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Abstract

Recent technological improvements in the field of genetic data extraction give rise to the possibility of reconstructing the
historical pedigrees of entire populations from the genotypes of individuals living today. Current methods are still not
practical for real data scenarios as they have limited accuracy and assume unrealistic assumptions of monogamy and
synchronized generations. In order to address these issues, we develop a new method for pedigree reconstruction,
PREPARE, which is based on formulations of the pedigree reconstruction problem as variants of graph coloring. The new
formulation allows us to consider features that were overlooked by previous methods, resulting in a reconstruction of up to
5 generations back in time, with an order of magnitude improvement of false-negatives rates over the state of the art, while
keeping a lower level of false positive rates. We demonstrate the accuracy of PREPARE compared to previous approaches
using simulation studies over a range of population sizes, including inbred and outbred populations, monogamous and
polygamous mating patterns, as well as synchronous and asynchronous mating.
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Introduction

Pedigree reconstruction is an important problem in the field of

computational genetics, with many potential applications such as

genealogy inference, heritability estimation, and victim identifica-

tion [1–4]. Additionally, it has the potential to improve the

accuracy of current state-of-the-art relationship inference methods

as it uses family structure in a broader sense than just using

pairwise genetic similarity information. [5,6]. There are two main

variants of the problem, which require different algorithmic

approaches. In the first variant, considered by many classical and

contemporary papers, the genotypes of several generations are

given, and an attempt is made to estimate the pedigree which best

explains the observed individuals, as might be the case in wild

animal populations. [7–10]. In this paper we consider a more

difficult variation of the problem, where we are given the

genotypes of the currently living population only, and try to

reconstruct the historical pedigree of unobserved ancestors. This

variant suits well the scenario of reconstructing the pedigrees of

living human populations. [11]. This variant of pedigree

reconstruction was previously studied in several theoretical works

[12,13]. These papers focus on presenting theoretical bounds on

the length of sequence required for reconstructing pedigrees under

various combinatorial and stochastic heritability models, but in

contrast to our work, do not aim to provide practical solutions for

the problem.

The level of difficulty of the problem is highly dependent on the

pedigree in consideration. Particularly, small inbred populations

pose a considerable challenge since the probability for multiple

mating events within any two families is high, and therefore

individual pairs usually have more than two last common

ancestors (LCAs). Moreover, in small inbred populations there is

a complex relationship pedigree graph due to mating within the

family.

Recently, three methods tackling pedigree reconstruction from

the genotypes of extant individuals were proposed[11,14]; these

methods assume monogamy, and synchronized generations.

Although unrealistic, these assumptions provide a starting point

for developing tools that offer useful methodology. The original

paper addressing pedigree reconstruction from the genotypes of

extant individuals, presented the methods COP/CIP [11]. COP
assumes infinite population size, and CIP tries to reconstruct the

pedigree of small inbred populations. IPED is a follow-up method,

similar in principal to CIP, but with improved efficiency [14]. The

main idea behind these methods is to construct the pedigree,

generation at a time, starting with the given population. In each

generation they identify sibling groups using genetic similarity

measures, and assign two common parents to each sibling group.

In this work, we point out an important and naturally arising

issue of pedigree reconstruction from extant populations, over-

looked by all previous methods. We observe that the mother and

father of a sibling-group have exactly the same descendants (as
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must be the case for monogamous couples). Since the genotypes of

the parents are unobserved, a pairwise relationship analysis relying

on the extant descendants will result in maternal relatives having

the same likelihood of being related to the mother and to the

father, and vice versa (see Fig. 1). Thus, partitioning the relatives

into maternal and paternal relatives is required. Undoubtedly,

ignoring this issue has a great potential influence on the quality of

inferred pedigrees. We discuss a new framework to help

understand and correctly deal with this issue, and present a highly

efficient algorithm under this framework - PREPARE (Pedigree

Reconstruction of Extant populations using PArtitioning of

RElatives). We extend our method to the case of polygamous

pedigrees, and show that our approach results in a considerable

improvement in accuracy compared to existing tools, both on

monogamous and polygamous pedigrees. Thus, PREPARE
presents a method that is capable of dealing with more realistic

pedigree reconstruction problem as compared to previous

methods.

Methods

Similarly to previous methods, we reconstruct the pedigree

generation by generation, starting with the last generation, and

assuming all of the genotypes of the population come from the

same generation. In iteration k, we take the partial k{1
generations pedigree, which we call Pk{1, and build Pk by

adding parents to all of the founder individuals in Pk{1. In order

to construct the correct pedigree, full-siblings should have two

common parents in the pedigree, and half-siblings should have a

single common parent. First, we attempt to detect all founder-

individual pairs in Pk{1 which are most likely to be full-siblings,

leaving the detection of half-sibling to a later stage. In previous

methods, a sibling graph G~(V ,E) is constructed, where V
includes the set of all founders in Pk{1, and E corresponds to the

set of pairs of individuals that are likely to be full siblings. Pairs of

individuals are considered as potential siblings based on the

genetic similarity of the pair’s extant descendants. Sibling groups

are then detected by finding maximum cliques or proper vertex

coloring of the graph G. This approach is problematic, since

individuals with equivalent descendant sets, such as parent

couples, are completely indistinguishable in the graph G since

they have exactly the same set of neighbors. As a result, the siblings

graph includes many redundant edges, and fails to represent the

true relationship structure.

In contrast with previous methods, we present an alternative

graph representation that accounts for the above-mentioned

ambiguity, and uses the transitive property of the full-sibling

relationship to correctly find the full-sibling groups. We begin each

iteration by constructing a contracted siblings graph G’~(V ’,E’).
The set of vertices V ’ is composed of disjoint subsets of V .

