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Abstract

Background: Compared with second-generation sequencing technologies, third-generation single-molecule RNA
sequencing has unprecedented advantages; the long reads it generates facilitate isoform-level transcript characterization.
In particular, the Oxford Nanopore Technology sequencing platforms have become more popular in recent years owing to
their relatively high affordability and portability compared with other third-generation sequencing technologies. To aid the
development of analytical tools that leverage the power of this technology, simulated data provide a cost-effective solution
with ground truth. However, a nanopore sequence simulator targeting transcriptomic data is not available yet. Findings: We
introduce Trans-NanoSim, a tool that simulates reads with technical and transcriptome-specific features learnt from
nanopore RNA-sequncing data. We comprehensively benchmarked Trans-NanoSim on direct RNA and complementary DNA
datasets describing human and mouse transcriptomes. Through comparison against other nanopore read simulators, we
show the unique advantage and robustness of Trans-NanoSim in capturing the characteristics of nanopore complementary
DNA and direct RNA reads. Conclusions: As a cost-effective alternative to sequencing real transcriptomes, Trans-NanoSim
will facilitate the rapid development of analytical tools for nanopore RNA-sequencing data. Trans-NanoSim and its
pre-trained models are freely accessible at https://github.com/bcgsc/NanoSim.
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Background there has been an increase in the development of novel algo-
rithms to leverage the power of this technology, including de novo
assembly, alignment and mapping, and structural variant detec-
tion [6-12]. In this active field of research, simulated data with a
known ground truth provide a cost-effective means to help de-
velop, refine, and benchmark these tools.

Long-read simulators have been developed for ONT genomic
reads [13, 14]. DeepSimulator [14] uses a context-dependent
deep learning model to simulate the electrical current signals,

RNA sequencing (RNA-seq) is a cornerstone technology that has
helped further our understanding of transcriptomes [1]. Third-
generation single-molecule sequencing technologies such as
those from Oxford Nanopore Technologies (ONT, Oxford, UK) are
proving invaluable for isoform-level analyses. For example, ONT
reads 1-100 kb in length permit identification and quantification
of most full-length isoforms in the human transcriptome and
enable various complex feature analyses [2-5]. In recent years,
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which are decoded into sequence reads using any off-the-shelf
base-calling method. Although it may facilitate the development
of base-calling algorithms, DeepSimulator cannot provide the
ground truth at the base level. On the other hand, as a base-
level simulator, NanoSim [13] first utilizes statistical models to
learn the characteristics of sequencinglibraries and then applies
those models to simulate ONT genomic reads directly. Although
proven to have advanced the development of various bioinfor-
matics analysis tools, NanoSim'’s initial development was cen-
tered on simulating genomic reads [12, 15]. Neither of these tools
is specifically designed to capture and reproduce transcriptome-
specific features such as transcript expression profiles and in-
tron retention (IR) events. While transcript expression levels in-
form the biological state of a transcriptome, IR, as one of the
main forms of alternative splicing, contributes to the functional
complexity of eukaryotic transcriptomes [16]. ONT reads have
the potential to capture complex IR events involving multiple
introns, thus allowing researchers to investigate IR at isoform-
level resolution. In addition, the inadequacy of base callers to
detect timespan in the signal data often results in homopolymer
expansion and contraction events, represented by significantly
higher deletion rates in homopolymer regions. Despite these ho-
mopolymer errors accounting for many, if not the majority, of
the errors in ONT reads, no ONT read simulator can accurately
simulate them. Taking all these into consideration, there is cur-
rently an unmet need for an ONT RNA-seq simulator, which can
aid the development of transcriptome analysis methods without
the expense of sequencing experiments.

Here we present further developments of NanoSim and intro-
duce Trans-NanoSim, which is specifically designed for the ONT
transcriptome sequencing platform. This versatile tool mim-
ics the technical features of nanopore RNA-Seq data includ-
ing read error modes, read length distribution, and homopoly-
mer artefacts, which might be affected by different library
preparation methods and base-calling algorithms. Furthermore,
Trans-NanoSim can be trained to characterize transcriptome-
specific features such as expression patterns and IR events
for more accurate simulation. To demonstrate the performance
of Trans-NanoSim, we chose 3 sets of publicly available ex-
perimental ONT reads for training and simulation, includ-
ing human NA12878 direct RNA, complementary DNA (cDNA)
1D?, and mouse cDNA 1D libraries (Supplementary Note 1).
Through benchmarking the similarity between experimental
and simulated reads, we show that Trans-NanoSim consistently
outperforms the genomic simulator DeepSimulator, on all 3
datasets.

