nucleophilic addition, while **403** is produced by an enzyme-mediated oxidation from **402**. Similarly, biosynthesis of **417** can be derived from **375** through oxidation, reduction and dehydration reaction. The proposed biosynthetic pathways of **388**, **389**, **401–403** and **417** are described as Figure 5.

4. Biological activities

At present, quite a few bioactivity studies on the isolated sesquiterpenes and diterpenes have been carried out. Notably, sesquiterpenes are the main class responsible for the anti-tumor effects, which exhibit the cytotoxic, anti-proliferative and/or apoptotic activities against a variety of human cancer cell lines. Besides, the sesquiterpenes inhibitory capacities on inflammation, oxidation, bacterium, HIV virus, diabetic nephropathy, platelet aggregation and *E. coli* β -Glucuronidase (anti-e β G) are also striking. As for the diterpenes, immunomodulation is their most prominent activity. Through the ConA/LPS-induced splenocyte proliferation assay, several ryanodines and isoryanodines with novel carbon skeletons exert the extraordinary T cells and Treg cells modulation abilities. Specific biological properties of the isolated sesquiterpenes and diterpenes are listed in Table 4.

5. Conclusion and prospects

The extensive application in medicinal and nutraceutical products of Lauraceae plants have inspired great attention of researchers on their scientific investigations and commercial development. Published works act as a jumping-off point for future research, however, the dispersive and broad conclusions from independent exploration are somewhat inability to precisely reflect the valuable points and highlights. This review summaries the sesquiterpenes and diterpenes obtained from Lauraceae plants and systematically examines their health-promoting benefits related to the plant traditional effectiveness and the modern

Figure 4. Eight known carbon skeletal types of diterpenoids from C. cassia and chemical structures of the diterpenes isolated from Lauraceae.

Figure 5. The proposed biosynthetic pathways of compounds (388, 389, 401-403 and 417).

Biological properties	Compound number	Effects	Ref.
Cytotoxic and anti-proliferative activity			
Cytotoxicity against myeloid leukemia cell (HL-60), hepatocellular carcinoma cell (SMMC-7721), lung cancer cell (A549), breast cancer cell (MCF-7) and colon cancer cell (SW-480)	52	IC_{50} values are 5.04, 3.13, 2.50, 3.14 and 12.28 $\mu M,$ respectively	[42]
Cytotoxicity against human ovarian cancer cell (A2780)	99, 247, 93, 219, 246, 94, 207	IC_{50} values are 6.4, 4.2, 34.6, 9.4, 6.6, 4.0 and 13.5 $\mu g/$ mL, respectively	[61]
Cytotoxicity against human CEM leukemia cell	17	IC_{50} value is 3.0 \pm 0.5 μM	[35]
Cytotoxicity against A549 cell line, ovarian cancer cell (SK-OV-3), skin cancer cell (SK-MEL-2), CNS cancer cell (XF498) and colon cancer cell (HCT15)	7, 8, 9	$\rm EC_{50}$ values are 9.65, 4.73, 3.19, 3.88, 3.57 µg/mL for 7; $\rm EC_{50}$ values are 9.43, 6.71, 4.06, 7.14, 5.21 µg/mL for 8; $\rm EC_{50}$ values are 14.63, 12.92, 10.07, 12.80, 10.14 µg/mL for 9	[30]
Cytotoxicity against A549 cell line and colon cancer cell (HCT-8)	79	IC_{50} values are 8.9, 9.6 $\mu M,$ respectively	[54]
Cytotoxicity against leukemia cell (K562)	207, 208, 210, 219, 220, 227, 228, 193, 186, 187, 246, 229, 100, 101, 230, 192, 184, 245	$\begin{split} & IC_{50} \text{ values are } 126.61 \pm 16.30, 24.19 \pm 0.38, 243.41 \pm \\ & 66.90, 22.47 \pm 1.46, 222.09 \pm 52.20, 27.83 \pm 1.05, \\ & 4.57 \pm 2.10, 136.73 \pm 42.61, 193.31 \pm 41.51, 58.71 \pm \\ & 36.57, 46.95 \pm 6.62, 90.90 \pm 9.70, 39.46 \pm 1.65, \\ & 116.00 \pm 26.12, 111.27 \pm 27.79, 182.66 \pm 54.07, \\ & 233.28 \pm 55.02, 246.03 \pm 83.75 \ \mu\text{M}, \text{ respectively} \end{split}$	[64]
Cytotoxicity against A549 cell line, mouse lymphocytic leukemia cell (P-388), oral epithelial carcinoma KB cell and colon cancer cell (HT-29)	150	EC_{50} values are 1.420, 0.816, 2.990, 1.528 ppm, respectively	[83]
Cytotoxicity against SK-MEL-2 and HCT15 cell lines	204, 202	$\rm IC_{50}$ values are 10.25 and 9.98 μM for 204; 12.20 and 11.60 μM for 202	[84]
Cytotoxicity against human lung cancer cell (H460), human mammary cancer cell (ES2) and human prostatic cancer cell (DU145)	218, 197, 291, 304	$\begin{split} IC_{50} \mbox{ values are } 2.1 \pm 0.72, 2.8 \pm 0.65, 3.0 \pm 0.70 \ \mu \mbox{M for} \\ 218; 56.1 \pm 2.5, 57.0 \pm 2.3, 45.8 \pm 1.6 \ \mu \mbox{M for } 197; 51.3 \\ \pm 0.9, 61.5 \pm 1.1, 58.0 \pm 0.9 \ \mu \mbox{M for } 291; 33.0 \pm 1.5, \\ 29.9 \pm 0.3, 27.3 \pm 0.6 \ \mu \mbox{M for } 304 \end{split}$	[90]
Cytotoxicity against human small lung cancer cell (SBC- 3)	239	IC_{50} values are 7.2 and 32.2 $\mu M,$ respectively	[93]
Cytotoxicity against human hepatoma cell (Hep G2) and Hep G2 cell transfected with HBV (Hep 2,2,15)	214, 215, 243	IC_{50} values are $8.4\pm0.74,8.4\pm0.26$ μM for 214; 7.6 \pm 0.22, 0.24 \pm 0.04 μM for 215; 8.5 \pm 0.43, 0.08 \pm 0.02 μM for 243	[95]
Growth inhibition and apoptotic induction to HL-60 cell line	99, 266	The proliferations of HL-60 cells are inhibited at 10μ M of 99 and 15μ M of 266, respectively. They exert antitumor activity by triggering apoptotic chromatin condensation	[63]
	100, 257	100 and 257 induced the apoptotic morphological changes of the nucleus and chromatin condensation in the HL-60 cells	[98]
Growth inhibition and apoptotic induction to HCT-116 cell line	150	IC_{50} value is 21.8 μM	[83]
Growth inhibition and apoptotic induction to human cervical cancer cell line (HeLa)	430	$\rm IC_{50}$ values are 34.43 μ M at 24 h and 21.92 μ M at 48 h. The cells exhibited changes in nuclear morphology and the cleaved caspase-3/-7, caspase-8 and caspase-9 of 430	[131]
Cytotoxicity against HSC-T6 hepatic stellate cells	211, 233, 241	211 and 233 showed inhibition of the viability of HSC- T6 cells, and 241 exhibits a weaker inhibition	[28]
Immunomodulatory activity			
ConA/LPS-induced splenocyte proliferation assay	35, 39, 50, 53, 43	35, 39, 50, 53 inhibited the proliferation of ConA- induced murine T cells, and 50, 53, 43 inhibited the proliferation of LPS induced murine B cells	[42]
	416, 414	416 and 414 inhibited the proliferation of ConA/LPS- induced splenocyte in a dose-dependent manner	[115]
	363, 364	363 and 364 promoted the proliferation of ConA/LPS- induced splenocyte with enhancement rates up to 39.99% and 92.36% at 0.0015 μ M. 364 enhanced the immune function by upregulating CD4 ⁺ and CD8 ⁺ T cells and downregulating Tregs	[110]
ConA-induced splenocyte proliferation assay	402, 403	402 and 403 enhanced the proliferation of ConA- induced murine T cells with enhancement rates ranging from 29 to 64% at concentrations from 0.391 to 100 μ M. 402 enhanced immunity by increasing CD4 ⁺ T cell proliferation, while reducing Treg differentiation	[124]
Evaluation of the immunomodulatory effects on the splenocyte proliferation	280, 91, 432	280, 91 and 432 suppressed IFN- γ <i>in vitro</i> . 280 inhibits the expression of IFN- γ , T-bet, IL-12 β 2, T-cell differentiation and Th1-assocaited genes	[133]

