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Patient-derived cancer models:
Valuable platforms for
anticancer drug testing

Sofia Genta1, Bryan Coburn2, David W. Cescon1

and Anna Spreafico1*

1Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University
Health Network, University of Toronto, Toronto, ON, Canada, 2Division of Infectious Diseases,
Toronto General Hospital, University Health Network, Toronto, ON, Canada
Molecularly targeted treatments and immunotherapy are cornerstones in

oncology, with demonstrated efficacy across different tumor types.

Nevertheless, the overwhelming majority metastatic disease is incurable due to

the onset of drug resistance. Preclinical models including genetically engineered

mouse models, patient-derived xenografts and two- and three-dimensional cell

cultures have emerged as a useful resource to study mechanisms of cancer

progression and predict efficacy of anticancer drugs. However, variables including

tumor heterogeneity and the complexities of themicroenvironment can impair the

faithfulness of these platforms. Here, we will discuss advantages and limitations of

these preclinical models, their applicability for drug testing and in co-clinical trials

and potential strategies to increase their reliability in predicting responsiveness to

anticancer medications.
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ECM, extracellular matrix; EGFR, epidermal growth factor receptor; HER-2, epidermal growth factor

receptor 2; HNSCC, head and neck squamous cell cancer; ICI, immune checkpoint inhibitors; IFN-g,

interferon gamma; MHC, major histocompatibility complex; NSCLC, non-small cell lung cancer; NK,

natural killer; NOD/SCID, non-obese diabetic/severe combined immunodeficient; OS, overall survival; PD-

1, protein death 1; PD-L1, protein death 1ligand; PDO, patient-derived organoid; PDX, patient derived

xenograft; TCR, T cell receptor; TEC, tumour explant cultures; TIL, tumor infiltrating lymphocyte; TME,

tumor microenvronment; TNBC, triple negative breast cancer; TSC, tumour slice cultures.
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1 Introduction

Cancer is a genetic disease that results in cumulative alterations

of molecular pathways involved in cell growth, survival and

proliferation (1, 2). Until a few decades ago, chemotherapy and

endocrine therapy represented the only treatment options for

patients with advanced malignancies, and tumor histology was

the only benchmark for drug selection (1). The identification of

disrupted molecular pathways has notably broadened the

therapeutic opportunities for cancer patients, allowing the

development of small molecules and monoclonal antibodies

exploiting oncogenic driver alterations as drug targets (3). The

favorable therapeutic index demonstrated by several of these agents

enabled their integration into clinical practice. A large number of

such agents are now in clinical use, including epidermal growth

factor receptor (EGFR) inhibitors in EGFR mutated non-small cell

lung cancer (NSCLC) (4), anti-epidermal growth factor receptor 2

(HER2) agents in HER2-positive breast (5) and gastric cancer (6),

B-rapidly accelerated fibro sarcoma (BRAF) inhibitors for the

treatment of melanoma and other BRAF mutated tumors (7).

The advent of immunotherapy has ushered in therapeutic

strategies that promote immune response against neoplastic cells

(8). Many different types of immune-therapeutics have now entered

the clinic and some of them, such as immune checkpoint inhibitors

(ICIs) and chimeric antigen receptor (CAR)-T cells, have improved

patient outcomes (9, 10). In certain settings, including Hodgkin’s

lymphoma, melanoma, NSCLC, head and neck, urothelial and renal

cell carcinoma, ICIs have replaced previous standard therapies due

to overall survival (OS) benefits. Despite the achieved improvement

in patient outcomes with the introduction of targeted drugs and

immunotherapy, the majority of subjects do not respond to these

treatments or experience only a temporary benefit (11, 12). Primary

(or intrinsic) and secondary (or acquired) resistance, led by

resistance-driving factors in neoplastic tissue before the exposure

to an anticancer agent or as a consequence of the antitumor

treatment respectively, represent the main reasons for treatment

failure with these agents (12). To distinguish between primary and

acquired resistance is not always straightforward. Different

subpopulations of cancer cells, characterized by specific genomic

profiles, usually coexist in the same patient. The phenomenon of

intra-patient tumor heterogeneity can be spatial (e.g. in different

locations) or temporal (e.g. between primary tumor versus

metastasis) (13). Tumor heterogeneity adds complexity to the

identification of pre-existing or exposure-induced resistant clones.

