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ABSTRACT

Objective: Predicting Coronavirus disease 2019 (COVID-19) mortality for patients is critical for early-stage care

and intervention. Existing studies mainly built models on datasets with limited geographical range or size. In this

study, we developed COVID-19 mortality prediction models on worldwide, large-scale “sparse” data and on a

“dense” subset of the data.

Materials and Methods: We evaluated 6 classifiers, including logistic regression (LR), support vector machine

(SVM), random forest (RF), multilayer perceptron (MLP), AdaBoost (AB), and Naive Bayes (NB). We also con-

ducted temporal analysis and calibrated our models using Isotonic Regression.

Results: The results showed that AB outperformed the other classifiers for the sparse dataset, while LR provided

the highest-performing results for the dense dataset (with area under the receiver operating characteristic curve,

or AUC � 0.7 for the sparse dataset and AUC¼0.963 for the dense one). We also identified impactful features

such as symptoms, countries, age, and the date of death/discharge. All our models are well-calibrated (P> .1).

Discussion: Our results highlight the tradeoff of using sparse training data to increase generalizability versus

training on denser data, which produces higher discrimination results. We found that covariates such as patient

information on symptoms, countries (where the case was reported), age, and the date of discharge from the

hospital or death were the most important for mortality prediction.

Conclusion: This study is a stepping-stone towards improving healthcare quality during the COVID-19 era and

potentially other pandemics. Our code is publicly available at: https://doi.org/10.5281/zenodo.6336231.
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LAY SUMMARY

Our study aims to develop a globally generalizable Coronavirus disease 2019 (COVID-19) death prediction tool. To achieve

this, we used a large quantity of publicly available COVID-19 patient data collected from across the globe. We also examined

the effects of data quality on our results by forming a high missing-value dataset and a low missing-value 1, and then com-

paring their respective results. We used a variety of classification models, and found that patient information on symptoms,

countries (where the case was reported), age, and the date of discharge from the hospital or death were the most important

for deciding patients’ COVID-19 mortality outcomes. Our models provide a reference for improving the healthcare quality

that patients receive during the COVID-19 pandemic era.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) has resulted in more than

5.2 million confirmed deaths1 and spans across almost every country

in the world. The World Health Organization (WHO) has declared

that the infection fatality ratio (aka the mortality rate) among all

infected individuals of COVID-19 converges at 0.5–1.0%.2 Thou-

sands of people worldwide continue to be deceased due to COVID-

193 and this trend is likely to continue for the foreseeable future as

cases continue to spike sporadically, vaccine mandates are fiercely

resisted, and new mutations emerge. It is therefore imperative to

identify patients with higher risk of fatality, so that healthcare insti-

tutions can provide adequate early-stage care and interventions to

reduce the risk of COVID-19 mortality.

The Centers for Disease Control and Prevention (CDC) has rec-

ognized older age, kidney disease, lung disease, and certain neuro-

logical and developmental conditions as factors that can increase a

patient’s risk for COVID-19 mortality.4 Based on these factors, sev-

eral existing studies5–11 have proposed pipelines aiming to leverage

artificial intelligence/machine learning (AI/ML) into predicting mor-

tality using patients’ data. Most of these studies were performed on

smaller datasets collected from 1 city5,6 or on a moderate cohort size

(<5000 patients).6–10 These datasets contain detailed/curated clini-

cal information on each patient, contain a low missing value ratio,

and are specific to 1 geographic location. However, in a real, clinical

COVID-19 setting, overwhelmed hospitals, or intensive care units

may not have the resources or time to contact the patients’ primary

care providers to complete the missing medical history information,

and thus the missing data ratio tends to be high.12,13

Also, a model built on data from a particular hospital or city

may be less pertinent to COVID-19 patients outside of that region.

In addition, there are some studies that use a relatively large dataset

with the assumption that the dataset is balanced. For example, a re-

cent study11 used a dataset containing >�110 000 patients and

adopted a preprocessing step to balance the dataset between de-

ceased and discharged patients; this effectively creates a mortality

rate of 50%, which may limit the application for real clinical use.

Although these studies showed the effectiveness of adopting AI/ML

methods to predict patient fatality, the data assumptions of (1) a

low missing value ratio, (2) a single region, and (3) a balanced mor-

tality rate may hinder the generalizability for real-world clinical

applications.