Table 4 (continued)

Biological properties	Compound number	Effects	Ref.
Anti-inflammatory and anti-oxidative activity			
Evaluation of Nrf2 inducing effects	18	18 activates Nrf2 and its downstream genes, NAD(P)H quinone oxidoreductase 1 and γ-glutamyl cysteine synthetase, and enhances the nuclear translocation and stabilization of Nrf2 in human lung epithelial cells	[36, 37]
Inhibition of PGE2 formation in A549 cell line	72, 73a/b	72 and 73a/b reduce PGE2 formation at 10 μ M and 100 μ M, respectively	[51]
Inhibition of LPS-stimulated NO production in RAW 264.7 cells	18	18 inhibite LPS-stimulated NO production, blocked NF- $\kappa B,$ TNF- $\alpha,$ IL-6 and PGE2 activation	[36, 37]
	236, 191, 88	236, 191 and 88 are moderately inhibition to LPS- stimulated NO production	[59]
	311, 312, 111	311, 312 and 111 show inhibition against NO production with IC $_{50}$ values of 6.3, 9.6 and 9.0 $\mu M,$ respectively	[72]
	265, 268, 263	265, 268 and 263 inhibite NO production with IC ₅₀ values of 2.43 \pm 0.27 μM , 4.00 \pm 1.15 μM and 1.38 \pm 0.30 μM , respectively, and suppress the production of TNF- α , IL-6, IL-1 β and PGE2 and the enzyme expression of iNOS and COX-2 in protein levels	[100]
	269, 271, 272	IC_{50} values of 269, 272 and 272 are 35.5, 32.1, 46.7 $\mu M,$ respectively	[96]
Inhibition of fMLP-induced superoxide production	90, 91	IC_{50} values are 21.86 \pm 3.97 and 25.78 \pm 4.77 $\mu M,$ respectively	[56]
Inhibition of fMLP-induced neutrophils	143, 108	IC_{50} values are 21.86 \pm 3.97 and 25.78 \pm 4.77 $\mu M,$ respectively	[70]
Inhibition of H_2O_2 -induced oxidative damages on HepG2 cells	221, 131, 250, 108	221, 131, 250 and 108 show hepatoprotective activity against H_2O_2 -induced oxidative damages on HepG2 cells with EC ₅₀ values of 67.5, 167.0, 42.4 and 98.0 μ M, respectively	[92]
Inhibition of NO production in BV-2 cells	413, 416, 406, 405, 407, 391, 390	413, 416, 406, 405, 407, 391 and 390 show inhibition activities on NO production in LPS induced BV-2 microglial cells with IC_{50} values of 80.7, 76.1, 83.8, 73.8, 78.7, 72.3, 81.8, 68.6 and 71.5 μ M, respectively	[125]
	160, 183, 226, 202	160, 183, 226, 202 significantly inhibite NO levels in LPS-stimulated BV-2 cells with IC_{50} values of 15.90, 3.67, 26.48, 14.92, 24.44 and 12.13 μ M, respectively	[84]
Antimicrobial activity			
Evaluation for antimicrobial activities against <i>E. coli</i> , <i>C. albicans</i> and <i>S. aureus</i> using an agar-well diffusion method.	157, 242, 154,195, 196, 308, 261, 306, 307	157, 242, 154, 195, 196, 308, 261, 306 and 307 exhibit strong antimicrobial activities against <i>C. albicans</i> with inhibitory zones of 11, 10, 8, 9, 11, 10, 9, 10 and 10 mm at 300 μ g/disk. 196, 308 and 306 show moderate antibacterial activities against <i>E. coli</i> and <i>S. aureus</i> with inhibitory zones of 8.5, 7, 7 and 11, 8.5, 10 mm, respectively	[41]
Evaluation for antifungal activities against <i>C. albicans</i> , <i>C. krusei</i> , and <i>Cryptococcus neoformans</i> using the broth microdilution method.	67, 69, 68, 288, 16	67, 69, 68, 288 and 16 exhibit MIC values in the 50–100 $\mu g/mL$	[34]
Evaluation for antimicrobial activities against periodontal pathogens	102	102 shows growth inhibitory effects with MICs at 375, 63, 500 and 125 μg/mL against Actinomyces viscosus, A Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia	[65]
Evaluation the <i>Mycobacterium tuberculosis</i> strain H37Rv by the microplate Alamar Blue assay	429	429 induces 91.3% growth inhibition at 50 μ g/mL against <i>M. tuberculosis</i> H37Rv	[130]
Anti-rilV activity	20 - 21		[00]
cell line HOG.R5	20 + 21	$20 + 21$ exhibit anti-HIV activity with an IC_{50} value of 49.6 μ M	[33]
	32, 179, 180	32, 179 and 180 inhibit HIV-1 replication in HOG.RS cell line with IC ₅₀ values of 38.1 ± 4.2 , 54.6 ± 4.2 , $91.0 \pm 6.5 \ \mu$ M, respectively.	[40]
	95, 201, 30	95, 201 and 30 inhibit HIV-1 replication in HOG.R5 cell line with IC50 values of 6.5 (27.5), 17.4 (73.1) and 28.0 (119.7) μ g/mL (μ M), respectively	[38]
	252	252 demonstrates weak activity with an IC_{50} value of 34.5 $\mu g/mL$ (144.7 $\mu M)$ while being devoid of cytotoxicity at 20 mg/mL	[97]
Other bioactivities			
Antidiadetic nephropathy activity	293, 174, 300	293, 1/4 and 300 markedly decrease the expression of fibronectin, MCP-1 and interleukin-6 at the	[45]

Table 4 (continued)

Biological properties	Compound number	Effects	Ref.
		concentration of 50 μM in the high glucose-stimulated mesangial cells	
Inhibition of platelet aggregation	138, 144, 108, 106, 111, 107	At the concentration of $100 \ \mu g/mL$, 138 and 144 inhibit the PAF induced platelet aggregation. 108 and 106 show inhibition of AA induced platelet aggregation. 111 and 107 inhibit the collagen-induced platelet aggregation	[134]
Anti- <i>E. coli</i> β -Glucuronidase (anti-e β G) activity	213	213 shows a moderate inhibitory effect and enzyme activity on bacterial- βG but not human- βG	[7]

pharmacology, which is intended to offer some preliminary information for follow-up studies on any bioactivities and components.