Unlike short reads generated from second-generation se-
quencing technologies, ONT reads have very long and non-
uniform lengths. Thus, read length is a key feature to preserve in
simulation. The read length distribution of transcriptomic data
is jointly influenced by sequencing techniques, sample prepara-
tion protocols (often leading to reads derived from partial tran-
scripts), and transcriptomic variables, such as transcript lengths
and expression levels (for the latter, different expression pro-
files may result in different read length distributions). There-
fore, to capture this relationship between expression levels and
read lengths, we profiled 3 datasets and then simulated reads
with Trans-NanoSim and DeepSimulator (Supplementary Note
2). For the human direct RNA dataset, the length distribution
of simulated reads generated by Trans-NanoSim (mean [SD] =

807 [0.75] nucleotides [nt] determined by ordinary nonparamet-
ric bootstrapping 1,000 times using the boot command in R,
Fig. S1) followed the empirical read length distribution (mean
= 815 nt) closely (Fig. 1A). Although we configured DeepSimula-
tor to preserve the mean read length of empirical reads (mean
= 808 nt), DeepSimulator still generated a bimodal length distri-
bution with a mode of ~150 nt. We suspect that this limitation is
due to the predefined read-length distributions of DeepSimula-
tor, while the ONT read length cannot be simply described by a
single statistical distribution, as elucidated by previous studies
[13]. Furthermore, DeepSimulator, being a genomic read simula-
tor, does not associate the isoform expression levels with read
lengths.

Next, we aligned the simulated and empirical reads to the
reference genome and evaluated the length of consecutive
match/error bases in both sets (Supplementary Note 2). While
the error rate of the empirical reads from the human direct RNA
dataset was 10.53%, the simulated reads generated by Trans-
NanoSim and DeepSimulator were 10.44% and 11.09%, respec-
tively (Supplementary Table S1). Combined with the length dis-
tribution of base-calling events, it is evident that Trans-NanoSim
mimics error and match events more closely to the experimen-
tal data (Fig. 1B).

For a transcriptome sequence simulator, it is critical to
output the correct number of simulated reads for each tran-
script (i.e., amount that reflects the expected expression level
of a given transcript). To evaluate whether a simulated dataset
generated by both tools accounts for transcript isoform usage
and expression level, we used the "quantify” module in Trans-
NanoSim to compute the transcript expression levels with both
empirical and simulated reads (Supplementary Note 2). The co-
efficient of determination (R?) between the estimated transcript
abundance of the empirical human direct RNA dataset and the
simulated dataset generated by Trans-NanoSim is 0.9444, indi-
cating that the observed raw transcript expression level is well
replicated by Trans-NanoSim (Fig. 1C). In contrast, the R? value
for DeepSimulator simulated reads is 0.0032, which suggests
that the transcript abundance in the simulated dataset is in-
dependent of its counterpart in the empirical one. Because ge-
nomic simulators do not require expression profiles as input, it
is expected that this desirable feature is missing.

To the best of our knowledge, Trans-NanoSim is the first
transcriptome sequence simulator that provides IR modelling.
Considering the human direct RNA dataset as an example,
the IR modelling module of Trans-NanoSim identified 2,872
transcripts with >1 retained intron, and nearly half of them
(1,285 transcripts) were expressed at >2 transcripts per million
(TPM). Interestingly, we identified as many as 6 retained in-
trons in 1 highly expressed transcript (Ensembl transcript ID:
ENST00000425660, TPM = 1,433). The IR modelling module also
reports the transitional probability of each intron being retained
based on the state of the previous intron, a model that the
pipeline uses for read simulations. In the human direct RNA
dataset, only 0.41% of reads spanned the first intron of the repre-
sented transcript. However, given that an intron is retained, the
probability of observing the subsequent intron being retained
increased to 17.12%.