OBJECTIVE

Our goal is to create a model that is generalizable to the world in

retrospectively predicting COVID-19 patient mortality using real-

world data (1) with a medium to high missing value ratio, (2) with

multiple regions encompassed, and (3) without manual balancing of

the discharged and deceased patients’ relative ratios.

MATERIALS AND METHODS

Data
To address the overall goal of model generalizability, we utilized an

open-source COVID-19 dataset14,15 collected from government

sources, scientific papers, and news websites, which contained

2 676 403 COVID-19-confirmed patients from around the world as

of March 31, 2021. The Institutional Review Board at University of

California San Diego (UCSD) approved this study (no. 190385). Al-

though the earlier versions of this dataset were also used by

previous predictive modeling studies,9–11 we used a more recent ver-

sion, which is therefore more complete.

We kept 2 567 823 patients with a known COVID-19 confirmation

date (Figure 1A) and discarded those without it. The average age was

45 (SD¼20) and the gender was 47.6% female. The countries that are

represented among�1% of the total number of patients are the follow-

ing: India¼11.3% (positive¼5.1%), United States¼4.5% (pos-

itive¼87.5%), France¼4.1% (positive¼42.9%), and China¼1.6%

(positive¼20.0%). Demographic statistics were obtained from nonun-

known data.

We used 2 subsets of the same dataset: a sparse dataset and a

dense dataset. For the sparse dataset, our inclusion criteria for the

dataset included (1) patients with a known a COVID-19 confirmation

date (ie, COVID-19þ patients), and (2) patients with known out-

comes (ie, either “deceased” or “discharged”). We manually reviewed

the outcome values to combine semantically equivalent ones (eg,

“death” was considered the same as “deceased”); this process was ex-

ecuted by extracting all unique outcomes, and then manually separat-

ing them into “deceased,” “discharged,” or “ambiguous.”

All observations with “ambiguous” outcomes (eg, “undertreatment”)

were then discarded. We did not exclude patient data using any other cri-

teria. Based on these inclusion criteria, the sparse dataset contains

104 047 patients, with a deceased (or positive) rate of 5.73% (5958

positive patients) and a discharged (or negative) rate of 94.27%

(98 089 negative patients), as shown in Figure 1B.

To examine the effects of data sparsity (ie, various levels of miss-

ing data) and to cross-examine the results with the sparse dataset,

we created the dense dataset (Figure 1C), which is a subset of the

sparse one. The major difference in the dense dataset is that the frac-

tion of deceased patients is 21.1% or 1452 patients out of 5441; just

like with the sparse dataset, we left the positive ratio as-is without

balancing them. Each observation in the dense dataset was extracted

from the sparse one and the basis of inclusion was whether they

reported demographic data for age, sex, symptoms, chronic diseases,

or optional dates (optional dates are all date features excluding the

confirmation date), as shown in Figure 1D. That is, an observation

only needed to include one of those fields to merit being placed in

the dense dataset. The sparse dataset is a superset of the dense set,

meaning that every patient in the dense dataset is also in the sparse

dataset.

Method overview
A high-level overview of our methodology is illustrated in Figure 2.

The following section will introduce our data preprocessing steps in

“Data preprocessing” section. The 6 ML classifiers that we used will

be explored in “Classifiers” section. Last, our validation, calibra-

tion, and evaluation framework will be described in “Validation,

calibration, and evaluation” section.

Data preprocessing
Both the sparse and the dense datasets contained 33 fields. After

manual review, we kept 12 relevant fields (Table 1). The original

dataset contained 33 fields, and after manual review, we kept 12

relevant fields. The manual review process included removing the

following fields that are potentially irrelevant, redundant, or too

specific: ID, City, Province, Latitude, Longitude, Geographic Reso-

lution, Lives in Wuhan, Travel History Location, Reported Market

Exposure, Additional Information, Source, Sequence Available,

Notes for Discussion, Location, Admin 3, Admin 2, Admin 1, New

Country, Admin ID, Data Moderator Initials, and Travel History
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Binary. The nondiscarded fields and their statistics are summarized

in Table 1. The missing value ratio for most of the included

fields is high to reflect the fact that a real-world COVID-19

dataset must be flexible in its assumptions to be generalizable for

countries around the entire globe. We preprocessed the 12 data

fields, to extract 1 binary outcome label (ie, whether the patient

was deceased/positive or discharged/negative, no. 1 in Table 1)

and 55 features. Specifically, we extracted the features from the

following fields:

• Age (no. 2 in Table 1). We split this field into Age Lower and

Age Upper because certain ages were given as ranges. For ages

given as a single value, we assign both Age Lower and Age Upper

to the same age value.
• Sex and chronic disease flag (nos. 3 and 4 in Table 1). We con-

verted the sex field into 2 features, the first to indicate male and

the second to indicate female (if both are zero, then the sex was

considered unreported). The chronic disease flag field was made

into a single binary feature (one if a patient has chronic diseases,

Figure 1. COVID-19 patient data included in this study. (A) The original dataset contained n¼2 676 403 patients. We kept n¼2 567 823 patients after discarding all

observations without a valid COVID-19 confirmation date. (B) The data breakdown of the “sparse” dataset with n¼ 104 047 patients. (C) The data breakdown for

the “dense” dataset with n¼6893. (D) The inclusion requirements for the dense dataset. The “Death or Discharge Date” field (*) has no death or discharge indica-

tion and is just a date.

Figure 2. Overview of our study’s workflow. (A) We started by preprocessing the original dataset from 33 fields down to the 12 most important and relevant fields.

From these 12 remaining fields, we extracted 55 features. (B) We then split the dataset to obtain 90% training data. (C) Next, we performed 10-fold cross validation

with the training data by feeding our data to our 6 classifiers. (D) We calibrated our models using the first 5% of the holdout data. (E) Finally, we evaluated our cal-

ibrated models using the second 5% of the holdout data.
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otherwise zero). The chronic disease binary flag does not neces-

sarily align with the chronic disease field; that is, even if the

chronic disease flag is one (meaning a patient suffers from

chronic diseases), the chronic disease field may still contain no

data.
• Chronic diseases, symptoms, and country (nos. 5–7 in Table 1,

respectively). We manually reviewed the values of these fields to

combine equivalent values.
• Date confirmation (no. 8 in Table 1). To enable comparison be-

tween dates, we converted this date into an “absolute” day with

a reference to the earliest confirmation date available in our en-

tire dataset (ie, January 6, 2020) inclusive of the last day. For ex-

ample, if the current patient’s COVID-19 confirmation date is

June 3, 2020, the absolute days for date confirmation for this pa-

tient would be 150. In addition, we also use this field as the “base

date” for other types of dates to compute “relative” days (details

in the next bullet).
• Date of onset symptoms, date of admission hospital, and date of

death or discharge (nos. 9–11 in Table 1, respectively). For these

types of dates, we convert each of them into both “absolute” and

“relative” days. The process of absolute date conversion is the

same as the one for date confirmation (ie, computing the differ-

ence between a specific date and the earliest value for that type of

date, inclusive of that specific day). On the other hand, each rela-

tive date value is the difference between the patient’s date confir-

mation and the date in question. For example, if the patient’s

date confirmation was March 21, 2020 and their date of death

or discharge was May 4, 2020, their relative days for date of

death or discharge would be 45. Note that the date of death or

discharge only contains a date without revealing outcome infor-

mation.

• Travel history dates (no. 12 in Table 1). Many of this specific

type of date were given as ranges. Therefore, we first split this

field into Travel History Dates Begin and Travel History Dates

End, (similarly to age, we give these 2 dates the same value if the

original data field contains only 1 value). Then, for each of the

“begin” and “end” fields, we further extracted both absolute day

and relative day features, resulting in 4 features in total.

We created dummy variable features for categorical fields. Then,

we normalized numerical features to [0, 1] using the equation of

(current value—minimum value)/(maximum value—minimum

value). For fields with missing values, we added a missing indicator

feature. For the dense dataset, we further removed all features that

were not represented among �5 unique observations, to ensure that

one feature would not be unrealistically predictive due to only one

observation having that feature. As many of the fields have high

missing value ratios, this allowed us to use a much denser subset of

the sparse dataset to examine the effects of sparsity.

Classifiers
We adopted 6 classifiers for our COVID-19 mortality prediction (bi-

nary classification) task: logistic regression (LR), support vector ma-

chine (SVM), random forest (RF), multilayer perceptron (MLP),

AdaBoost (AB), and Naive Bayes (NB). All hyper-parameter combi-

nations are shown in Supplementary Appendix Table SA1. For

SVM, we used a linear version.16–18 For MLP, we set the learning

rate to 0.1, number of hidden layers¼1, the number of hidden neu-

rons¼110, the learning rate decay ¼ false, and the threshold for

consecutive errors¼20. Appropriate hyper-parameter options were

discovered through previous studies16,17,19–23 using similar imple-

mentations for the classifiers. While many of the previous studies

Table 1. The 12 relevant fields and statistics of our data for both the sparse and dense datasets

Nos.