As reported, sesquiterpenes are a substantial oily composition and distribute so widely in the barks, leaves, twigs, roots and stem woods of all the Lauraceae plants studied so far. Coincide with the structure diversity, sesquiterpenes show a variety of physicochemical and biological properties. Notably, this composition is utilized primarily and coarsely in pharmacy, food and light industries until now. On the basis of this review, some clues for expanding their potential value are provided. Conversely, diterpenes appear only in a very limited species and ryanodane-type diterpenes are account for the overwhelming majority. As a kind of newfound compounds with unprecedent and diverse carbon skeletons, ryanodane-type diterpenes quickly become the focuses of organic chemistry, biosynthesis and pharmacology field. In the view of secondary metabolites biosynthesis, the structure type and species-genera distribution of sesquiterpenes and diterpenes in Lauraceae are indeed unique compared with other plants. Four types sesquiterpenes, megastigmane-, germacrane-, eudesmane- and lindenane-sesquiterpenes accounted for more than 60% of total sesquiterpenes. And almost all ryanodine-type diterpenes so concentrated in three Lauraceae plants Cinnamomum cassia, Cinnamomum zeylanicum and Persea indica that could be used as the chemical marker for plants identification. The highly concentration both chemicals and plants indicated some definite distribution and biosynthesis regularity deserved further research. Besides, research have indicated that ryanodane diterpenes are proposed as a potential new type agonist on ryanodine receptor, an important calcium channel in sarcoplasmic reticulum and one of the most important insecticide targets. The obvious antifeedant bioactivity of ryanodanes and the toxicity difference acting on the insects and mammalians prompts that ryanodanes are a category of promising pesticides and deserved a profound study.

This review points that 102 sesquiterpenes and 15 diterpenes possess the confirmed health promotive effects, but their applications in function improvements still face numerous challenges. Most of them need more in-depth studies, including *in vitro* and *in vivo* evaluation to prove the efficacy and safety of use. As the promising natural pesticide, ryanodanes are required more toxicological investigations to confirm the exact insecticidal activity. Once satisfactory results are obtained, engaged in the discovery of diverse ryanodanes and applied them in the medicine, fine chemistry and food industry is of broad prospects. Overall, the sesquiterpenes and diterpenes from Lauraceae plants are a large category of valuable natural resource that is worthy paying strengthened attention due to their extensive bioactivities and potential development.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

Dr. Meng Shao was supported by Natural Science Foundation of Guangdong Province [2020A1515010603], Guangzhou Science and

Technology Project [201904010405], Administration of Traditional Chinese Medicine of Guangdong Province of China Project [20221261]. Yiping Jiang was supported by Zhuhai Medical Research Fund Project [No. ZH3310200024PJL], Administration of Traditional Chinese Medicine of Guangdong Province of China Project [20211356].

Data availability statement

No data was used for the research described in the article.

Declaration of interests statement

The authors declare no competing interests.

Additional information

No additional information is available for this paper.

References

- Flora of China Editorial Committee, Flora of China, Science Press, Beijing, China, 2008.
- [2] Y. Cao, X.L. Gao, G.Z. Su, X.L. Yu, P.F. Tu, X.Y. Chai, The genus *Neolitsea* of Lauraceae: a phytochemical and biological progress, Chem. Biodivers. 12 (10) (2015) 1443–1465.
- [3] Y. Li, S. Xie, J. Ying, W. Wei, K. Gao, Chemical structures of lignans and neolignans Isolated from Lauraceae, Molecules 23 (12) (2018).
- [4] M.M.R. Silva Teles, A.A. Vieira Pinheiro, C. Da Silva Dias, J. Fechine Tavares, J.M. Barbosa Filho, E.V. Leitao Da Cunha, Alkaloids of the lauraceae, Alkaloids -Chem. Biol. 82 (2019) 147–304.
- [5] J. Wang, B. Su, H. Jiang, C. Ning, Y. Sun, Traditional uses, phytochemistry and pharmacological activities of the genus *cinnamomum* (lauraceae): a review, Fitoterapia 146 (2020), 104675.
- [6] A. Zareie, A. Sahebkar, F. Khorvash, M. Bagherniya, A. Hasanzadeh, G. Askari, Effect of cinnamon on migraine attacks and inflammatory markers: a randomized double-blind placebo-controlled trial, Phytother Res. 34 (11) (2020) 2945–2952.
- [7] C.H. Lin, H.J. Chou, C.C. Chang, I.S. Chen, H.S. Chang, T.L. Cheng, Y.H. Kuo, H.H. Ko, Chemical constituent of beta-Glucuronidase inhibitors from the root of *Neolitsea acuminatissima*, Molecules 25 (21) (2020).
- [8] K.F.S. de Souza, D. Tofoli, I.C. Pereira, K.J. Filippin, A.T.G. Guerrero, E.J. Paredes-Gamero, M. de Fatima Cepa Matos, W.S. Garcez, F.R. Garcez, R.T. Perdomo, A styrylpyrone dimer isolated from *Aniba heringeri* causes apoptosis in MDA-MB-231 triple-negative breast cancer cells, Bioorg. Med. Chem. 32 (2021), 115994.
- [9] J.B. Oliveira-Junior, E.M. da Silva, D.L. Veras, K.R.C. Ribeiro, C.F. de Freitas, F.C.G. de Lima, S.J.C. Gutierrez, C.A. Camara, J.M. Barbosa-Filho, L.C. Alves, F.A. Brayner, Antimicrobial activity and biofilm inhibition of riparins I, II and III and ultrastructural changes in multidrug-resistant bacteria of medical importance, Microb. Pathog. 149 (2020), 104529.
- [10] C. Zhang, L. Fan, S. Fan, J. Wang, T. Luo, Y. Tang, et al., *Cinnamomum cassia* presl: a review of its traditional uses, phytochemistry, pharmacology and toxicology, Molecules 24 (19) (2019).
- [11] N. Singh, A.S. Rao, A. Nandal, S. Kumar, S.S. Yadav, S.A. Ganaie, B. Narasimhan, Phytochemical and pharmacological review of *Cinnamomum verum* J. Presl-a versatile spice used in food and nutrition, Food Chem. 338 (2021), 127773.
- [12] Y. Yao, B. Xu, New insights into chemical compositions and health promoting effects of edible oils from new resources, Food Chem 364 (2021), 130363.
- [13] Wan Mohd Salleh, Nuzul Hakimi Wan, Farediah Ahmad, Phytochemistry and biological activities of the genus *Ocotea* (Lauraceae): a review on recent research results (2000–2016), J. Appl. Pharmaceut. Sci. 7 (5) (2017) 204–218.
- [14] H. Li, B. Liu, C.C. Davis, Y. Yang, Plastome phylogenomics, systematics, and divergence time estimation of the Beilschmiedia group (Lauraceae), Mol. Phylogenet. Evol. 151 (2020), 106901.
- [15] R. Sundararaj, R.R. Shanbhag, H.C. Nagaveni, G. Vijayalakshmi, Natural durability of timbers under Indian environmental conditions – an overview, Int. Biodeterior. Biodegrad. 103 (2015) 196–214.