Particularly, each v’[V ’ corresponds to a subset of V , so that for

each v1,v2[v’ we have Desc(v1)~Desc(v2), where Desc(v)
represents the set of extent descendants of v (see Fig. 2). Since

vertices of G’ correspond to subsets of V , we refer to vertices in V ’
as super-vertices. The set of edges E’ corresponds to potential

sibling relationship between the corresponding super-vertices, i.e.,

(v’,u’)[E’ if there are v[v’,u[u’ such that (v, u)[E. Note that in

such case, for every v[v’,u[u’, we will have (v, u)[E. Edges have

weights W[E’?R representing the confidence of the relationship.

For a vertex v’, we define contract(v)~v’ for every v[v’. We

provide the details for the construction of the set E’ and W in

section 2.1.

The key idea of our method lies in a procedure for the

assignment of the edges in G’ to edges in G in a consistent way. In

principle, we are interested in assigning every super-edge (u’,v’)[E’
to an edge (u,v)[E that corresponds to the true sibling pair among

all pairs in (v’,u’). In doing so, we need to take into consideration a

set of constraints on the assignments of neighboring super-edges.

Ideally, we would like to find the assignment of super-edges to the

edges of G, which maximizes the likelihood of the observed

population genotypes. In section 2.2, we formulate this problem as

an optimization problem using graph terminology, and propose a

greedy algorithm which solves it in practice. The assignment

algorithm generates an expanded siblings graph G�~(V , E�),
where E�(E, denotes the proposed full-sibling pairs, and forms a

disjoint clique-cover of the graph.

Under the monogamy assumption, we finish reconstructing the

current generation by adding two common-parents to each sibling

clique in G�. In order to account for potential polygamy we add

another step that identifies half-siblings and incorporate these into

a second graph formulation. Our approach for the reconstruction

of polygamous pedigrees relies on two key observations. First, we

note that we can treat the full-sibling relation as an equivalence

relation, and the half-sibling relation as a relation between

equivalence classes. This is true, since if a and b are full siblings,

and a and c are half-siblings, then b and c are also half-siblings.

According to this observation, we construct a half sibling graph

GP~(VP,EP) where VP corresponds to the equivalence classes

defined by the full-sibling relation, and EP correspond to the half-

sibling relation. Second, we observe that the children of every

parent in the founder group of Pk correspond to a clique in GP.

We formulate the half-sibling detection problem, as a second

graph optimization problem. To solve it, we develop a heuristic

algorithm which attempts to find the maximal-weighted set of

edges in GP. The edge set has to satisfy a set of constraints, which

represent natural constraints that govern half-sibling relation-

ships.(see section 2.3).

2.1 Constructing the Contracted Sibling Graph
We now describe the construction of the graph G’~(V ’,E’).

Recall that the set of super-vertices V ’ consists of subsets of V that

share the same set of extant descendants. For every pair

(v’,u’)[V ’|V ’ we have to decide whether (v’,u’)[E’. In order to

do so, we pick a representative pair (v,u), where

Author Summary

Learning the correct relationships between individuals
from genetic data is a basic theoretical problem in the field
of genetics, and has many practical consequences. A wide
variety of statistical methods for genetic analysis assume
the relationships between individuals are known, and can
manifest relatedness information to improve inference.
The current state-of-the-art methods for relationship
inference consider pair-wise genetic similarity, and use it
to infer the relationship between each pair of individuals.
Reconstructing the pedigrees of an entire population
directly has the potential to use more elaborate relation-
ship information, and thus obtains a better prediction of
the familial relationships in the population. In contrast to
the full set of pair-wise relationships in a population,
genetic pedigrees provide a lossless and conflict-free
structure for depicting the relationships between individ-
uals. In an effort to make pedigree reconstruction practical
we developed a new method, which is an order of
magnitude more accurate than previous methods, and is
the first method that has the ability to reconstruct
polygamous pedigrees.

Pedigree Reconstruction via Relative Partitioning

PLOS Computational Biology | www.ploscompbiol.org 2 June 2014 | Volume 10 | Issue 6 | e1003610



v [ v’,u [ u’, and calculate three scores, corresponding to

three putative relations of v and u: unrelated, siblings, and cousins.

For each such relationship r, we construct a pedigree Pr(u,v) by

adding the relevant ancestry structure. For example, when

considering the siblings relationship we construct Psiblings(u,v) by

adding two common parents for v and u. For unrelated pairs we

construct Punrelated (u,v) by adding a different pair of parents to

each node (see Fig. 3).

We proceed by simulating inheritance on Pr(u,v); that is, the

founders in Pr(u,v) are assigned unique haplotypes and we

simulate the recombination process from top to bottom, with a

recombination rate of 10{8. We then calculate IBD segments

between each pair of extant descendants in Desc(u) and Desc(v)
and calculate two IBD features: The number of IBD segments, and

the total length of IBD sharing (we note that these features of IBD

sharing were also considered by ERSA [15], a method for the

inference of pair-wise family relationships). We repeat these

simulations L times for a specified parameter L, thus obtaining an

empirical estimate for the distribution of the IBD features. Using

the above empirical distributions, we estimate the probability of

observing the IBD features for each pair in Desc(v)|Desc(u)
under the relationship r. Since the observed IBD features are

typically not observed in any of the L simulations, we use a

smoothed form of the distribution using Gaussian kernel

smoothing. Formally, let Xr1, . . . ,XrL : Xri[R2 be the simulated

IBD features in the L simulations for a hypothesized relationship r.