Field Description Data type

No. of possible

values (NOM),

or range of values

(NUM/DAT)

Missing value percentage (%)

Sparse Dense

1 Outcome Patient outcome from COVID-19 (deceased¼ 1 or

discharged¼ 0)

NOM 2 0.0 0.0

2 Age Age of the patient in years NUM 0–101 94.5 18.9

3 Sex Sex of the patient (male, female, unreported) NOM 3 93.4 0.2

4 Chronic disease flag Binary flag for whether the patient has chronic

diseases (true, false)

NOM 2 0.0 0.0

5 Chronic diseases List of reported chronic diseases (asthma, chronic

kidney disease, diabetes, and hypertension)

NOM 4 99.9 98.5

6 Symptoms List of symptoms of the patient experienced NOM 10 99.8 97.4

7 Country Name of country in which the case was reported NOM 20 0.0 0.0

8 Date confirmation Date when patient was confirmed to have

COVID-19

DAT January 2, 2020–

June 3, 2020

0.0 0.0

9 Date of onset

symptoms

Date when patient began reporting symptoms DAT January 2, 2020–

May 27, 2020

96.6 49.4

10 Date of admission

hospital

Date when patient was recorded to be hospitalized DAT January 2, 2020–

April 5, 2020

99.8 96.5

11 Date of death or

discharge

Date when death or discharge of the patient was

reported (only contains a date without revealing

outcome information)

DAT January 2, 2020–

June 4, 2020

98.9 83.6

12 Travel history dates Recorded travel dates to a location DAT January 3, 2020–

April 3, 2020

99.8 97.0

Notes: The field names and descriptions are adapted from the original dataset.14,15 We only enumerate possible values of the nominal field with a total number

of values <10.

NUM: Numerical, NOM: Nominal, DAT: Date. Dates are given in YYYY/MM/DD format.
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differed in their datasets and application, we adopted a grid search

hyper-parameter tuning approach. We selected the initial values of

the grid search based on the previous studies’ explored hyper-

parameter combinations to optimize the performance of our models.

We expanded our grid search hyper-parameter values as necessary;

we determined necessity based on whether the highest-performing

hyper-parameter combination was an edge case in the grid search.

We implemented the classifiers using the WEKA library.24,25 SVM

was implemented using the LibLINEAR API16,17,26 (also WEKA).

Validation, calibration, and evaluation
Our validation, calibration and evaluation processes are shown

above in Figure 2. The data were split into 3 parts: 90% for train-

ing/validation (Figure 2B), the first 5% for calibration (Figure 2D),

and the second 5% for evaluation (Figure 2E). We used the full area

under the receiver operating characteristic curve (AUC) as our evalu-

ation metric for the classifiers. We built and tested our models on an

Amazon Web Services virtual machine with 2 vCPUs, 8 GB RAM,

and 100 GB SSD.

1. For training/validation, we performed 10-fold cross-validation for

each classifier on the 90% training data to tune the hyper-

parameters, averaged the validation results in AUC over 10 folds,

and calculated the 95% confidence intervals (CIs) of AUC using

the best-performing hyper-parameter combinations.

2. For calibration, the best hyper-parameter combination for each

classifier was trained on the validation data, first 5%, and then

tested on the testing data, second 5%, which then provided the in-

put for Isotonic Regression.18,25

3. For evaluation, we tested the AUC and computed the Hosmer–

Lemeshow (H-Statistic27) Test on the evaluation data. Given the

change in the COVID-19 viral variants, it is imperative to further

show our model’s ability to predict mortality in different epochs

Figure 3. The performance of our 6 classifiers with AUC as the evaluation metric. AB outperformed the other 5 classifiers for the sparse dataset and LR was the

best performer when trained on the dense dataset. The precision and recall for each result are provided near each respective AUC result, with “P” being the preci-

sion and “R” being the recall. We used the default decision threshold of 0.5 when computing the precision and recall values. The classifier abbreviations are as

follows: LR: logistic regression; SVM: support vector machine; RF: random forest; MLP: multi-layer perceptron; AB: AdaBoost; NB: Naive Bayes.