Another novel feature that we introduce to Trans-NanoSim is
homopolymer length modelling, which applies to both genome
and transcriptome simulations. It is known that the high er-
ror rate of ONT reads is partially due to the base-calling arte-
fact in homopolymer regions [17] and the base-calling errors,
mainly deletions, in those regions are substantially higher than
in non-homopolymer regions (Supplementary Table S2). Trans-
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Figure 1: Benchmarking Trans-NanoSim and DeepSimulator on the human direct RNA dataset. A. Comparison of length distributions of experimental reads and
simulated reads generated by Trans-NanoSim and DeepSimulator. B. The length of consecutive match/error bases of empirical and simulated reads, as indicated. C.
Transcript expression levels measured from simulated reads versus the same measured from experimental reads.

NanoSim simulates homopolymer of each base type individu-
ally, and in our experiments, the mean homopolymer length is
largely consistent between simulated and experimental reads
(Fig. 2). Our analysis revealed a linear correlation between the
homopolymer length on the reference compared to the sequenc-
ing reads. However, as the homopolymer length increases, fewer
data points were observed, thus widening the confidence inter-
val. As a result, we observed a larger variation between simu-
lated length and experimental lengths for A and T homopoly-
mers longer than 20 nt and C and G homopolymers longer
than 15 nt. We note that in the experimental long-read datasets
used herein, at most only 0.08% and <0.01% of reads contain-
ing these homopolymer lengths were observed, respectively, and
will likely represent rare occurrences in ONT data.

Finally, we evaluated the computational performance of
Trans-NanoSim and DeepSimulator through characterizing and
simulating 687,192 reads describing the human reference tran-
scriptome (Supplementary Note 2). Although both tools allow
users to train a custom model with any dataset, the authors of
DeepSimulator noted that this step is computationally intensive
and advised their users against trying it [18]. In contrast, in a
typical run, it takes Trans-NanoSim <1 h to train and an addi-
tional few minutes to compute the expression profile with 4 pro-
cessors. In the simulation stage, Trans-NanoSim ran for 2h11m
with peak memory of 526 MB, while DeepSimulator ran for
1d8h32m in total (with 5Sh46m to simulate signals and 1d2h46m
for base calling) with peak memory of 17.22 GB (Supplemen-
tary Tables S3 and S4). Trans-NanoSim also supports multi-
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Figure 2: Homopolymer simulation performance on the human direct RNA dataset. The x-axis shows the reference homopolymer length (nt) and y-axis is the mean
homopolymer length (nt) on corresponding reads. The distributions for A and T homopolymers are trimmed at 40 nt.

processing, which reduces the runtime significantly, but at the
cost of increased memory usage (Supplementary Fig. S2, Table
S5). The runtime of Trans-NanoSim is proportional to the num-
ber of reads to be simulated, with a fixed time usage for read-
ing in profiles. The effect of multiprocessing starts to saturate
with 12 CPUs when processing <60,000 reads, while with more
reads, this saturation point is observed with a greater number
of CPUs. Even with only 4 processors, there is a substantial re-
duction in runtime (~75% less than the same run on a single
CPU), which took 33 minutes to simulate 687,192 human direct
RNA reads.

We recapitulated our results by repeating all the analyses
presented here on human cDNA 1D? and mouse cDNA sequenc-
ing data and obtained similar findings (Supplementary Figs S3
and S4, respectively, and Table S1). We noticed that even though
the error rates in the raw reads can vary from experiment to
experiment, DeepSimulator always generates reads with sim-
ilar error rates and length distribution, while Trans-NanoSim
can adapt to different sequencing libraries and simulates base-
calling events that are true to the platform.

In this work, we report on results from comprehen-
sive benchmarking experiments to illustrate Trans-NanoSim’s
performance on 3 ONT RNA-seq datasets with different se-
quencing data types: direct RNA, cDNA 1D?, and cDNA 1D. Our
evaluations demonstrate the robustness of Trans-NanoSim in
learning and mimicking the length distribution, sequence er-
ror profiles, and homopolymer runs of nanopore RNA-seq reads.
Moreover, Trans-NanoSim provides a solution to the charac-
terization of transcriptome-specific features, such as isoform
expression and IR events, which cannot be addressed by ge-
nomic read simulators. As a fast and memory-efficient ONT
read simulator, Trans-NanoSim is feasible to run on a stan-
dard modern-day laptop computer. We anticipate that it will
offer an important functionality to the community and it will
facilitate the development of various base-level bioinformat-
ics algorithms that leverage the potential of long nanopore
reads, including transcriptome assembly, alignment and quan-
tification, structural variant detection, and novel isoform
identification.