The density fr(x) at point x is calculated as:

fr(x)~
jBj{

1
2ffiffiffiffiffiffi

2p
p

:L

XL

i~1

e
{1

2
:(x{Xri )

T :B{1:(x{Xri)

Empirical tests led us to the conclusion that scaling the features

to have equal variance and using a diagonal bandwidth matrix

B~b:I with a parameter b in the range 1 to 8 gives the best

results. The parameter L compensates running time and accuracy.

The accuracy stops improving near L = 50, which ends up with a

very efficient analysis (See section 2.4 for more details).

Let IBDa,b[R2 be the observed IBD features between extant

individuals a and b. The above procedure results in a probability

fr(IBDa,b), for every a[Desc(u),b[Desc(v) and every relationship r
in fsiblings,cousins,unrelatedg.

For each relationship r, we define

scorer(u,v)~ P
a[Desc(u),b[Desc(v),a=b

fr(IBDa,b)

Figure 2. Four examples of vertex contractions, typical for first, second, and third generations. Founders are filled with Grey. Extant
individuals are outlined in blue. Green arrows stand for the contraction action.
doi:10.1371/journal.pcbi.1003610.g002

Figure 1. Attempting to reconstruct the simple pedigree on the left, from the genotypes of extant generation (bright blue).
Considering observed genetic similarity of extant descendants only, we cannot distinguish which of the four parents in the second generation are
siblings (Correctly inferred sibling relationship are colored blue, and wrong potential sibling-relationships in dashed red).
doi:10.1371/journal.pcbi.1003610.g001

Pedigree Reconstruction via Relative Partitioning
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We note that scorer(u,v) can be intuitively interpreted as a

composite likelihood of r. If scoresiblings(u,v) is larger than

scoreunrelated (u,v) and scorecousins(u,v) we add (u’,v’) to E’ with

the weight

w(u’,v’)~
scoresiblings(u,v)X

r
scorer(u,v)

Fig. 4 shows the distribution of
scorer(u,v)X

r
scorer(u,v)

under different

true relationships. Notice that cases where u,v are distantly related

(cousins, 2nd-cousins etc.) will tend to have a maximal score under

scorecousins(u,v). This is desirable, since we only seek to distinguish

siblings from non-siblings at this point.

2.2 The Assignment Algorithm
In the assignment stage, we are given the contracted siblings

graph G’~(V ’,E’), and we search for an assignment of a sibling

relation between super-vertices, depicted by an edge (u’,v’)[E’ to a

single sibling-relation between two individuals (u,v)[E. Our

assignment needs to obey the transitivity constraint of the full

sibling relation. Recall that the weight of an edge w(u’,v’)
corresponds to the strength of evidence for the existence of a

sibling pair (u,v), where u[u’,v[v’. We therefore formulate the

edge assignment problem as follows:

Problem 1. Maximum weight disjoint clique cover edge

assignment. Given the contracted graph G~(V ’,E’), find the

maximal-weight set of edges E�(E, such that E� is a legal

assignment of E’, under the constraint that the set of assigned

edges E� forms a clique cover of the graph G~(V ,E), i.e., E� is

composed of an edge-disjoint set of cliques.

We first show that the above problem is NP-hard:

Figure 3. Examples for possible ancestry structures created for individuals u and v in order to test the relationship between them.
The triangles under u and v represent their existing descendants, edges represent parent-offspring relationship.
doi:10.1371/journal.pcbi.1003610.g003

Figure 4. Distribution of relationship scores under specific true relationships.
doi:10.1371/journal.pcbi.1003610.g004
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Theorem 1. The maximum weight disjoint clique cover edge

assignment is NP-hard.

Proof. We will show a reduction from maximum clique. In [16] it

is shown that it is NP-hard to decide whether a graph G~(V ,E)

has a clique of size n1{E or if its largest clique is smaller than n,

where ~0:01. Consider an instance G~(V ,E) to the clique

problem, and let C be its largest clique. We define G’~(V ’,E’),
where V ’~V , and E’~E. Thus, any clique cover of G is a legal

assignment of G’. Note that if jCjwn1{E then the optimal clique

cover is necessarily of size at least
n2{2E

2
. On the other hand, if

jCjvnE then it is easy to see that the optimal clique cover is

obtained in case all cliques in the cover are of size nE, and thus the

clique cover size is of size at most
n1zE

2
. Thus, if the Maximum

Weight Disjoint Clique Cover Edge Assignment was polynomial,

then we could decide in polynomial time between the case where

the maximum clique is of size n and the case where the maximum

clique is of size n1{E, which is an NP-hard problem.

We therefore apply the following greedy algorithm. We will

need to introduce a few notations. First, we treat vertices v’[V ’ as

vertices in G’, as well as subsets of V , depending on the context.

For each x[V , we denote by NE� (x) the set of neighbors of x in

E�. Moreover, we define NE’(x)~fcontract(y)jy[NE� (x)g, i.e.,

the set of super-vertices corresponding to the neighbors of x in E�.
Finally, let N0~fx[V j jNE� (x)j~0g.