Table 2. The best hyper-parameter combinations for each of the 6 classifiers on both the sparse and dense datasets

Classifier Hyper-parameters Best sparse data combination Best dense data combination

LR • Ridge • 103 • 102

SVM • Cost • 2�5 • 2�5

RF • Number of attributes
• Sample size
• Number of trees

• m1/3

• 50%
• 100

• m1/2

• 50%
• 175

MLP • Momentum
• Number of epochs

• 0.1
• 750

• 0.3
• 500

AB • Weight threshold
• Number of iterations
• Resampling for boosting
• Base classifier

• 100
• 70
• True
• J48

• 100
• 20
• True
• J48

NB • Kernel estimator
• Supervised discretization

• True
• False

• False
• True

Note: Notation: m is the number of attributes.
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of time. Thus, following the CDC’s COVID-19 timeline,28 we

split the evaluation data into 2 parts separated by May 2, 2020

(ie, when the WHO declared that COVID-19 was a global health

crisis). The first part contains all the data before May 2, 2020 and

the second part contains all other data (inclusive of May 2, 2020).

We split the evaluation data for both the sparse and dense data-

sets in this manner.

RESULTS

The discrimination results of each classifier on the full evaluation

data for both datasets are demonstrated in Figure 3. For the sparse

dataset, AB resulted in the highest AUC values (AUC � 0.7), fol-

lowed by RF and MLP (AUC � 0.685). For the dense dataset, LR

performed the best (AUC 5 0.963), whereas RF, MLP, and AB fol-

lowed behind closely (AUC � 0.96). SVM and NB provided less

competitive results for both datasets. The precision and recall results

(computed using a decision threshold of 0.5) for each classifier can

also be seen in Figure 3. In general, all models provided good preci-

sion (>0.89) and recall (>0.73) for the dense dataset; for the sparse

dataset, the precision is still high (>0.87 except for NB), whereas

the recall is relatively low (�0.2). The best-performing hyper-pa-

rameter combinations for the sparse and the dense datasets are

shown in Table 2. We also analyzed the top 10 most important fea-

tures derived from LR for both the sparse and the dense datasets

(Table 3) and ordered them by their decreasing absolute value of

their trained weights. Symptoms, countries, ages, and dates of death

or discharge were found to be among the most predictive factors.

The full LR models for the spares and the dense datasets are shown

in the Supplementary Appendix Table SA2 and SA3, respectively.

The temporal and calibration results are shown in Table 4. RF

outperformed the other classifiers for the “before May 2, 2020”

time period, whereas MLP performed best for the “on-and-after

May 2, 2020” epoch for both datasets. All models (including the full

evaluation data, evaluation data from before May 2, 2020, and eval-

uation data from on-and-after May 2, 2020 for both the sparse and

the dense datasets) are well-calibrated (P> .1). The training time

measurements on the full 90% training/validation data for each clas-

sifier are shown in Figure 4, and MLP took by far the longest time

to train with both datasets (sparse and dense).

DISCUSSION

Findings
For the full evaluation data, AB provided higher best-case AUC

results for the sparse dataset and LR performed the best on the dense

one. Based on the results of all hyper-parameter combinations, we

observed that altering the base classifier for AB resulted in the great-

est direct change in discrimination results. For LR, SVM, RF, MLP,

and NB, none of the hyper-parameter combinations changed the

results significantly. Our results also highlight the tradeoff we’ve

embraced when compared with the previous studies5–11: models

trained using sparse data to increase generalizability (and a poorly

performing AUC as a result) versus models trained using dense data

with higher discrimination results yet decreased generalizability.

The relatively high precision and recall values for our models run on

the dense dataset indicate that a decision threshold of 0.5 may be ap-

propriate. On the other hand, the low recall on the sparse dataset

was expected due to the imbalance of data (only �6% positive,

while the dense dataset has �21% of positive examples). Finally, the

low recall and precision for NB suggest that a threshold of 0.5 might

not be appropriate for the sparse data.