- [16] Thielmann Julian, Theobald Maria, Wutz Andrea, Krolo Tomislav, Buergy Alexandra, Niederhofer Julia, Muranyi Peter, *Litsea cubeba* fruit essential oil and its major constituent citral as volatile agents in an antimicrobial packaging material, Food Microbiol. 96 (2021), 103725.
- [17] F. Chen, X. Miao, Z. Lin, Y. Xiu, L. Shi, Q. Zhang, D. Liang, S. Lin, B. He, Disruption of metabolic function and redox homeostasis as antibacterial mechanism of *Lindera glauca* fruit essential oil against Shigella flexneri, Food Control 130 (2021).
- [18] Yesim Ozogul, El Abed, Nariman, Fatih Ozogul, Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria, Food Chem. 368 (2021), 130831.
- [19] Z. Tian, Q. Luo, Z. Zuo, Seasonal emission of monoterpenes from four chemotypes of *Cinnamonum camphora*, Ind Crops Prod 163 (2021).
- [20] C.C. Zhao, X.B. Yang, M. Xu, L. Yang, K.L. Mo, GC-MS analysis of volatile oil from leaves of *Cinnamonum pedunculatum* from Sichuan, J Sichuan Forestry Sci. Tech. 39 (2018) 26–29.
- [21] S.C. Lee, S.Y. Wang, C.C. Li, C.T. Liu, Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of *Cinnamomum osmophloeum Kanehira* in endotoxin-induced mice, J. Food Drug Anal. 26 (1) (2018) 211–220.
- [22] X. Li, H.Y. Lu, X.W. Jiang, Y. Yang, B. Xing, D. Yao, Q. Wu, Z.H. Xu, Q.C. Zhao, *Cinnamomum cassia* extract promotes thermogenesis during exposure to cold via activation of brown adipose tissue, J. Ethnopharmacol. 266 (2020), 113413.
- [23] H. Cai, J. Wang, Y. Luo, F. Wang, G. He, G. Zhou, X. Peng, *Lindera aggregata* intervents adenine-induced chronic kidney disease by mediating metabolism and TGF-beta/Smad signaling pathway, Biomed. Pharmacother. 134 (2021), 111098.
- [24] Y.S. Wang, Z.Q. Wen, B.T. Li, H.B. Zhang, J.H. Yang, Ethnobotany, phytochemistry, and pharmacology of the genus *Litsea*: an update, J. Ethnopharmacol. 181 (2016) 66–107.
- [25] J. Lee, S. Lim, Anti-inflammatory, and anti-arthritic effects by the twigs of *Cinnamonum cassia* on complete Freund's adjuvant-induced arthritis in rats, J. Ethnopharmacol. 278 (2021), 114209.
- [26] L. Sun, L.N. Liu, J.C. Li, Y.Z. Lv, S.B. Zong, J. Zhou, Z.Z. Wang, J.P. Kou, W. Xiao, The essential oil from the twigs of *Cinnamonuum cassia* Presl inhibits oxytocininduced uterine contraction in vitro and in vivo, J. Ethnopharmacol. 206 (2017) 107–114.
- [27] X. Liu, J. Fu, R.S. Shen, X.J. Wu, J. Yang, L.P. Bai, Z.H. Jiang, G.Y. Zhu, Linderanoids A–O, dimeric sesquiterpenoids from the roots of *Lindera aggregata* (Sims) Kosterm, Phytochemistry 191 (2021), 112924.
- [28] Q. Liu, J.H. Ahn, S.B. Kim, C. Lee, B.Y. Hwang, M.K. Lee, Sesquiterpene lactones from the roots of *Lindera strychnifolia*, Phytochemistry 87 (2013) 112–118.
- [29] W. Cheng, C. Zhu, W. Xu, X. Fan, Y.C. Yang, Y. Li, X.G. Chen, W.J. Wang, J.G. Shi, Chemical constituents of the bark of *Machilus wangchiana* and their biological activities, J. Nat. Prod. 72 (12) (2009) 2145–2152.
- [30] H.C. Kwon, N.I. Baek, S.U. Choi, K.R. Lee, New cytotoxic butanolides from *Lindera obtusiloba* Blume, Chem. Pharm. Bull. 48 (5) (2000) 614–616.
- [31] I.J. Lin, H.C. Yeh, T.M. Cham, C.Y. Chen, A new butanolide from the leaves of *Cinnamomum reticulatum*, Chem. Nat. Compd. 47 (1) (2011) 43.
- [32] R.J. Lin, M.J. Cheng, J.C. Huang, W.L. Lo, Y.T. Yeh, C.M. Yen, C.M. Lu, C.Y. Chen, Cytotoxic compounds from the stems of *Cinnamonum tenuifolium*, J. Nat. Prod. 72 (10) (2009) 1816–1824.
- [33] Y. Guan, D. Wang, G.T. Tan, N. Van Hung, N.M. Cuong, J.M. Pezzuto, H.H. Fong, D.D. Soejarto, H. Zhang, Litsea species as potential antiviral plant sources, Am. J. Chin. Med. 44 (2) (2016) 275–290.
- [34] C.R. Nogueira, L.H. Carbonezi, C.T.F. de Oliveira, W.S. Garcez, F.R. Garcez, Sesquiterpene derivatives from *Ocotea minarum* leaves, Phytochem. Lett. 42 (2021) 8–14.
- [35] E. Palomino, C. Maldonado, M.B. Kempff, M.B. Ksebati, Caparratriene, an active
- aesquiterpene hydrocarbon from Ocotea caparrapi, J. Nat. Prod. 59 (1) (1996) 77–79.
 [36] Y.R. Li, C.S. Fu, W.J. Yang, X.L. Wang, D. Feng, X.N. Wang, D.M. Ren, H.X. Lou, T. Shen, Investigation of constituents from Cinnamonum camphora (L.) J. Presl and evaluation of their anti-inflammatory properties in lipopolysaccharide-stimulated RAW 264.7 macrophages, J. Ethnopharmacol. 221 (2018) 37–47.
- [37] M.X. Zhou, G.H. Li, B. Sun, Y.W. Xu, A.L. Li, Y.R. Li, D.M. Ren, X.N. Wang, X.S. Wen, H.X. Lou, T. Shen, Identification of novel Nrf2 activators from *Cinnamomum chartophyllum* H.W. Li and their potential application of preventing oxidative insults in human lung epithelial cells, Redox Biol. 14 (2018) 154–163.
- [38] H.J. Zhang, G.T. Tan, V.D. Hoang, N.V. Hung, N.M. Cuong, D.D. Soejarto, J.M. Pettuto, H.H.S. Fong, Natural anti-HIV agents. Part 3: Litseaverticillols A–H, novel sesquiterpenes from *Litsea verticillata*, Tetrahedron 59 (2003) 141–148.
- [39] H.J. Zhang, G.T. Tan, B.D. Santarsiero, A.D. Mesecar, N.V. Hung, N.M. Cuong, D.D. Soejarto, J.M. Pezzuto, H.H.S. Fong, New sesquiterpenes from *Litsea verticillata*, J. Nat. Prod. 66 (5) (2003) 609–615.
- [40] H.J. Zhang, V.H. Nguyen, M.C. Nguyen, D.D. Soejarto, J.M. Pezzuto, H.H. Fong, G.T. Tan, Sesquiterpenes and butenolides, natural anti-HIV constituents from *Litsea verticillata*, Planta Med. 71 (5) (2005) 452–457.
- [41] Y. Guoruoluo, H. Zhou, J. Zhou, H. Zhao, H.A. Aisa, G. Yao, Isolation and characterization of sesquiterpenoids from *Cassia* buds and their antimicrobial activities, J. Agric. Food Chem. 65 (28) (2017) 5614–5619.
- [42] P. Shu, X. Wei, Y. Xue, W. Li, J. Zhang, M. Xiang, M. Zhang, Z. Luo, Y. Li, G. Yao, Y. Zhang, Wilsonols A-L, megastigmane sesquiterpenoids from the leaves of *Cinnamomum wilsonii*, J. Nat. Prod. 76 (7) (2013) 1303–1312.
- [43] L. Zhou, Study on the Chemical Constituents and Immunomodulatory Activities of Leaves of Cinnamomum cassia, A Dissertation Submitted in Partial Fulfillment of the Requiterments for the Degree of Master, Wuhan, WH, 2016.
- [44] X. Hao, J. Chen, Y. Lai, M. Sang, G. Yao, Y. Xue, Z. Luo, G. Zhang, Y. Zhang, Chemical constituents from leaves of *Cinnamomum subavenium*, Biochem. Systemat. Ecol. 61 (2015) 156–160.