We start by setting E�~1. The algorithm proceeds by

traversing all super-edges (u’,v’)[E’ in decreasing weight order. In

each iteration the set E� consists of a set of disjoint cliques of G,

and E’ consists of a set of yet to be assigned edges. For each

v[N0\v’ and u[u’ we say that v can be added to the clique of u if

for every x’[NE’(u) we have that (x’,v’)[E’. Similarly, we say that

u[N0\u’ can be added to the clique of v[V if for every x’[NE’(v)
we have (x’,u’)[E’. When traversing an edge (u’,v’) we search for

a pair (u,v) where u has the maximal clique size, jNE� (u)z1j,
from within u’, v[N0\v’, and v can be added to the clique of u

(or in a symmetric manner that u can be added to the clique of v

and jNE� (v)z1j is maximized). We then assign (u’,v’) to (u,v) by

Figure 5. Intuition for sibling assignment, depicting the potential-siblings graph G, the contracted graph G’, and assigned graph
G�. In both examples (u,x),(v,y),(w,z) are parent couples with extant descendants in the observed population. A. For the case where (u,z),(w,v) are
full-siblings, the contraction will end in G’ composed of three super-vertices, connected by two edges; the assignment algorithm will assign each
edge to a disjoint clique. B. If (u,v) are also full-siblings, a 3-clique is formed in G’; the assignment algorithm assigns all edges to a corresponding 3-
clique of siblings.
doi:10.1371/journal.pcbi.1003610.g005

Figure 6. An example for the construction of GP in the first generation.
doi:10.1371/journal.pcbi.1003610.g006

Pedigree Reconstruction via Relative Partitioning
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adding (u,v) to E�, and removing (u’,v’) from E’. We also assign

(x’,v’) to (x,v) for every x[NE’(u).

Fig. 5 summarizes the contraction and assignment stages with

an example. Note that cases such as 3-cliques in G’ (Fig. 5-B) can

have multiple assignments with the same score (3 siblings from one

parent couple, or 3 pairs of siblings from 3 different parent

couples). In such cases our algorithm chooses the more parsimo-

nious solution in which there is a smaller number of parents.

2.3 Half-sibling Detection
In the following stage we define the half-sibling detection

problem, where we attempt to detect groups of individuals with a

single common-parent. First, we define the full-sibling relation, on

individuals: FS~f(u,v)ju,v have two common parentsg. Notice

that FS is defined as being reflective, and thus it is an equivalence

relation on V . V=FS is the quotient set of V on FS, which in this

case is simply the set of disjoint groups of full-siblings. We obtain

FS from the edges in E� computed in section 2.2. E� is a clique

cover, and so naturally describes an equivalence relation.

We define HS~f(½u�FS, ½v�FS) j V(u,v)[½u�FS|½v�FS, u, v share

exactly one common parentg, which is the half-sibling relation, as

a relation between equivalence classes in V, in respect to FS.

Assuming the pedigree is known, HS is defined properly since if u
and v are full siblings, and u and x are half-siblings, than v and x
are half siblings. This allows us to simplify the half-sib detection

problem, by constructing the polygamy graph GP~(VP,EP),

where VP~V=FS s.t each vertex v[VP, represents a group of full-

siblings, and each edge (u,v)[EP represents a half-sibling relation

between u and v (see Fig. 6). The edges are added to EP, with a

similar stage to 2.1, only the hypotheses tested this time are made

for siblings groups (u,v)[EP, and are relevant to the half-sibling

case (half-siblings,cousins,unrelated).

The graph GP has the convenient property that if a group of

individuals fv1,:::,vkg(V have a single-common-parent then

f½v1�,:::½vk�g(VP form a clique in GP. We thus assume by

parsimony, that each clique fu1,:::ukg in GP connects all of the

children of a single parent w, such that each ui[fu1,:::ukg is a full-

sibling-group which contains the children of w and a single mate.

We therefore formulate the half-sib detection problem, as follows:

Problem 2. Maximum weight, two-color clique

cover. Given the graph GP~(VP,EP), find sets of edges

FP,MP(EP, such that both FP and MP consist of an

edge-disjoint set of cliques, FP\MP~1, and the total weight

of FP and MP is maximized.

Theorem 2. The Maximum Weight Two Color Clique Cover is NP-

hard.

Proof. We will show a reduction from maximum clique. Consider

an instance G~(V ,E) to the clique problem, and let C be its

largest clique. If jCjwnE we can set M~C and F~1, and

therefore the optimal solution to the coloring problem has at least

n2{2E

2
edges. On the other hand, if jCjvnE then the size of each of

Table 1. Sensitivity and PPV scores (as defined in the results section) of half-siblings using two coloring order schemes.

PREPARE naive

Population size Sensitivity PPV Sensitivity PPV

200 1.0 0.91 0.91 0.91

300 0.91 0.88 0.79 0.85

400 0.97 0.88 0.85 0.88

500 1.0 0.88 0.88 0.91

(1) PREPARE’s greedy coloring scheme as described in section 2.3. (2) Coloring cliques from the heaviest to lightest; if possible color with FP , else if possible color with
MP .
doi:10.1371/journal.pcbi.1003610.t001

Figure 7. An example for a case where the coloring order we purpose enables coloring more cliques with two colors than coloring
the same graph with an arbitrary order. The coloring order is depicted near the cliques. In the left graph we follow the depicted order and color
the clique blue if possible, else we color it dashed-orange. The fourth click cannot be colored since it touches a blue and a dashed-orange clique. In
the right graph we use our coloring scheme, which prefers coloring cliques touching cliques that are already colored. Using this order we are able to
color all four cliques.
doi:10.1371/journal.pcbi.1003610.g007

Pedigree Reconstruction via Relative Partitioning
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M and P is at most
n1zE

2
, and thus the total size of both of them is

bounded by n1zE
vn2{2E=2. Thus, by solving the Maximum

Weight Two Color Clique Cover in polynomial time we can

decide between graphs with clique size at most nE and graphs with

clique size at least n1{E, hence the problem is NP-hard.

Informally, we try to color all edges EP in two colors, FP and

MP, s.t each color creates a set of disjoint cliques. FP colored

cliques, represent full-sibling-group cliques with a single common

father, and MP colored cliques, represent full-sibling-group cliques

with a single common mother.