Multiple mechanisms can be responsible for primary and acquired

resistance to specific compounds in different tumor types and their

identification is a crucial step in the identification of effective,

individualized treatments (14) (Figure 1). Patient-derived human

cancer models have the potential to retain their distinctive

molecular hallmarks, representing a unique opportunity to study

cancer cell survival and resistance mechanisms (15–17). If

combined with clinical studies, these tools might increase the
Frontiers in Oncology 02
success of experimental treatments (18, 19). This review will

discuss the available preclinical models and the reliability of such

platforms to predict the responsiveness to anticancer agents,

focusing on patient-derived models (Figure 2).
2 Two- and three-dimensional cell
cultures modeling

2.1 Cancer cell lines

Human cancer cell lines represent the earliest and most widely

used preclinical model for the investigation of tumor biology and

antitumor drugs testing (20). Starting from the 1950s in vitro

cultures of immortalized cancer cells have been developed from a

wide variety of haematological and solid malignancies. These

models have been used to assess the effectiveness of

investigational anticancer compounds taking advantage of their

ease of maintenance and propagation, relatively low cost,

reproducibility and high-throughput evaluation (21). However,

antitumor activity demonstrated with this approach is often not

confirmed in clinical settings, mainly due to the low resemblance to

human cancers in vivo, and lack of well-defined parameters to

translate in vitro sensitivity into predicted clinical success (22). This

divergence depends on several factors. Firstly, the in vitro growth

process results in the selection of clones with specific features

promoting their survival, outliving other subpopulations.

Secondly, the progressive adaptation to culture conditions results

in a loss of heterogeneity and differentiation (23). Thirdly, the

absence of a natural tumor microenvironment (TME) impairs the

evaluation of drugs whose mechanism of action is based on cell-cell

interactions or is related to angiogenesis (24). To create platforms

with a higher similarity to human cancers and to represent a

broader range of tumor types, three-dimensional cultures and in

vivo models have been developed.
2.2 Spheroids

Tumor-derived spheroids are self-assembled micro-aggregates

of cancer cells grown in a culture medium, under low-adhesion

conditions. They can be generated from cancer cell cultures,

patient-derived tumor cells (tumor spheres) or from suspension

of single cells from cancer cell lines (25, 26). Spheroid generation is

characterized by an initial phase of exponential growth followed by

a period of structural organization, which leads to the formation of

an external coat of proliferating cells surrounding a necrotic core

(27, 28). The cell population located in the inner, hypoxic layers

displays a quiescent status. This results in resistance to anticancer

drugs exploiting high proliferative rate as a target, mimicking tumor

behavior in vivo (27). The source of cells used to establish the

spheroids has a big impact on the model’s characteristics: for
frontiersin.org

https://doi.org/10.3389/fonc.2022.976065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Genta et al. 10.3389/fonc.2022.976065
example, spheroids derived from bi-dimensional cell lines will

maintain cellular clonality while tumorspheres will display a

higher heterogeneity (27, 29).
2.3 Organoids

Patient-derived organoids (PDOs) are preclinical models

generated from cancer tissue, mechanically or enzymatically

dissociated, and then embedded in an extracellular matrix.

They differ from spheroids because they are self-organized in

three-dimensional structures resembling the architecture and

genomic features of the original tissue and retain the capability
Frontiers in Oncology 03
to regenerate (26, 30). The time required to generate organoids is

variable and tumor dependant (31). PDOs of a wide range of

malignancies have been established, with success rates up to 80%

depending on tumor types (32–40). Mutagenesis technologies

such as clustered, regularly interspaced, short palindromic

repeats (CRISPR)/CRISPR-associated protein (Cas9) have been

used to induce cancer-driving mutations to develop tumoral

organoids starting from healthy human tissue (31, 41); an

approach particularly useful to study carcinogenesis.

Organoids derived from both neoplastic and healthy tissues

can be established from the same patient to facilitate the

identification of therapeutic agents with high antitumor

activity and low impact on physiological tissues (42).
FIGURE 1

Example of known mechanism of resistance to targeted agents and immunotherapy.
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2.4 Ex-vivo models: Organotypic tumor
slice and tumor explant cultures

The term ex-vivo is referred to models generated by tissue

samples collected from an individual and then preserved in an

artificial environment, outside the original organism (43).