- [45] Y.M. Yan, P. Fang, M.T. Yang, N. Li, Q. Lu, Y.X. Cheng, Anti-diabetic nephropathy compounds from *Cinnamonum cassia*, J. Ethnopharmacol. 165 (2015) 141–147.
- [46] L.Y. Wang, Y.H. Qu, Y.C. Li, Y.Z. Wu, R. Li, Q.L. Guo, S.J. Wang, Y.N. Wang, Y.C. Yang, S. Lin, [Water soluble constituents from the twigs of *Litsea cubeba*], Zhongguo Zhongyao Zazhi 42 (14) (2017) 2704–2713.
- [47] M.J. Cheng, B. Jayaprakasam, T. Ishikawa, H. Seki, I.L. Tsai, J.J. Wang, I.S. Chen, Chemical and cytotoxic constituents from the stem of *Machilus zuihoensis*, Helv. Chim. Acta 85 (2002).
- [48] J.P. Chavez, O.R. Gottlieb, M. Yoshida, 10-Desmethyl-1-Methyl-Eudesmanes from Ocotea corymbosa, Phytochemistry 39 (4) (1995) 849–852.
- [49] B.M. Fraga, I. Cabrera, M. Reina, D. Terrero, Two new sesquiterpenes from Laurus azorica, Z. Naturforsch., C: J. Biosci. 56 (7-8) (2001) 503–505.
- [50] B.J. Chen, Research on Chemical Constituents of Cinnamomum cassia Presl and Cinnamomum porrectum (Roxb.) Kosterm, A Dissertation Submitted in Partial Fulfillment of the Requiterments for the Degree of Master, Shandong, SD, 2015.
- [51] H.A. Ryen, T. Göls, J. Steinmetz, A. Tahir, P.-J. Jakobsson, A. Backlund, E. Urban, S. Glasl, Bisabolane sesquiterpenes from the leaves of *Lindera benzoin* reduce prostaglandin E2 formation in A549 cells, Phytochem Lett 38 (2020) 6–11.
- [52] Y.W. Xu, Research on Chemical Constituents of Cinnamomum chartophyllum H. W.Li, A Dissertation Submitted in Partial Fulfillment of the Requiterments for the Degree of Master, Shandong, SD, 2016.
- [53] P. Weyerstahl, H. Marschall, U. Splittgerber, Porosadienone, a Phoebe oil sesquiterpene with a new carbon skeleton, Liebigs Ann. Chem. (1994) 523–525.
- [54] L.Y. Wang, Y. Tian, Y.H. Qu, Y.Z. Wu, Y.C. Li, R. Li, P.C. Lin, X.Y. Shang, S. Lin, Two new terpenoid ester glycosides from the twigs of *Litsea cubeba*, J. Asian Nat. Prod. Res. 20 (12) (2018) 1129–1136.
- [55] A. Mimura, H. Sumioka, K. Matsunami, H. Otsuka, Conjugates of an abscisic acid derivative and phenolic glucosides, and a new sesquiterpene glucoside from Lindera strychnifolia, J. Nat. Med. 64 (2) (2010) 153–160.
- [56] B.J. Liou, H.S. Chang, G.J. Wang, M.Y. Chiang, C.H. Liao, C.H. Lin, I.S. Chen, Secondary metabolites from the leaves of *Neolitsea hiiranensis* and the antiinflammatory activity of some of them, Phytochemistry 72 (4-5) (2011) 415–422.
- [57] K. Takeda, H. Ishii, T. Tozyo, Components of the root of *Lindera strychnifolia* Vill. Part XVI. Isolation of Lindenene showing a new fundamental sesquiterpene skeleton, and its correlation with Linderene, J. Chem. Soc. C (14) (1969) 2826.
- [58] S.L. Wu, W.S. Li, Chemical constituents from the roots of *Neolitsea hiiranensis*, J. Chin. Chem. Soc. 42 (3) (1995) 555–560.
- [59] H. Sumioka, L. Harinantenaina, K. Matsunami, H. Otsuka, M. Kawahata, K. Yamaguchi, Linderolides A-F, eudesmane-type sesquiterpene lactones and linderoline, a germacrane-type sesquiterpene from the roots of *Lindera strychnifolia* and their inhibitory activity on NO production in RAW 264.7 cells in vitro, Phytochemistry 72 (17) (2011) 2165–2171.