This problem is also NP-hard and we therefore use the following

greedy approach. For simplicity, we assume GP is connected. The

algorithm begins by setting FP~MP~1. We will denote by

V (FP) and V (MP) the set of vertices induced by FP and MP

respectively. The algorithm proceeds in iterations. In each

iteration we search for the heaviest clique C(VP\V (FP) such

that C\V(MP)=1, and the heaviest clique C(VP\V (MP)
such that C\V (FP)=1. Without loss of generality, assume that

the heaviest among those is a clique C in VP\V (FP). If C contains

only one vertex, we search instead for the heaviest clique C in

VP\(V (FP)|V (MP)). We add the edges of C to FP and remove

these edges from the graph. Clearly, both FP,MP consist of a set of

disjoint cliques of GP.

Notice that we try to minimize the number of arbitrarily

colored cliques, by choosing cliques adjacent to cliques that are

already colored. Simulation studies show that choosing this

coloring order increases the half-sibling sensitivity from 85% to

97% on average (see table 1). It is easy to see that sub-graphs that

are composed of a connected list of cliques will be colored

optimally by our coloring scheme. An example for such a graph is

depicted in Fig. 7.

The graph formulation of the half-sibling detection assumes that

each edge in EP represents a unique half-sibling relationships. We

notice, that in some cases GP might contain redundant edges. In

order to simplify the explanation, we extend the definition of

Desc(u) to nodes in GP: DescP(u)~
[

v[½u�fx jx[Desc(v)g. The

problem arises, when there exists a pair of nodes u,v from the same

generation, such that DescP(u)(DescP(v). In such a case, an edge

(u,x) may be added to EP, as a result of a relationship (v,x).
Trying to contract u and v is not sound, since different

relationships can be detected for u, and v to a third vertex x, by

testing them separately. Instead, we apply a preprocessing to GP,

in the form of a set of parsimonious rules. The rules aim at filtering

Table 2. Running times of PREPARE on 1.6GHz Intel Core i5-2467M machine with 4G RAM using a single thread.

Population Size monogamous polygamous

100 31s 4m 18s

200 53s 9m 21s

500 4m 55s 56m 40s

1000 10m 27s 93m 41s

The two parameters affecting the running time of prepare is the population size, and whether PREPARE is run on monogamous or polygamous mode. Most of the
running time is spent on reconstructing the fifth generation.
doi:10.1371/journal.pcbi.1003610.t002

Figure 8. Depicting cases where edge removal rules are required in polygamous pedigree reconstruction. Redundant graph edges are
dashed red, correct edges in solid black.
doi:10.1371/journal.pcbi.1003610.g008
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all the edges, except the ones that explain the observed features in

the simplest way.

The first rule we apply concerns the case depicted in Fig. 8-A.

In this case, an individual a, with a half-sibling b, has children with

two mates x, and y. Since a,b,x,y do not have full siblings, each of

them is represented in GP as a sibling-group of one individual.

Since x and y have children only with a, their descendant sets are

contained in a’s descendant set. As a result, half-sibling edges

should form between (x,b) and (y,b), additionally to the correct

edge (a,b). To deal with this case, if we find a node a, in VP that

has two mates, x,y and the following holds:

(x,b)[EP AND (a,b)[EP, we remove (x,b) (we do the same for

(y,b)). A similar rule is applied to the contracted graph G’, where

redundant full-sibling edges result from an equivalent case to the

one just mentioned, and are removed in the same manner (see

Fig. 8-B). A third rule is applied to GP to deal with a case similar to

the one in rule 1, only the mates x,y are not the mates of a single

individual a, but instead x is the mate of a, y is the mate of b and

a,b are full-siblings (see Fig. 8-C). In such a case, a true relation

(b,c) may cause redundant half-sibling edges (x,c),(y,c). These

cases are characterized by mates x,y that have few or no full-

siblings. Thus, we look for edges (a,c),(x,c) where

j½x�FSjv j½a�FSj, such that x is the mate of a, and remove (x,c)

from GP. Finally, we observed half-sibling edges forming between

two mates (x,y), of (a,b) such that (a,b) are full-siblings. This

results from the fact that most of a and b’s descendant similarity

was already explained by the formation of the full-sibling

relationship (a,b). The difference between the half-sibling

hypothesis and the null hypothesis for (x,y) becomes small. As a

result, noisy decisions are made. To handle this final case, we

remove half-sibling edges between mates of full siblings (a,b) if

they have a half-sibling edge (x,y) in GP(see Fig. 8-D).

Figure 9. Example for the problematic nature of the consensus-accuracy score, in contrast with the sensitivity score we propose.
Notice how the unrelated pedigree structure receives similar consensus-accuracy scores to IPED and CIP reconstructions. Still, PREPARE scores
are significantly higher. Shown are average scores over 5 simulations, and standard deviation bars. (Some error bars are too small to be visible).
doi:10.1371/journal.pcbi.1003610.g009

Figure 10. Comparison of pedigree reconstruction methods for monogamous populations, using Sensitivity, PPV, and RMSIBDE.
Populations were simulated with Wright-Fisher simulations of 5 generation. Shown are average scores over 5 simulation, with standard deviations
bars. The optimal RMSIBDE score is calculated by scoring the true k-generation pedigree. The first generation pedigree in the RMSIBDE figures, is
the score of the pedigree where all individuals are unrelated, and is shown as reference. (Some error bars are too small to be visible).
doi:10.1371/journal.pcbi.1003610.g010
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2.4 Efficiency Considerations
Simulating inheritance for the descendants of every two

individuals during the graph constructions is very time consuming,

and is the reason CIP is impractical for large populations, or

pedigrees deeper than 4 generations. Notice that if a pair of extant

descendants has exactly the same ancestor structure in the

pedigree, than the simulated IBD features are sampled from the

same distribution. IPED purposes caching individual pairs with

identical inheritance paths, and introduces an accompanying

dynamic programming algorithm for minimizing the number of

operations.