Organotypic tumor slice cultures (TSCs) are obtained by

incubation of thin slices of tissue in controlled conditions

allowing oxygen and nutrient distribution (44). This approach
Frontiers in Oncology 04
has been used to develop models of different types of

malignancies, including breast, gastric, head and neck and

pancreatic cancer (45–51). When compared to other

preclinical models, TSCs offer some advantages including the

preservation of an intact tumour microenvironment and a

quicker set up, allowing timely drug testing (47). TSCs

however, have main limitations such as rapid deterioration of

cell viability and tissue architecture as well as unfeasibility of

culture propagation (52). Moreover, the resemblance of these
A

B

FIGURE 2

Advantages and limitations of different preclinical models for anticancer drug testing; (A) patient derived models, (B) non patient-derived animal models.
GEMM, genetically engineered mouse model; GVHD, graft versus host disease; nGEMM, non-germinal genetically engineered mouse model; PDX,
patient-derived xenograft; TEC, tumor explant culture; TME, tumor microenvironment; 2D, bi-dimensional; TSC, tumor slice culture.
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models to original tissue is highly influenced by procedural

manipulation and sample processing (52). Tumour slice cultures

represent only one of the multiple approaches attempted for the

generation of ex-vivo models. Explanted cancer tissue can be

preserved by submerging it in culture media or using a support

to keep it in contact with the media such as gelatine sponges

(53), grids or culture wells coated by a matrix (54, 55). One of the

main advantages of these techniques as compared to tumor slice

cultures is that they minimize tissue manipulation and assure

higher tissue integrity. On the other hand, tissue slice models

may allow a better distribution of anticancer drugs for testing. As

for tumor slice cultures, short tissue viability is one of the main

limitations for all tumor explant platforms (56). Several attempts

have been made in order to delay models deterioration for

example through the integration of microfluidic systems

allowing prolonged tissue viablity (56).
3 In vivo models

3.1 Non-patient-derived in vivo models:
The role of engineered mouse models

In vivo models enable the evaluation of cancer biology and

treatment strategies in a complex organism.Genetically engineered

mouse models (GEMMs) are transgenic mice harbouring alleles

which lead to the spontaneous development of malignancies in

immunocompetent animals (57). The development of GEMMs

represented an important milestone in cancer research, as these

models have been used to demonstrate that oncogene expression

and tumor suppressor gene loss can induce neoplastic

transformation of normal cells (58, 59). GEMMs have several

limitations. The presence of pathogenic mutations affecting many

target cells at an organism or tissue level can result in simultaneous

development of multiple malignancies and consequently early

death of the model. Furthermore, if present in germline cells,

these mutations can affect embryonic viability, cause

developmental abnormalities or impair normal tissue

development (60). On the other hand, cancer onset in GEMMs

can be delayed due to incomplete penetrance of the mutations,

resulting in non-synchronous tumor occurrence in different mice

and thus impairing the simultaneous evaluation of multiple

anticancer agents. The development of non-germline GEMMs

and conditional GEMMs, together with novel technologies for

genome editing including CRISPR-Cas9 have helped overcome

these limitations, enhancing the reliability of engineered mouse

models in predicting drug responsiveness (59, 61, 62).
3.2 Patient-derived in-vivo models

Patient Derived Xenograft (PDXs) are preclinical models

established from human neoplastic cells injection or tumor
Frontiers in Oncology 05
tissue implantation in immune-deficient animal hosts. PDXs

are characterized by the maintenance of molecular and cellular

heterogeneity of the primary tumor (63). The success rate of

PDX establishment depends on multiple variables including the

animal recipient, cancer type, and the technique used to implant

the tumor (64). Metastatic tumors showing aggressive behaviour

more frequently result in successful engraftment. Specific tumor

types, such as colorectal or gastric cancer demonstrate a higher

probability of engraftment compared with malignancies

originating from other sites such as breast (particularly

hormone dependent) or kidney (64–66). Many techniques

have been used to optimize engraftment, including orthotopic

transplant or, in the case of hormone-dependant cancers, the

addition of human hormones (53, 67). Furthermore, the

probability of obtaining successful engraftment increases with

the degree of immunosuppression in the animal host. A greater

rate of success can be achieved using animal models lacking

functions of both B and T lymphocytes and of natural killer

(NK) cells such as non-obese diabetic (NOD)/severe combined

immunodeficient (SCID), in particular NOD/SCID/IL-2

receptor-g deficient (NOG and NSG) and NOD/SCID/Janus

kinase 3 deficient (NOJ) mouse models (64). Mice represent

the most common type of host used for PDX generation

however, other species can be used for this purpose (68–73).