- [60] S. Hayashi, N. Hayashi, T. Matsuura, The Structure of Isosericenine, the methyl ester of a new elemane type sesquiterpene acid isolated from *Neolitsea sericea* koidz, Tetrahedron Lett. 9 (16) (1968) 1999–2001.
- [61] A. Barla, G. Topcu, S. Oksuz, G. Tumen, D. Kingston, Identification of cytotoxic sesquiterpenes from *Laurus nobilis* L, Food Chem. 104 (4) (2007) 1478–1484.
- [62] K. Wada, K. Matsui, Y. Enomoto, O. Ogiso, K. Munakata, Insect feeding inhibitors in plants, Agric. Biol. Chem. 34 (6) (2014) 941–945.
- [63] H. Hibasami, Y. Yamada, H. Moteki, H. Katsuzaki, K. Imai, K. Yoshioka, T. Komiya, Sesquiterpenes (Costunolide and Zaluzanin D) isolated from *Laurel (Laurus nobilis* L.) induce cell death and morphological change indicative of apoptotic chromatin condensation in leukemia HL-60 cells, Int. J. Mol. Med. 12 (2) (2003) 147.
- [64] E. Julianti, K.H. Jang, S. Lee, D. Lee, W. Mar, K.B. Oh, J. Shin, Sesquiterpenes from the leaves of *Laurus nobilis* L, Phytochemistry 80 (2012) 70–76.
- [65] N. Fukuyama, C. Ino, Y. Suzuki, N. Kobayashi, H. Hamamoto, K. Sekimizu, Y. Orihara, Antimicrobial sesquiterpenoids from *Laurus nobilis* L, Nat. Prod. Res. 25 (14) (2011) 1295–1303.
- [66] N. Hayashi, S. Hayashi, T. Matsuura, The structure of sericenine and sericenic acid, the new germacrane type sesquiterpenoids, isolated from *Neolitsea sericea* Koidz, Tetrahedron Lett. 9 (48) (1968) 4957–4960.
- [67] K.S. Chen, Y.C. Wu, Sesquiterpenoids from *Neolitsea parvigemma*: isolation, oxidation products and antiplatelet actions, Tetrahedron 55 (1999) 1353–1366.
 [68] B.S. Joshi, V.N. Kamat, T.R. Govindachari, Sesquiterpenes of *Neolitsea zeylanica*
- merr.—I : isolation of some constituents, Tetrahedron 23 (1) (1967) 261–265. [69] Q. Sun, A. Sun, R. Liu, Preparative isolation and purification of Linderalactone and
- [109] Q. Sun, A. Sun, A. Eu, Preparative isolation and purification of Enderlatetone and Lindenenol from *Radix linderae* by HSCCC, J. Liq. Chromatogr. Relat. Technol. 29 (1) (2007) 113–121.
- [70] K.S. Chen, P.W. Hsieh, T.L. Hwang, F.R. Chang, Y.C. Wu, Anti-inflammatory furanogermacrane sesquiterpenes from *Neolitsea parvigenma*, Nat. Prod. Res. 19 (3) (2005) 283–286.
- [71] K. Takeda, I. Horibe, M. Teraoka, H. Minato, Sesquiterpenes of lauraceae plants. Part I. Components of *Neolitsea aciculata* koidz, J. Chem. Soc. C (7) (1970) 973–980.
- [72] Q. Liu, Y.H. Jo, S.B. Kim, Q. Jin, B.Y. Hwang, M.K. Lee, Sesquiterpenes from the roots of *Lindera strychnifolia* with inhibitory effects on nitric oxide production in RAW 264.7 cells, Bioorg. Med. Chem. Lett. 26 (20) (2016) 4950–4954.
- [73] K.S. Chen, F.R. Chang, T.T. Jong, Y.C. Wu, Two novel sesquiterpenes from Neolitsea parvigenma, J. Nat. Prod. 59 (7) (1996) 704–706.
- [74] Y. Qiang, Z.D. Yang, J.L. Yang, K. Gao, Sesquiterpenoids from the root tubers of Lindera aggregata, Planta Med. 77 (14) (2011) 1610–1616.
- [75] W.S. Li, Sesquiterpene lactones from the root of *Neolitsea acutotrinervia*, J. Nat. Prod. 55 (11) (1992) 1614–1619.
- [76] W.S. Li, C.Y. Duh, Sesquiterpene lactones from *Neolitsea villosa*, Phytochemistry 32 (6) (1993) 1503–1507.