In PREPARE, we use a simplified version of this idea. For

every pair (a,b) of extant descendants, we calculate a least-

common-ancestors (LCAs) vector LCAs(a,b), which is a list of the

meiosis distances between (a,b) and their least common ancestors.

For example, all full-siblings will have the LCAs(a,b) = [1,1], since

full-siblings always have two common ancestors, with one

separating meiosis. We hash the simulated distribution for this

LCA vector, where the key represents the vector itself, and the

value is the distribution. We simulate inheritance only when

needed, i.e. when u’,v’[V ’ have at least one descendant pair,

without a hashed distribution, thus saving most of the redundant

computation. Practically, the running time of PREPARE is

equivalent to the running time of IPED, and is even slightly faster

(see Table. 2). Although LCAs(a,b) does not capture completely

the ancestry structure for (a,b), we observed empirically (data not

shown) that running simulations for each ancestry structure does

not improve the reconstruction accuracy. Apparently, pairs of

individuals (a,b) with the same LCAs vector have similar IBD

distributions. The similarity is large enough to make the repetition

of inheritance simulation for two such pairs redundant.

2.5 Availability
The PREPARE method, inheritance simulators, and quality

evaluation tools are available at http://www.cs.tau.ac.il/*heran/

cozygene/software.shtml

Results

We compare the accuracy of our method to previous pedigree

reconstruction methods on numerous simulations. Different

simulations include combinations of population size and inheri-

tance modes (monogamous and polygamous). Smaller population

sizes correspond to inbred populations with multiple relationships

between families. Larger populations correspond to outbred

populations, with simpler pedigree structures. We also study the

effect of population bottlenecks on the reconstruction quality. In

order to test PREPARE on a more realistic scenario, we run it on

a realistic simulation starting from HapMap phaseIII CEU and

YRI populations as founders. The simulation simulates polyga-

mous random mating in this population for 200 years, reaching to

a final population size of 1000. Finally, we apply PREPARE on

the HapMap MEX population as a feasibility test for application

of our method for real populations.

3.1 Simulations
Similarly to previous methods, we use a Wright-Fisher (WF)

simulator that includes recombination and genders. We add

several new features, which makes this simulator more flexible.

First, we add the ability to control polygamy through a polygamy

probability parameter p, which controls the probability for an

individual to have a child with more than one mate. Second, we

add an option to simulate dynamic population sizes by specifying

an initial population size and a final population size. The simulator

calculates the required population change per generation and

modifies the population size with that ratio in every generation.

Additionally, we experiment with a more realistic forward

simulator that does not assume synchronized generations, and

allows polygamy. We simulate inheritance as a function of time,

where individuals can have children after the age of 20, and die at

an age drawn from a capped exponential distribution with mean

50. The birthrate is changed according to the current population

size, and is tuned to reach a predefined target population size. This

simulator produces actual recombined haplotypes, from the

Figure 11. Comparison of pedigree reconstruction methods for polygamous populations. Populations were simulated with polygamous
Wright-Fisher simulations of 5 generation. Shown are average scores over 5 simulation, with standard deviations bars. (Some error bars are too small
to be visible).
doi:10.1371/journal.pcbi.1003610.g011
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haplotypes of 160 CEU and YRI HapMap representatives. More

specifically, the simulation runs in 5 year iterations, and a pool of

unmated mature individuals is maintained at all times. Every

iteration, individuals from the pool are matched to uniformly

drawn mates. A matching has probability mp to succeed. Every

mated pair has a probability pb to have a child, where pb is

initialized to be 1, and is modified in every iteration by +0.2 or -0.2

depending on whether the current population size is smaller or

larger than the target population size. Polygamy is achieved

through second-marriage, which can occur since once a mate dies,

the individual is added back to the unmated pool. Finally, in order

to include possible IBD detection errors, we detect IBD segments

from simulated genotypes using GERMLINE, [17], and extract

the IBD-features information from its output. This simulator also

has the advantage of having a possible dynamic population size.

The population grows or shrinks depending on the initial and

target population sizes.

3.2 Quality Evaluation
Many different measures can be accounted in evaluating the quality

of reconstructed pedigrees. We first use a previously defined score, to

compare PREPARE to previous methods. For the large part of the

presentation, we define and use other natural evaluation scores, which

we deem as more relevant, and interpretable. In previous methods, a

consensus-accuracy score, which counts the number of extant

individual-pairs with the same minimal meiosis-distance as in the true

pedigree was used [14]. This score treats correct detection of unrelated

pairs and related pairs identically. This is problematic since the number

of unrelated pairs dominates the score. For example, a trivial algorithm

that outputs a pedigree where all individuals are unrelated receives a

Figure 12. Simulated IBD feature distribution in monogamous and polygamous populations. The overlap in polygamous distributions is
the main challenge in reconstructing pedigrees of real populations.
doi:10.1371/journal.pcbi.1003610.g012
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high consensus-accuracy score (see Fig. 9). As a new standard for

pedigree-reconstruction evaluation, we suggest three types of scores:

sensitivity, positive-predictive-value (PPV), and IBD-length prediction

error.