In-vivo models can also be generated in non-mammalian

species, such as zebrafish (68). Both transgenic and xenograft

models have been established for different tumor types including

endocrine pancreatic cancer (69), multiple myeloma (74), head

and neck squamous cell cancer (75), sarcoma (76)and melanoma

(70–72), demonstrating some advantages in comparison with

traditional mouse models. These include a higher rate of

breeding, lower costs of maintenance and the possibility to

track malignant cells with fluorescent labelling in the

transparent casper zebrafish strain. Moreover, the process of

engraftment for zebrafish PDXs is easier and faster compared to

their murine counterparts (72, 73). To better recapitulate the

original TME, humanized animal models have been developed

(77, 78). These models can be obtained by xenotransplanting

human immune cells or by engineering the host to express

specific human genes. Humanized in vivo models, hosting not

only human cancer cells but also a human-like TME are

particularly suitable to test different anticancer strategies,

including immunotherapy.
4 Key features of valuable platforms
for antitumor drug testing

4.1 Genomic and transcriptomic fidelity

Faithful recapitulation of the molecular profile of the original

tumor is one of the key characteristics to predict responsiveness

to antitumor compounds. PDXs have been considered the most
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reliable reproduction of human cancers for a long time, retaining

more than 80% of the genomic alterations harboured by the

engrafted neoplastic tissue (79–81). However, several potential

discrepancies have been identified. PDXs often demonstrate a

higher aggressiveness with increased proliferation rate

-especially at later passages- than human tumors in situ.

Moreover, some evidence suggests that these models may

acquire or select for copy number alterations and single

nucleotide variants, or exhibit transcriptional alterations,

which can affect the anticancer drug sensitivity (82, 83).

Organoids and spheroids have emerged as cost-effective

alternatives to animal models, with high genomic concordance

with primary tumors (81, 84–88). Multiple factors however, can

reduce their resemblance to original cancer tissue or affect their

long-term preservation. The purity and the viability of the

cancer cells selected to initiate the culture are of crucial

importance to ensure successful generation of the model (42).

The composition of the culture medium is another key factor.

Appropriate nutrient and growth factor modulation are needed

to avoid overgrowth of normal cells that would counteract the

development of the cancer models (41). The composition of the

medium has also demonstrated to influence epigenomic

modulation and gene expression (89, 90) and to affect the

consumption of glutamine, alanine and other elements from

cancer cells (89). In vitro culture itself can lead to significant

transcriptomic changes, resulting in the upregulation of several

growth and metabolism-related pathways such as PI3K,

glycolysis and oxidative phosphorylation (90). Some attempts

have been made to compare the transcriptional faithfulness of

different types of models. As an example, Da Peng et al. have

developed the CancerCellNet (CCN), a computational tool

evaluating the transcriptomic fidelity of cancer cell lines,

PDXs, GEMMs and 3D cultures, through comparison with

The Cancer Genome Atlas dataset (91). This approach is

burdened by significant limitations, including the small

number of models for specific tumor types, the lack of

proteomic and epigenomic information, and the fact that the

transcriptomic profiles are compared with bulk RNA that

includes also non-cancer cells. However, CCN provides some

interesting insights indicating that the suitability of different

models in proving a faithful reproduction of the original tissue

may vary across tumors originating from different sites. This

should be considered in studies where generating preclinical

models across different tumor types is planned. The application

of machine learning algorithms to large datasets collecting

genomic and transcriptomic profiles from thousands of

patient-derived models can partially overcome the discrepancy

with original tumours and optimize drug testing in preclinical

studies (92–95). This approach has indeed facilitated the

identification of genomic signatures predicting drug sensitivity

with a greater precision than single-gene biomarkers (96).