- [77] D. Takaoka, H. Tani, H. Nozaki, M. Nakayama, Structures of three germacranolide sesquiterpene dilactones from *Neolitsea aciculata* Koid, Nat. Prod. Lett. 3 (3) (1993) 203–208.
- [78] E.H. Hakim, S.A. Achmad, E. Effendy, E.L. Ghisalberti, D.C.R. Hockless, A.H. White, Structural studies of three sesquiterpenes from *Litsea spp.* (Lauraceae), Aust. J. Chem. 24 (1993) 1355–1362.
- [79] N.A. Jani, H.M. Sirat, F. Ahmad, S.A. Abed, N.I. Aminudin, Chemical constituents of the stems of *Neolitsea kedahensis* Gamble, Phytochem. Lett. 26 (2018) 12–15.
- [80] S.A. Achmad, Effendy Azminah, E.L. Ghisalberti, E.H. Hakim, L. Makmur, A.H. White, Structural studies of two bioactive furanosesquiterpenes from *Cryptocarya densiflora* (Lauraceae), Aust. J. Chem. 45 (2010) 445–450.
- [81] K.S. Chen, F.R. Chang, Y.C. Chia, T.S. Wu, Y.C. Wu, Chemical constituents of Neolitsea parvigenma and Neolitsea konishii, J. Chin. Chem. Soc. 45 (1998) 103–110.
- [82] X.L. Cheng, S.C. Ma, F. Wei, G.L. Wang, X.Y. Xiao, R.C. Lin, A new sesquiterpene isolated from *Lindera aggregata* (SIMS) KOSTERM, Chem. Pharm. Bull. 55 (9) (2010) 1390–1392.
- [83] H.J. Yang, E.B. Kwon, W. Li, Linderolide U, a new sesquiterpene from *Lindera aggregata* root, Nat. Prod. Res. 1–5 (2020).
- [84] J.S. Yu, J. Baek, H.B. Park, E. Moon, S.Y. Kim, S.U. Choi, K.H. Kim, A new rearranged eudesmane sesquiterpene and bioactive sesquiterpenes from the twigs of *Lindera glauca* (Sieb. et Zucc.) Blume, Arch Pharm. Res. 39 (12) (2016) 1628–1634.
- [85] F.R. Garcez, W.S. Garcez, L. Hamerski, Eudesmane and rearranged eudesmane sesquiterpenes from *Nectandra cissiflora*, Quim. Nova 33 (8) (2009) 1739–1742.
- [86] M.J. Camargo, M.L.D. Miranda, C.M. Kagamida, E.D. Rodrigues, F.R.G.W.S. Gracez, Sesquiterpenes of *Ocotea lancifolia* (lauraceae), Quim. Nova 36 (7) (2010) 1008–1013.
- [87] L.E. Cuca, C.A. Ramos, E.D. Coy-Barrera, Novel cadinane-related sesquiterpenes from *Nectandra amazonum*, Phytochem. Lett. 6 (3) (2013) 435–438.
- [88] A.N.L. Batista, J.M. Batista Junior, S.N. López, M. Furlan, A.J. Cavalheiro, D.H.S. Bolzani, Aromatic compounds from three Brazilian Lauraceae species, Ouim. Nova 33 (2) (2010) 321–323.
- [89] C.C. Wang, C.S. Kuoh, T.S. Wu, Constituents of Persea japonica, J. Nat. Prod. 59 (4) (1996) 409–411.
- [90] Z. Deng, H. Zhong, S. Cui, F. Wang, Y. Xie, Q. Yao, Cytotoxic sesquiterpenoids from the fruits of *Lindera communis*, Fitoterapia 82 (7) (2011) 1044–1046.
- [91] E. Gil Archila, L.E. Cuca Suarez, Phytochemical study of leaves of Ocotea caudata from Colombia, Nat. Prod. Res. 32 (2) (2018) 195–201.
- [92] L.S. Gan, Y.,L., Zheng, J.,X. Mo, X. Liu, X.H. Li, C.X. Zhou, Sesquiterpene lactones from the root tubers of *Lindera aggregata*, J. Nat. Prod. 2 (8) (2009) 1497–1501.
- [93] T. Ohno, A. Nagatsu, M. Nakagawa, M. Inoue, Y.-M. Li, S. Minatoguchi, H. Mizukami, H. Fujiwara, New sesquiterpene lactones from water extract of the root of *Lindera strychnifolia* with cytotoxicity against the human small cell lung cancer cell, SBC-3, Tetrahedron Lett. 46 (50) (2005) 8657–8660.
- [94] K. Takeda, H. Minato, M. Ishikawa, M. Miyawaki, Components of the root of Lindera strychnifolia Vill.—IX, Tetrahedron 20 (11) (1964) 2655–2663.
- [95] F.R. Chang, T.J. Hsieh, T.L. Huang, C.Y. Chen, R.Y. Kuo, Y.C. Chang, H.F. Chiu, Y.C. Wu, Cytotoxic constituents of the stem bark of *Neolitsea acuminatissima*, J. Nat. Prod. 65 (3) (2002) 255–258.
- [96] I. Muhammad, Y.Z. Xiao, S.S.U. Hassan, X. Xiao, S.K. Yan, Y.Q. Guo, X.P. Ma, H.Z. Jin, Three new guaiane-type sesquiterpenoids and a monoterpenoid from *Litsea lancilimba* Merr, Nat. Prod. Res. (2020) 1–14.
- [97] V.D. Hoang, G.T. Tan, H.J. Zhang, P.A. Tamez, N.V. Hung, N.M. Cuong, D.D. Soejarto, H.H.S. Fong, J.M. Pettuto, Natural anti-HIV agents - Part I: (+)-Demethoxyepiexcelsin and Verticillatol from *Litsea verticillata*, Phytochemistry 59 (3) (2002) 325–329.
- [98] T. Komiya, Y. Yamada, H. Moteki, H. Katsuzaki, K. Imai, H. Hibasami, Hot water soluble sesquiterpenes[anhydroperoxy-costunolide and 3-oxoeudesma-1,4(15),11(13)triene-12,6alpha-olide] Isolated from *Laurel (Laurus nobilis L.)* induce cell death and morphological change indicative of apoptotic chromatin condensation in leukemia cells, Oncol. Rep. 11 (1) (2004) 85–88.
- [99] I. Kouno, A. Hirai, Z.H. Jiang, T. Tanaka, Bisesquiterpenoid from the root of Lindera strychnifolia, Phytochemistry 46 (7) (1997) 1283–1284.
- [100] Q.F. Ruan, S.Q. Jiang, X.Y. Zheng, Y.Q. Tang, B. Yang, T. Yi, J. Jin, H. Cui, Z. Zhao, Pseudoguaianelactones A-C: three unusual sesquiterpenoids from *Lindera glauca* with anti-inflammatory activities by inhibiting the LPS-induced expression of iNOS and COX-2, Chem. Commun. 56 (10) (2020) 1517–1520.
- [101] N.T.V. Thanh, D.T.T. Hien, T.T. Minh, H.D. Cuong, N.X. Nhiem, P.H. Yen, P. Van Kiem, Quercetin glycosides and sesquiterpenes from *Phoebe poilanei* Kosterm, Vietnam J. Chem. 57 (4) (2019) 401–405.
- [102] Y.T. Huang, H.S. Chang, G.J. Wang, C.H. Lin, I.S. Chen, Secondary metabolites from the roots of *Beilschmiedia tsangii* and their anti-inflammatory activities, Int. J. Mol. Sci. 13 (12) (2012) 16430–16443.
- [103] C.F. Zhang, N. Nakamura, S. Tewtrakul, M. Hattori, Q.S. Sun, Z.T. Wang, T. Fujiwara, Sesquiterpenes and alkaloids from *Lindera chuni* and their inhibitory activities against HIV-1 integrase, Chem. Pharm. Bull. 50 (9) (2002) 1195–1200.
- H. Hikino, N. Suzuki, T. Takemoto, Structure of Campherenone and Campherenol, Tetrahedron Lett. 8 (50) (1967) 5069–5070.
- [105] Y. Li, S. Wen, H. Yang, Y. Wang, Y. Wu, Z. Sun, Chemical constituents of the roots of *Lindera chunii*, Chem. Nat. Compd. 55 (6) (2019) 1069–1072.