We define sensitivity as the fraction of correctly constructed

(distance wise) related pairs from the total number of related pairs in

the original pedigree. PPV is defined as the fraction of correctly

constructed related pairs from the total number of related pairs in the

reconstructed pedigree. More formally, define R as the reconstructed

pedigree, O as the original pedigree, DP(i,j) as the minimal number

of meiosis separating i and j in pedigree P, and RelExtantP as the set

of extant-individuals, which are related according to pedigree P. Let

TPR,O~
X

i,j[RelExtnatO
I(DR(i,j)~DO(i,j))). Then,

SensitivityR,O~
TPR,O

jRelExtantOj
, PPVR,O~

TPR,O

jRelExtantRj

We run PREPARE for G generation, and compare the scores

of reconstructed pedigrees for every generation k[f1:::Gg
against the first k generations of the original pedigree. This

way we can assess the accuracy of different relatedness degrees

(k = 2 corresponds to siblings, k = 3 to siblings and first-cousins,

etc.)

Scores such as sensitivity and PPV have the disadvantage of not

weighing mistakes according to their magnitude. A second

disadvantage is that the minimal meiotic distance does not capture

the full complexity of a real pedigree (for example, double cousins

detected as cousins will get a full scoring). For these reasons, we

suggest to alternatively measure pedigree quality by calculating the

root mean square IBD-length error (RSMIBDE):

RMSIBDE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i,j[Extant

(IBDR(i,j){IBDO(i,j))2

s
,

where Extant is the set of extant individuals in the population,

IBDO is the observed total length of IBD segments between

individuals i and j, and IBDR is the total length of IBD segments

between individuals i and j, as given from simulating inheritance

on the reconstructed pedigree R. Since this score is dependent on

the randomized scoring-simulation, we average the score of 5 runs.

The RSMIBDE can be interpreted as the expected prediction

error (in Mbp) of the typical pair-wise total-IBD-length, given the

reconstructed pedigree.

3.3 Comparing PREPARE and Competing Methods on
Monogamous Simulations

We tested the competing methods on monogamous Wright-

Fisher simulated population, of constant sizes: 100, 200, 500, and

1000. When it was possible, we ran CIP (up to 4 generations due

to its high runtime complexity), and for larger populations we ran

COP. PREPARE was run in monogamous mode. Results on 100

and 200 individuals were similar, as well as results for 500 and

1000 individuals. In Fig. 10, we compare the three methods for

small populations (200) and larger populations (1000). In all the

scenarios we tested, PREPARE was the most sensitive; for

pedigrees of up to 5 generations (corresponding to 3rd cousins) and

populations as small as 100 individuals. For the larger populations,

the improvement in sensitivity is highest, where PREPARE is able

to build a pedigree which correctly predicts the minimal meiosis

Figure 13. The performance of PREPARE on realistic simulation is comparable to polygamous Wright-Fisher simulations. The
simulated population grew from 160 individuals of the CEU and Y RI HapMap populations to 846 individuals in 200 years. This simulation accounts
for IBD detection errors, asynchronous mating and dynamic population size.
doi:10.1371/journal.pcbi.1003610.g013

Figure 14. PREPARE successfully isolates the 4 generation pedigree found by CARROT. Nodes correspond to individuals, and edges to
parent offspring relationships. The last generation individuals are real HapMap individuals, and the other nodes are ancestors predicted by PREPARE.
doi:10.1371/journal.pcbi.1003610.g014
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distance of more than 95% of 1st and 2nd degree relatives and

more than 60% of relatives up to 3rd degree. At the same time,

PREPARE has a higher PPV up to pedigrees of 4 generations. In

the 5th generation it gets a lower PPV than the other methods, but

this disadvantage is not meaningful, since the sensitivity of these

methods in the 5th generation is very low. PREPARE gives better

quality of results for larger populations, which is natural, since they

tend to form simpler pedigrees with less multi-relationships

between families, and less inbred families.

Considering RMSIBDE scores, PREPARE gets much better

scores than the second best method, and is close to the optimal score,

especially for larger populations. IPED gets worse RMSIBDE
scores than CIP/COP as a result of its practical tendency to over-

predict inbreeding, which we observed during our experiments. An

important feature of PREPARE’s score is that it is non-increasing in

the number of generations, similarly to the optimal score. In

contrast, we do not see this behavior in other methods. Interestingly,

the optimal scores decrease as the population size increases. We

attribute this mainly to the increasing proportion of unrelated pairs

in larger populations, which are easier to predict.

3.4 The Effect of Population Expansion on the Success of
Pedigree Reconstruction

The simplified Wright-Fisher model that was used in pedigree

reconstruction methods up to this day assumes a constant

population size. Real populations sizes are obviously not constant,

and it is known that population bottlenecks and expansion affect

the IBD distribution in the population. We have conducted an

experiment to test the effect of population size shifts on the

distribution of chosen IBD features, and as a consequence on the

quality of the resulting pedigree. We have run the Wright-Fisher

simulation with changing initial population sizes of

100,200,300,400,500 and fixed the final population size at 500.

By looking at the distribution of IBD features between all pairs of

individuals, it is clear to see that the number of IBD segments and

the mean IBD segment length have an inverse relationship with

the initial population size. This corresponds to a higher proportion

of relatives in the populations with smaller initial size. We have

found that populations that grow from 100 to 500 individuals in

five generations have similar IBD feature distributions to

populations with constant population size of size 200. Interestingly

the quality of the resulting pedigree of these populations remains

unchanged when the initial population size is gradually decreased

from 500 to 200. Only at initial size of 100 does the quality

decrease. Sensitivity levels for initial population size of 100 are

0.96,0.75, and 0.54 for 2,3 and 4 generations. The largest decrease

is for 3-generation pedigrees where the sensitivity is decreased by

10% on average. The PPV remains above 0.95 for generation 2,3

but is decreased from 0.85 to 0.71 in generation 4.

3.5 Comparing PREPARE and Competing Methods on
Polygamous Simulations

To asses the quality of PREPARE on polygamous populations,

we simulated polygamous populations of sizes 200 and 1000 with

the Wright-Fisher model. In the simulated populations 33% of the

siblings are half-siblings on average. Details regarding the

execution of previous methods are the same as in section 3.3.