Moreover, integrating tumor profiling with analysis of other

components of TME, such as the T-cells deep learning models
Frontiers in Oncology 06
can identify multidimensional biomarker signatures and unveil

mechanisms of resistance to anticancer drugs (97, 98).
4.2 Preserving tumor heterogeneity

The capability of a model to replicate the molecular features

of the original tissue is not enough to ensure success in

predicting treatment response. Tumor heterogeneity plays a

crucial role in promoting the onset and selection of genomic

alterations that lead to cancer cell survival from targeted and

immunotherapeutic agents (90). Both PDXs and 3D cultures

have been originated from different portions of a same tumor

lesion or from different metastatic sites to investigate this

phenomenon (99–101). As an example, Li et al. generated

PDOs from the primary tumour and paired liver metastases in

two patients with colorectal cancer (100). The organoids derived

from the metastases demonstrated a more aggressive phenotype

with a greater propensity for invasion and higher replication

index. Despite providing useful information, this approach is

expensive, complex and requires multiple invasive procedures.

More importantly, the understanding of genomic aberrations is

still limited to specific biopsy sites, hence not practical to predict

drug responsiveness. Circulating tumor cells (CTCs), released

into the bloodstream from the primary tumour and secondary

lesions represent a unique opportunity for the development of

complex models for broad evaluation of the genomic landscape

of metastatic tumors. CTCs are challenging to isolate as they

occur at low frequencies. Data regarding the generation of 3D

cultures from CTCs are still limited, however, some successful

attempts have been reported (33, 102, 103). In 2014 Gao et al.

generated PDOs from CTCs in one patient with prostate cancer

with extensive metastatic disease (33). Whole-exome sequencing

of PDOs and of a metastatic lymph node resected from the same

patient one year before were compared. Only 67% of the point

mutations found in the PDOs were identified in the archival

tissue. While some of the mutations might be acquired during

the culturing process this can reflect tumor heterogeneity. CTCs

have also been used to establish animal models, known as cell

line derived tumour xenografts (CDXs). Hodgkinson et al.

generated CDX models by injecting blood obtained from 4

patients with small cell lung cancer (SCLC), enriched with

CTCs (104). Genomic analysis of CDXs shown preservation of

original mutational profile, moreover these models mimicked

patients responses to chemotherapy. Despite representing a

possible strategy to overcome tumor heterogeneity, this

approach has some limitations including technical challenges

in isolation and expansion of CTCs, lack of stromal and immune

components, uncertain representation of different metastatic

sites and possible selection of specific clones (105). Despite

using CTCs to initiate a patient-derived model the

preservation of tumor heterogeneity might be challenged by

the fact that cancer cells with particular molecular alterations are
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more difficult to expand. As an example Li et al. reported a lower

rate of success for organoids generation from colorectal cancer

with microsatellite instability (MSI) or BRAF mutations (106).

Interestingly when looking at the possible causes contributing to

the failure of these models authors observed that cancer cells

harbouring MSI or BRAF mutations were more dependant for

their survivorship on other components of the tumor

microenvironment such as immune cells. This indicate that

the maintenance of a proficient TME aside from enabling the

evaluation of anticancer therapies such as immunotherapy

might be a key factor also for the maintenance of

tumor heterogeneity.
4.3 Tumor Microenvironment
Preservation

4.3.1 Tumor microenvironment preservation in
3D cultures

There has been much recent effort to develop preclinical

models with an intact TME preserving functional immune

effectors (25, 107). 3D models hosting competent immune

cells can be obtained by co-culturing previously expanded

immune cells (108). Both spheroid (109–111), and organoid

(112, 113) cultures have been developed with this technique. T

cells generated using this process were shown to efficiently kill

cancer cells, while they did not show activity against organoids

originated from healthy tissue, confirming the maintenance of

self-tolerance (112). Courau et al. used this approach to generate

immune-competent spheroids from colorectal cancer by co-

culturing these models with immune cells obtained from

healthy donors (111). They observed rapid infiltration from

allogenic transferred T and NK cells, resulting in immune-

related cell death. Moreover, they used this platform to test the

activity of antibodies targeting natural killer group 2 member D

(NKG2D) and its ligands. They observed an enhancement of

spheroids immune-mediated killing, driven by an increase of NK

infiltration, supporting the utility of this type of model to

identify new therapeutic strategies. The co-culturing approach,

however, does not fully recapitulate the complexity of the TME,

as it lacks native infiltrating immune populations and other key

factors, regulating the interaction between cancer and immune

system. The extracellular matrix (ECM), the complex of

proteins, polysaccharides and other elements surrounding the

cells, give structure and sustain both normal and neoplastic

tissues. Cancer-associated fibroblasts producing collagen as well

as alterations of other elements of ECM, such as hyaluronic acid,

metalloproteases and lysyl oxidases are known to promote

cancer initiation and invasion through ECM remodeling (114)