For temporal analysis, all our models performed even better for

the patients whose confirmation dates were before May 2, 2020

Table 3. The top 10 most important features using both (a) sparse and (b) dense datasets

Dataset Nos. Feature name Description Weight

(a) Sparse 1 Date of death or discharge (absolute) The number of days that passed between the first recorded date of death or

discharge and this patient’s date of death or discharge

�4.439

2 Malaysia Whether the case was reported in Malaysia 3.567

3 Algeria Whether the case was reported in Algeria �3.162

4 Singapore Whether the case was reported in Singapore 3.006

5 South Korea Whether the case was reported in South Korea 2.712

6 Australia Whether the case was reported in Australia 2.633

7 Vietnam Whether the case was reported in Vietnam 2.424

8 Date of death or discharge (missing) Whether the date of the patient’s death or discharge was reported (binary) 1.814

9 United States Whether the case was reported in the United States �1.760

10 Chills (symptom) Whether the patient reported suffering from chills because of COVID-19 1.708

(b) Dense 1 Date of death or discharge (absolute) The number of days that passed between the first recorded date of death or

discharge and this patient’s date of death or discharge

4.026

2 Algeria Whether the case was reported in Algeria 3.535

3 United States Whether the case was reported in the United States 2.376

4 India Whether the COVID-19 case was reported in India 2.015

5 Age (lower) The lower age in a patient’s age range 2.003

6 Age (upper) The upper age in a patient’s age range 1.973

7 Date of death or discharge (missing) Whether the date of the patient’s death or discharge was missing (binary) 1.918

8 Singapore Whether the case was reported in Singapore 1.898

9 Malaysia Whether the case was reported in Malaysia 1.873

10 Headache (symptom) Whether the patient reported suffering from headaches because of

COVID-19

1.601

Notes: These features were results of the LR classifier with a ridge-parameter of 103 for the sparse dataset and 102 for the dense dataset. The date of death or

discharge only contains a date without outcome information. The features are ordered by descending absolute weight. Negative weights are indicative of discharge

and positive weights are indicative of death
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(with RF’s AUC being 0.912 as the best result for the sparse dataset,

and 0.997 for the dense one). This is significantly higher than the

evaluation on the full evaluation dataset (of which the best models

only reached AUC � 0.7 for the sparse dataset and 0.963 for the

dense one). On the other hand, for the patients whose confirmation

dates were on-and-after May 2, 2020, all the AUC values are less

than that of the results for the full evaluation data on both sparse

and dense datasets. This may be a result of the first part of the data-

set (data from before May 2, 2020) containing more nonmissing

data, while later instances have a higher rate of missing values. An-

other possibility is that before May 2, 2020, COVID-19 mortality

may be easier to predict due to the case counts increasing, but not

yet surging, while after May 2, 2020, the number of cases began to

surge making it more difficult to predict. Furthermore, our models

can provide reliable prediction scores after calibration.

Limitations
There are several limitations for this study:

1. Using a longitudinal dataset would allow us to showcase the rela-

tive dangers that each COVID-19 variants (eg, alpha, delta, and

omicron) and their mixes (eg, percent delta/alpha or delta/omi-

cron) poses. Although exploring such a dataset may have the po-

tential to reveal certain symptoms or risk factors that are

correlated with specific variants, we are yet to extend our study to

model such type of data.