The workflow of Trans-NanoSim consists of 2 stages: charac-
terization of experimental reads and simulation from a refer-
ence transcriptome (Fig. 3). In the characterization stage, ex-
perimental reads are aligned against the reference transcrip-
tome to infer their source transcript, which is essential for read
length analysis and transcript expression quantification. Reads
are also aligned against the reference genome to compute statis-
tical models for read error modes. Both genomic and transcrip-
tomic alignments are used to model intron retention events. We
also provide pre-trained models along with this work for users
to use directly without training. Next, according to these mod-
els, reads are simulated given a reference transcriptome and
genome. For each read to be simulated, the source reference
transcript is selected on the basis of the expression profile. Then,
a sequence is extracted from that transcript according to the
length distribution model, and it is modified with respect to the
IR and error models.

Previous versions of NanoSim used an empirical cumulative
density function to simulate the length distribution of reads. In
the current version of the pipeline, NanoSim uses kernel den-
sity estimation (KDE), which captures underlying patterns in
the read length distributions, and avoids overfitting. We also
replace the binning strategy in simulating the alignment ratio
on each read with KDE, resulting in a smoother simulated read
length distribution. Theoretically, nanopore transcriptome se-
quencing can yield reads of the same length as the original mes-
senger RNA molecule. However, in practice, ONT reads are of-
ten shorter than their corresponding mesenger RNA molecules
owing to experimental or data acquisition artefacts, and thus
they may represent partial transcripts. Therefore, it is crucial to
consider the length of the reference transcript when simulat-
ing the length distribution of simulated ONT reads. To achieve
this, we use a 2D KDE model and measure the length of an
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Figure 3: Schematic overview of the Trans-NanoSim pipeline. The first stage (Characterization) of the pipeline aligns input ONT transcriptome reads against the
reference transcriptome and genome to statistically model the read length distribution and error modes. It also optionally detects intron retention events and quantifies
transcript expression. These profiles alongside the homopolymer model are then used in the second stage (Simulation) to generate simulated reads, also reporting

their associated error profiles.

ONT read relative to the length of the source transcript. Further-
more, unaligned regions on both ends of each read are also sub-
jected to length distribution analysis. We follow the same KDE
model approach as described to model their length distributions
separately.

We note that the percentage of antisense sequences in cDNA
and direct RNA sequences may be substantially different. To
capture this information, Trans-NanoSim automatically infers
the strand ratio by calculating the percentage of reads that are
in the same direction as the annotated strand. This strand ra-
tio is then used to assign the orientation of reads accordingly
during the simulation stage.

Trans-NanoSim is able to detect and model IR events for ONT
transcriptome reads. Based on alignments to intronic regions, it
uses a Markov chain model to calculate the transitional proba-
bilities between the states of spliced and retained introns, given
the state of the previous intron. This feature is not part of the
characterization phase by default. To enable this option, a tran-
script annotation file in GTF/GFF format needs to be provided.
This functionality can also be invoked in a stand-alone mod-
ule (detect.ir), enabling users to only detect and model IR events
without characterizing or simulating reads. The module outputs
comprehensive information on the location of the detected IR
events based on input ONT reads.

We have incorporated a pipeline [19] to estimate transcript
abundance based on reference transcriptome alignments (J.
Simpson, personal communication). The pipeline relies on min-
imap? [7] with -p0 flag to retain all secondary mappings and
then utilizes an expectation maximization approach similar to
RSEM [20] to assign multi-mapping reads. It is a stand-alone
module (quantify) that outputs transcript abundance in TPM
values, which can be used in the simulation stage. Users may
also provide their own expression profile in tab-delimited for-
mat, describing empirical or theoretical distributions, if pre-
ferred. During simulation, these transcript abundance values

are used to calculate the probability of an isoform being se-
lected and ultimately the number of constituent reads of each
isoform.