and have been related to resistance to multiple anticancer agents

(115). Moreover, the recognition of the key role played by ECM

in cancer resulted in the development of antitumor drugs

directly targeting ECM molecules or the cell-matrix crosstalk
Frontiers in Oncology 07
(115). This led to an urgent need of preclinical models for drug

testing retaining a functional ECM. Multiple synthetic and

biological materials have been used to develop scaffolds to

support the generation of 3D cultures, mimicking ECM.

Examples include hydroxyapatite-graphene (116), polyethylene

glycol oxide (117), chitosan alginate (118–120), collagen (76,

121) and matrigel (117, 122). Different materials present specific

advantages but also limitations. As an example hydrogels are

highly biocompatible and recapitulate the biochemical

composition of original matrix but offer low mechanical

resistance (122). To include original immune populations

different 3D models have been developed (123). The feasibility

of this approach has been initially demonstrated in healthy

human epithelial breast tissue (124). Zumwalde et al. observed

the presence of T cells in mammary ductal epithelial PDOs,

producing interferon (IFN)-g and proliferating in response to

zoledronic acid. Interestingly, these lymphocytes showed

cytotoxic activity towards a triple negative breast carcinoma

cell line. The air-liquid interface technique allows to generate

PDOs from both healthy and neoplastic tissue with preserved

epithelial and mesenchymal components, retaining proficient

immune effectors and ECM (123, 125, 126). This method enables

organoids to be propagated as epithelial-mesenchymal hybrids

using an inner collagen gel–containing transwell with direct air

exposure (127). Using this approach Neal et al. generated PDOs

from 28 distinct tumor types of human and murine malignancies

including colorectal, kidney, lung and pancreatic cancer (123).

Human PDO analysis demonstrated the presence of CD3+

tumor infiltrating lymphocytes (TILs), macrophages, B and

NK cells. Single-cell gene expression profiling indicated that

TILs present within PDOs maintained the original TCR

repertoire observed in the tumor biopsy. Protein death 1 (PD-

1) expression was observed on the surface of immune cells

included in the cultures and the exposure to anti-PD/PD-ligand

1 (PD-L1) agents resulted in the expansion of TILs and in the

promotion of neoplastic cells killing. The air-liquid interface

technique is not the only possible approach to preserve original

TME. Jacob et al. successfully generated PDOs from

glioblastoma patients performing microdissection of original

tissue into pieces of ≈1 mm diameter instead of dissociation,

in order to preserve native cell-cell interactions (128). Single-cell

transcriptome analysis shown similar cytokine expression in

macrophage and microglia from original tissue and PDOs.

Moreover, a similar distribution of cells in PDOs generated at

later time points was observed, indicating the capability of this

model to preserve and maintain at least in part the features of

parental TME. Once established, these models have been used to

test multiple antitumor compounds, including CAR-T cells. The

resemblance of PDO models to the parental cancer can be

further implemented by the organs-on-a-chip technology

(129). Through the use of customized microfluidic cell culture

devices, this approach allows the vascularization of 3D cultures,

mimicking physiological delivery of drugs through the blood
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vessels (130). Chemo- and biosensors can be integrated in this

type of models to optimize the control of oxygen and metabolites

levels (131). 3D bioprinting techniques can also be used to

develop preclinical models fully recapitulating the architecture

of parental tumors, including a functional vascular system and

enabling a uniform distribution of different cellular components

(132, 133). This approach consists in the controlled deposition of

layers of patient-derived cancer and stromal cells, signalling

molecules and other biomaterials to generate spheroids or

organoids with a functional TME. The use of 3D bioprinting is

rapidly expanding and different systems are currently available

including extrusion-based bioprinting, laser-based bioprinting,

and droplet-based bioprinting (134). 3D bioprinted PDOs and

spheroids have already been successful established for multiple

cancer types including glioblastoma, neuroblastoma, multiple

myeloma, melanoma and cholangiocarcinoma and used to test

novel anticancer treatments such as oncolytic viruses (135–141).