2. Calculating the “optimal” decision threshold is often desirable be-

cause the threshold is usually problem-specific, and the real

threshold value may be more biased towards one outcome

over the other.29 Moreover, this “optimal” decision threshold can

potentially affect our precision and recall results, especially for

Table 4. Temporal and calibration test results for the 6 classifiers

Dataset Setting Metric LR SVM RF MLP AB NB

(a) Sparse Training/Validation AUC Average 0.665 0.604 0.699 0.676 0.697 0.665

AUC 95% CI Low 0.656 0.597 0.690 0.668 0.675 0.656

AUC 95% CI High 0.674 0.610 0.708 0.685 0.720 0.675

Evaluation All AUC 0.667 0.596 0.686 0.684 0.695 0.651

H-L Test P-value 0.975 0.856 0.375 0.207 0.296 0.381

Before May 2, 2020 AUC 0.832 0.812 0.912 0.885 0.895 0.710

H-L Test P-value 0.267 1.000 1.000 0.999 0.997 0.357

On-and-after May 2, 2020 AUC 0.615 0.530 0.630 0.640 0.631 0.625

H-L Test P-value 0.981 0.962 0.999 1.000 1.000 0.122

(b) Dense Training/Validation AUC Average 0.961 0.910 0.968 0.960 0.959 0.925

AUC 95% CI Low 0.952 0.894 0.960 0.948 0.939 0.913

AUC 95% CI High 0.971 0.926 0.976 0.972 0.979 0.938

Evaluation All AUC 0.963 0.913 0.962 0.959 0.956 0.931

H-L Test P-value 0.998 1.000 0.763 1.000 0.999 0.883

Before May 2, 2020 AUC 0.982 0.960 0.997 0.993 0.992 0.974

H-L Test P-value 0.644 0.462 0.874 0.968 0.890 1.000

On-and-after May 2, 2020 AUC 0.919 0.900 0.924 0.959 0.945 0.838

H-L Test P-value 0.830 0.717 0.917 0.839 0.996 0.848

Notes: The (a) sparse and (b) dense evaluation data were split into 2 parts, the first containing all data before May 2, 2020 and the second part contains the rest

of the instances (inclusive) because the CDC’s COVID-19 timeline28 depicts May 2, 2020 as the date when the WHO declared that COVID-19 was a global health

crisis. The H-L test P values show that all models are well-calibrated (P > .1) by using isotonic regression calibration.

Figure 4. The time taken for the training on the full 90% training/validation data for each model. The vertical axis on the left correlates with the sparse dataset and

the vertical axis on the right is for the dense dataset.
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the dense dataset. Additionally, performing calibration near the

estimated “optimal” decision threshold can be important because

even a minute change in prediction scores near the decision

threshold can flip the predicted class. We are yet to consult with

clinical experts to estimate such “optimal” decision threshold, as

well as performing subsequent calibration around the estimated

threshold and recompute the precision and recall results.

3. Our data contains a skewed geographical distribution (ie, most of

the observations were from just a handful of countries and the

rest of the countries are only represented in this dataset by a small

number of cases). This leads to the less represented countries be-

ing more influential to the overall feature prediction. For example,

if one of the country features, like Gabon, reported only 5 obser-

vations, and all 5 patients died due to COVID-19, then this fea-

ture may be receiving a higher absolute weight (importance) in

determining patient outcome than it should be. Additionally, the

dataset is lacking data from certain countries, which may result in

a model that does not directly represent a global sample. There-

fore, further investigation of the potential geographical biases in

the dataset may be required.

4. Our hyper-parameter exploration process involved iterating

through a grid search algorithm, which is a computationally in-

tensive process. Therefore, alternative hyper-parameter tuning

techniques (eg, random search30) may allow us to search hyper-

parameter combinations more efficiently, and thus warrant fur-

ther studies.

5. The information on what treatments patients received was not

present in our dataset, and therefore the effects of certain treat-

ments on mortality were not compared. We are yet to include

such additional information to examine if certain treatments

might directly affect the probability of survival. Moreover, we are

yet to consult with clinical experts to perform “blind assessment”

of the features and mortality used in our data, as well as to create

risk groups for stratifying which specific groups of patients are

more susceptible to high risk of death.

6. We adopted more traditional classification methods, prioritizing

the simplicity and explainability of the models. On the other

hand, advanced techniques such as Deep Learning could also be

considered. For example, our tabular datasets can potentially be

converted to sequential representations31 for recurrent neural net-

work,32 or to 2D representations33 for convolutional neural net-

work.34 These advanced Deep Learning methodologies for

predicting patient mortality warrant further exploration.

7. There have been several COVID-19 clinical prediction instru-

ments developed since the start of the pandemic including the

AIFELL35 and the 4C36 scores. The AIFELL score was designed

to differentiate between severe and less severe COVID-19 cases in

emergency room environments. The 4C score was developed to

directly inform clinicians in their decision-making process, as well

as to separate COVID-19 hospital admittees into different risk

management groups. We have yet to compare our prediction

results with those of these existing tools, or to combine various

models to introduce a mortality prediction tool with potentially

better predictive capability.

CONCLUSIONS

In this study, we demonstrated the feasibility to build generalizable

COVID-19 mortality predictive models. To do this, we used a

worldwide dataset that contained high missing value ratios for the

most of our included fields. We evaluated 6 classifiers on a COVID-

19 dataset featuring patients from around the world and reached an

AUC � 0.7 for the sparse dataset and AUC¼0.963 for the dense

dataset. This study is a stepping-stone to creating highly generaliz-

able models that can predict mortality for COVID-19 patients with

the goal of improving healthcare quality during the COVID-19 era

and other future pandemics.
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