PREPARE was run with the polygamous mode. The results are

summarized in Fig. 11. Once again PREPARE is generally

superior in terms of sensitivity, PPV and RMSEIBD. A notable

exception is IPED’s relatively high sensitivity in generations 4 and

5 in smaller population sizes (200). Note however that this

sensitivity comes at the cost of very low PPV and very high

RMSEIBD in these generations. The RMSEIBD of IPED is not

shown in the graph since it is out of the charts, getting as high as

1500 Mbp. This result suggests that IPED has a strong tendency

to over-predict relationships in small polygamous populations.

Similarly to the monogamous case, PREPARE achieves higher

performance on larger, and as a result, more simply related

populations. For a population size of 1000, PREPARE is able to

build a polygamous pedigree which correctly predicts the minimal

meiosis distance of more than 97% of 1st degree relatives and

more than 80% of 2nd degree relatives while maintaining a PPV

greater than 80%. Polygamous populations pose a much greater

challenge for pedigree reconstruction, and the performance is

decreased in comparison to monogamous populations. According

to our analysis, the difficulty in reconstructing polygamous

pedigrees stems from the fact that the IBD feature distributions

for the range of possible polygamous relationships have greater

overlap than in monogamous relationships (See Fig. 12).

3.6 Reconstructing Realistically Simulated HapMap
Descending Population

We test the performance of PREPARE on populations

produced by the polygamous, asynchronous forward simulator.

We run the simulator for hundreds of simulation years, resulting in

the mixing of the different generations, and reconstruct the last five

generations. We use un-phased IBD segments, to account for the

fact that our input is genotypes, and not haplotypes. As a necessary

step, we aim to filter out cross-generation relationships, which are

not currently modeled, by taking the genotypes from the youngest

age stratum (Ages 0-20). We used the CEU and YRI HapMap

genotypes as the founder population for our simulation. The

results show a comparable success to the Wright-Fisher simulation,

increasing our confidence that PREPARE can be run on real

populations. All accuracy measures show a decrease in accuracy

compared to the Wright-Fisher simulation results. This is expected

due to the addition of several factors (as discussed above), which

adds to the complexity of the analysis (see Fig. 13).

3.7 Application for the HapMap MEX Population
We next use PREPARE to reconstruct the historical pedigree

for the HapMap MEX population. This population is of interest to

us since it is known to contain several relatives, including a single

4-generation pedigree [5]. Age information is not publicly

available for this dataset. Instead, we use known parent-offspring

relationships to separate the population into three generations.

The correct pedigree is not known, so we use previous relationship

inference results by Stevens et al. to validate our results[18].

Running PREPARE on the parent generation of HapMap

phaseII+III MEX genotypes, we are able to detect a single sibling

relationship (NA19662,NA19685), three first-cousin relationships

(NA19662,NA19664), (NA19664,NA19685), (NA19657,NA19786)

and two second-cousin relationships (NA19657,NA19785),

(NA19785,NA19786). We are able to reconstruct correctly the

pedigree found by Kyriazopoulou et al. We do this fully

automatically and without using the genotypes of the two known

grandparents: (NA19662,NA19685) which makes the reconstruction

a significantly harder task(see Fig. 14). Further more, all of the

relationships inferred by PREPARE except (NA19785,NA19786)

are confirmed by Stevens et al.[18]. (NA19657,NA19786) are

inferred as Third degree instead of first cousins, and

(NA19657,NA19785) as Unknown degree instead of second cousins.

Discussion

In this paper, we take a step towards making pedigree

reconstruction from present living populations, a realistic objective.
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By developing better quality assessment tools, we were able to come

to the conclusion that our method reconstructs pedigrees with

significantly higher quality then previous methods, and in compa-

rable running times. PREPARE is the first method to our

knowledge to address polygamy, and paternal/maternal relative

partitioning. Although we succeed partitioning the relatives, there is

no way to know which relatives are really related to the father, and

which to the mother by considering autosomal data alone. We are

not worried about this lack in specificity, as we do not strive to learn

the ancestral genders. Instead, we are interested in inferring the

pedigree structure, which provides the relatedness structure. Our

graph framework, brings to the surface several ambiguous cases that

cannot be solved without utilizing additional subtle information. For

example, the assignment of a 3-clique (see Fig. 5-B) might be

decided better by considering three-way IBD sharing. The chance

of having triple IBD sharing diminishes much faster than the chance

of pair-wise IBD sharing and limits the theoretical possibility to

correctly reconstruct these cases in advanced generations. Recon-

structing inbred relationships correctly remains an unmet challenge

by all methods in the present. It seems that an approach to deal with

inbreeding will need to utilize additional inbreeding imprints on the

data, such as homozygosity levels and other IBD-features not used

today. Additionally, current methods do not include inbreeding

options in the hypothesis testing stage, which might lead to the

wrong conclusions when inbreeding exists. Despite the above, our

method is able to reconstruct high quality pedigrees by dealing

correctly with the most frequently arising cases in randomly mating

populations. We believe that improving the performance on such

rare aspects will probably have a small impact on the pedigree

quality. More importantly, in order to further improve the

reconstruction quality of polygamous populations, it seems that a

better set of IBD features needs to be found, with higher separating

power between different relationship types. Theoretically, the size of

a family can influence the scores of its founders since larger families

will contribute more extant individuals to the score computation.

Simulating populations with differing typical family sizes show little

effect on the quality of reconstruction. The current PREPARE

method can be applicable for real populations, with the setback that

only a specific age-range must be taken as input, such that most

inter-generation relationships will be excluded.
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