TEC and TSC represent another possible approach to preserve

TME and test immune-oncology strategies, despite the limited

time frame for drug-testing. As an example, Sivakumar et al.

successfully used TSC to test the effect of IFN-g and PD L1

blockage (47).

4.3.2 Immune-competent in-vivo models
The reconstruction of a proficient TME can be applied to in

vivomodels. In GEMMs, spontaneous neoplastic transformation

in immunocompetent animals leads to the onset of tumors

retaining TME (61, 142). However, the cross-reactivity

between the murine and the human targets, especially when

the tested agents need antigen presentation by human MHC

class I, limits the use of GEMMs to test immunotherapy (143).

Humanized animal models are promising platforms for the

evaluation of immunotherapeutic strategies. Knock-in mice

expressing key human genes regulating the cross-talk between

cancer and immune system have been generated, including PD-1

(144), PDL1 (145), LAG3 (145), CTLA4 (77) and IL-15 (146).

These platforms could be useful to not only to test drug

sensitivity but also to study immune related toxicities

associated with monoclonal antibodies specifically binding

human targets, such as human PD1 or CTLA4. As an

example, Du et al. used CTLA4 humanized mice to test anti-

CTLA4 antibodies including ipilimumab, alone and in

combination with an anti-PD1 (77). They observed correlation

between the development of immune related toxicity and

systemic T cell activation with an increased percentage of

effector T memory lymphocytes. Humanized PDX models

obtained with the engraftment of human immune cells into

immunocompromised animals represent another possible

approach to obtain animal models suitable for immunotherapy

testing (78). This strategy is however burdened by multiple

limitations (147). Firstly, the efficacy of the model is limited by

the severity of the immunosuppression of the PDX hosts; models
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with impaired T-cells function but maintained innate immunity

will reject human cells. Secondly, since the hematopoietic cells

cannot be propagated across multiple animals, this approach

requires sequential blood draws from the patients. Finally, the

infusion of human hematopoietic cells results in graft versus host

disease of PDXs, limiting the timeframe for observation. The

transfer of hematopoietic cells is not the only option attempted

to generate humanized PDX models. The injection of patient-

specific TILs has demonstrated to mimic antitumor responses

observed in patients (148). This technique has contributed to

identify a dysfunctional subset of CD8+ cells as possible

mechanism of resistance to PD 1 inhibitors in NSCLC (149).

Ex-vivo expansion and subsequent re-infusion of TILs is not the

only approach attempted in order to elicit antitumor activity.

Yin et al. injected nanoparticle incorporating immunostimulants

molecules to induce antitumor activity in endogenous TILs in

mouse models. This strategy resulted in CD8+ cells expansion

and reduction of regulatory T cells as well as in a delay of tumour

growth (150).
4.4 Evaluating the impact of microbiome

The human microbiota, the set microorganisms populating

human epithelial surfaces, influences the development of several

pathologic conditions, including cancer (151). For patient-

derived models, this has important conceptual implications:

First - for some patient-derived models, the microbial ecology

of the model (e.g. the experimental animal’s endogenous

microbiota) may influence experimental outcomes and

therefore must be accounted for in experimental design and

analysis. For example, in murine models, vendor-specific

microbiota (152), microbial metabolites (153) and

microbiome-tumour neoantigen cross-reactivity (154) have all

been implicated in immunotherapy responsiveness. Thus,

ignorance of the composition or contribution of the

microbiota to model outcomes may result in contradictory

findings between investigators, or even within a research

group based on variability in the composition of the

microbiome between experimental replicates. Secondly -

experimental manipulation of the microbiome in patient-

derived models may identify novel (host or microbial) targets

representing promising therapeutic avenues (155). Both 3D

cultures and animal models have been used to mechanistically

implicate the microbiome in cancer biology. Using intestinal

PDOs, Kadosh et al. observed that the addition of the microbial

metabolite gallic acid alters the effect of Trp53 gain of function

mutations from tumor-suppressive to pro-oncogenic (156). In

adenomatous polyposis coli (APC)-mutated mouse models,

depletion of Streptococcus thermophilus plays a key role in

colorectal cancer tumorigenesis (157). The impact of probiotic

and high fiber diet on immunotherapy outcomes have been
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evaluated in several studies showing controversial results (158,