- [106] X. Liu, J. Yang, J. Fu, X.J. Yao, J.R. Wang, L. Liu, Z.H. Jiang, G.Y. Zhu, Aggreganoids A-F, carbon-bridged sesquiterpenoid dimers and trimers from *Lindera aggregata*, Org. Lett. 21 (14) (2019) 5753–5756.
- [107] P. Weyerstahl, H. Marschall-Weyerstahl, H.C. Wahlburg, Terpenes and terpene derivatives, XXV. Oreodaphnenol - a sesquiterpene alcohol with a new carbon skeleton, Liebigs Ann. Chem. (1989) 307–308.
- [108] C.Y. Chen, W.L. Yang, Y.R. Hsui, A novel sesquiterpenoid from the roots of *Cinnamomum subavenium*, Nat. Prod. Res. 24 (5) (2010) 423–427.
- [109] Y.C. Chia, H.C. Yeh, Y.T. Yeh, C.Y. Chen, Chemical constituents from the leaves of *Cinnamonum reticulatum*, Chem. Nat. Compd. 47 (2) (2011) 220–222.
- [110] H. Zhou, Y. Guoruoluo, Y. Tuo, J. Zhou, H. Zhang, W. Wang, M. Xiang, H.A. Aisa, G. Yao, Cassiabudanols A and B, immunostimulative diterpenoids with a cassiabudane carbon skeleton featuring a 3-Oxatetracyclo[6.6.1.0(2,6).0(10,14)] pentadecane scaffold from *Cassia Buds*, Org. Lett. 21 (2) (2019) 549–553.
- [111] B.M. Fraga, D. Terrero, P. Bolaños, C.E. Díaz, Diterpenes with new isoryanodane derived skeletons from *Persea indica*, Tetrahedron Lett. 58 (23) (2017) 2261–2263.
- [112] T. Nohara, Y. Kashiwada, K. Murakami, T. Tomimatsu, M. Kido, A. Yagi, I. Nishioka, Constituents of *Cinnamomi Cortex*. V. Structures of five novel diterpenes, cinncassiols D1, D1 glucoside, D2, D2 glucoside and D3, Chem. Pharm. Bull. 29 (9) (1981) 2451–2459.
- [113] T. Nohara, Y. Kashiwada, T. Tomimatsu, I. Nishioka, Two novel diterpenes from bark of *Cinnanonum cassia*, Phytochemistry 21 (8) (1982) 2130–2132.
- [114] B.M. Fraga, D. Terrero, C. Gutiérrez, A. Gonzalez-Coloma, Insect antifeedant isoryanodane diterpenes from *Persea indica*, J. Nat. Prod. 60 (1997) 880–883.
- [115] J. Zeng, Y. Xue, P. Shu, H. Qian, R. Sa, M. Xiang, X.N. Li, Z. Luo, G. Yao, Y. Zhang, Diterpenoids with immunosuppressive activities from *Cinnamomum cassia*, J. Nat. Prod. 77 (8) (2014) 1948–1954.
- [116] Y.Q. Huang, B. Zhou, Y.R. Yuan, Y.H. Ren, D.L. Li, K. Zhang, J.M. Yue, Cinnacetals A and B: two highly oxidated and modifified isoryanodane diterpenoids from *Cinnamomum cassia*, Tetrahedron Lett. 73 (2021), 153110.
- [117] A. Isogai, S. Murakoshi, A. Suzuki, S. Tamura, Chemistry and biological activities of cinnzeylanine and cinnzeylanol, new insecticidal substances from *Cinnamonum* zeylanicum Nees, Agric. Biol. Chem. 41 (9) (2014) 1779–1784.
- [118] A. Yagi, N. Tokubuchi, T. Nohara, G. Nonaka, I. Nishioka, A. Koda, The constituents of *Cinnamomi Cortex*. I. Structures of cinncassiol A and its glucoside, Chem. Pharm. Bull. 28 (5) (1980) 1432–1436.
- [119] A. Gonzalez-Coloma, M.G. Hernandez, A. Perales, B.M. Fraga, Chemical ecology of canarian laurel forest: toxic diterpenes from *Persea indica* (Lauraceae), J. Chem. Ecol. 16 (9) (1990) 2723–2733.
- [120] T. Nohara, N. Tokubuchi, M. Kuroiwa, I. Nishioka, The constituents of *Cinnamomi Cortex*. III. Structures of cinncassiol B and its glucoside, Chem. Pharm. Bull. 28 (9) (1980) 2682–2686.
- [121] A. Gonzalez-Coloma, D. Terrero, A. Perales, P. Escoubas, B.M. Fraga, Insect antifeedant ryanodane diterpenes from *Persea indica*, J. Agric. Food Chem. 44 (1) (1996) 296–300.
- [122] V.C. Pham, T.T.A. Nguyen, T.O. Vu, T.Q. Cao, B.S. Min, J.A. Kim, Five new diterpenoids from the barks of *Cinnamonum cassia* (L.), J. Presl. Phytochem. Lett. 32 (2019) 23–28.
- [123] B.M. Fraga, D. Terrero, C. Gutiérrez, A. Gonzalez-Coloma, Minor diterpenes from Persea indica : their antifeedant activity, Phytochemistry 56 (4) (2001) 315–320.
- [124] L. Zhou, Y. Tuo, Y. Hao, X. Guo, W. Tang, Y. Xue, J. Zeng, Y. Zhou, M. Xiang, J. Zuo, G. Yao, Y. Zhang, Cinnamomols A and B, immunostimulative diterpenoids with a new carbon skeleton from the leaves of *Cinnamonum cassia*, Org. Lett. 19 (11) (2017) 3029–3032.
- [125] S. He, Y. Jiang, P.F. Tu, Three new compounds from *Cinnamomum cassia*, J. Asian Nat. Prod. Res. 18 (2) (2016) 134–140.
- [126] T.M. Ngoe, D.T. Ha, I.S. Lee, B.S. Min, M.K. Na, H.,J. Jung, S.M. Lee, K.H. Bae, Two new diterpenes from the twigs of *Cinnamonum cassia*, Helv. Chim. Acta 92 (10) (2009) 2058–2062.
- [127] J.F. Zeng, Study on the Chemical Constituents and Biological Activities of Barks and Leaves of Cinnamomum cassia, A dissertation submitted to Huazhong University of Science and Technology for the Degree of Doctor, Wuhan, WH, 2014.
- [128] T. Nohara, I. Nishioka, N. Tokubuchi, K. Miyahara, T. Kawasaki, Cinncassiol C1, a novel type of diterpene from *Cinnamomi Cortex*, Chem. Pharm. Bull. (Tokyo) 28 (6) (1980) 1969–1970.
- [129] Y. Kashiwada, T. Nohara, T. Tomimatsu, I. Nishioka, Constituents of *Cinnamomi Cortex*. IV. Structures of cinncassiols C1 glucoside, C2 and C3, Chem. Pharm. Bull. (Tokyo) 29 (9) (1981) 2686–2688.
- [130] E.D. Coy, L.E. Cuca, M. Sefkow, Macrophyllin-type bicyclo[3.2.1]octanoid neolignans from the leaves of *Pleurothyrium cinereum*, J. Nat. Prod. 72 (2009) 1245–1248.
- [131] P. Trisonthi, A. Sato, H. Nishiwaki, H. Tamura, A new diterpene from *Litsea cubeba* fruits: structure elucidation and capability to induce apoptosis in HeLa cells, Molecules 19 (5) (2014) 6838–6850.
- [132] Y.C. Chang, F.R. Chang, Y.C. Wu, The constituents of *Lindera glauca*, J. Chin. Chem. Soc. 47 (2) (2000) 373–380.
- [133] Y.H. Cheng, I.S. Chen, Y.C. Lin, C.W. Tung, H.S. Chang, C.C. Wang, Attenuation of antigen-specific T helper 1 immunity by *Neolitsea hiiranensis* and its derived terpenoids, PeerJ 4 (2016), e2758.
- [134] K.S. Chen, Y.C. Wu, Sesquiterpenoids from *Neolitsea parvigentma*: isolation, oxidation products and antiplatelet actions, Tetrahedron 55 (5) (1999), 1353-136.