Statistical modelling of error patterns in long nanopore reads
was proven to be effective in mimicking the sequencing plat-
form [13]. In Trans-NanoSim, we build on the same mixture
models to deal with transcriptome reads as these patterns
are shared among different library preparation methods and
datasets. According to the alignments, reads are classified into
2 groups: aligned and unaligned. For each group, we consider
specific characterization and modelling approaches. As for the
aligned reads, we consider their aligned bases for further error
rate analysis. The lengths of indels and mismatches are drawn
from Weibull/Geometric and Poisson/Geometric mixture mod-
els, respectively. We also calculate the transitional probability
between every 2 consecutive base call errors using a Markov
chain model. We reimplemented the model-fitting function of
NanoSim in Python (formerly in R) and allowed multi-threading
to expedite the fitting process. Unaligned reads may provide cru-
cial information about the nature of ONT sequencing experi-
ments, and thus we chose to model the length distribution of
the unaligned reads as well. For this purpose, we extract se-
quences from reference transcripts based on their length dis-
tribution and apply an arbitrarily high error rate (default, 90%).
However, because it is impossible to trace their source transcript
molecule, unaligned reads are not included in the error rate
analysis.

Previous versions of NanoSim have a k-mer bias parameter (-
k-mer) in the simulation stage that effectively compresses all
homopolymers longer than n into n-mers. However, it does
not simulate homopolymer expansion events nor is it an ac-
curate representation of the distribution of read homopolymer
lengths. In our analysis and the datasets inspected, we observed
that the homopolymer length on sequencing reads is consis-
tent with a normal distribution. Furthermore, the mean and as-



sociated standard deviation of homopolymer lengths on those
same reads is linearly proportional to the reference homopoly-
mer length (Supplementary Fig. S5). In the simulation stage,
Trans-NanoSim first finds homopolymers >n in the sequence
extracted from the reference. Given the reference homopolymer
length, the mean and standard deviation, which are used to gen-
erate the normal distribution, are calculated from segmented
and linear regression models, respectively. The homopolymer
length to be simulated is then drawn from the constructed nor-
mal distribution, and the extracted sequence is modified accord-
ingly. Depending on the base caller used and sequencing types,
the distribution of read homopolymer lengths can vary; thus, we
provide pre-trained models to simulate genome and transcrip-
tome reads base called with Albacore, Guppy’s default model,
and Guppy'’s flip-flop model.

Trans-NanoSim is developed in Python. Source code and pre-
trained models for this work are freely accessible at https://gith
ub.com/bcgsc/NanoSim (Licence: GPL-3). Trans-NanoSim is also
registered in the bio.tools (biotools: Trans-NanoSim) and Sci-
Crunch (RRID:SCR_-018243) databases.

Snapshots of our code and other supporting data are openly
available in the GigaScience repository, GigaDB [21].

Supplementary Figure S1 - Bootstrapping results for length dis-
tribution analyses

Supplementary Figure S2 - Runtimes for multiprocessing
Supplementary Figure S3 - Benchmarking Trans-NanoSim and
DeepSimulator on the human ¢cDNA 1D2 dataset
Supplementary Figure S4 - Benchmarking Trans-NanoSim and
DeepSimulator on the mouse cDNA dataset

Supplementary Figure S5 - Homopolymer characterization of
human NA12878 direct RNA dataset

Supplementary Table S1 - Error rates in empirical and simulated
reads

Supplementary Table S2 - Error rates in homopolymer regions
and non-homopolymer regions for human direct RNA dataset
Supplementary Table S3 - Runtime usage in simulating Human
direct RNA dataset for Trans-NanoSim and DeepSimulator
Supplementary Table S4 - Memory usage (maximum resident set
size in GB) in simulating Human direct RNA dataset for Trans-
NanoSim and DeepSimulator

Supplementary Table S5 - Trans-NanoSim multiprocessing
memory usage (maximum resident set size in GB) with IR mod-
elling

Supplementary Note 1 - Datasets

Supplementary Note 2 - Simulating reads from human and
mouse reference transcriptomes and analyses

c¢DNA: complementary DNA; CPU: central processing unit; IR: in-
tron retention; kb: kilobase pairs; KDE: kernel density estima-
tion; nt: nucleotides; ONT: Oxford Nanopore Technologies; RNA-
seq: RNA sequencing; SD: standard deviation; TPM: transcripts
per million.
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