159). Spencer et al. observed an association between higher

dietary fiber content and prolonged progression-free survival

in melanoma patients receiving ICI while the use of probiotic

shown a detrimental effect in the same population (160). To

validate these results, they tested the influence of fiber and

probiotics on anti-PD1 responses in patient-derived mouse

models, confirming that a diet with lower fiber content and

addition of a probiotic reduced cytotoxic TILs (160). Finally,

mice with microbiome transplanted from human donors (with

cancer) represent a type of patient-derived model themselves

(161). Routy et al. compared mice with fecal microbiomes

transplanted from human patients who responded to anti-PD1

antibody and those receiving fecal transplant from non-

responders and found a greater density of intratumoral CD8+

T cells, upregulation of PD L1 and a lower presence of myeloid

suppressive cells was in mice transplanted with responders’

stools, suggesting microbiota-induced “hot” TME (162).

Critically, these observations have led to the development of

novel, microbiome-targeting therapeutic strategies. Shi et al.

evaluated the impact of combining a probiotic agent,

Escherichia coli strain Nissle 1917, to an anti-Transforming

Growth Factor, Beta (TGF-b) compound in mice transplanted

with breast and hepatocellular carcinoma cells (163). They

reported greater tumor growth inhibition and metastasis

suppression in models receiving the probiotic. They also

observed an increase in the proportion of intratumoral CD8+

T cells and greater numbers of mature dendritic cells in tumour-

draining lymph nodes. Fecal transplants from treatment-

responsive donors have been investigated in clinical

trials assessing their potential to restore sensitivity to

immunotherapy in refractory melanoma (164, 165). These

data highlight the experimental importance and potential

utility of microbiome-informed preclinical studies and the

potential for patient-derived microbiome models for the

investigation of cancer biology and therapeutic discovery (147).
5 Inclusion of patient-derived
models in co-clinical trials

Patient-derived platforms have allowed investigators to

perform drug testing in models originated from subjects

simultaneously receiving therapy in clinical trials. These types

of studies, known as co-clinical trials, use laboratory data to

guide clinical development or treatment strategies, with the final

goal of identifying predictive biomarkers and increasing the rate

of success of experimental treatments (166). As an example, Kim

et al. tested the fibroblast growth factor receptor (FGFR)

inhibitor dovitinib in PDXs derived from squamous cell lung

cancer patients treated with the same drug in a clinical study

(167). They observed preservation of genomic and histologic
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dovitinib displayed by the models recapitulated the clinical

outcomes observed in the patients. Gene expression profiling

performed in the PDXs indicated upregulation of FGF3 and

FGF19 in responders, representing a potential predictive

biomarker. The Gustave Roussy MATCH-R project is another

example of a co-clinical trial. This is a prospective study aimed at

extensive characterization of tumours with acquired resistance

to immunotherapeutic agents or targeted therapies. Generation

of PDX models for 54 patients with a success rate of 33% and the

highest probability of engraftment for urothelial bladder cancer

(72.7%) was reported (168). Despite these models being helpful

to provide further insights into the mechanism of drug

resistance, the authors reported that the outcome data from

drug testing were often not timely to guide clinical decision-

making. Having a faster turnaround time and being easier to

maintain, PDOs might be more suitable for co-clinical studies

(169). Yao et al. used PDOs originated from patients with rectal

cancer to test the efficacy of chemoradiation and compared it

with clinical outcomes (170). The authors reported poor

response to chemoradiation in 42/64 patients whose models

were resistant, and a good response in 16/17 patients with

matched responsive PDOs. They also tested the responsiveness

to single components of the chemoradiation regiment (5-FU,

irinotecan and radiation) and correlated it with clinical

responses. Good clinical outcomes were observed in patients

whose PDOs were sensitive to one, two or all the three agents. A

good clinical response was reported in 3 patients with PDOs

resistant to all three components of the chemoradiation regimen,

tested separately. Interestingly, when these models were exposed

to the combination, drug synergy was demonstrated in one of

the PDOs indicating the potential utility of these models to

explore combined treatments to overcome drug resistance. The

reliability of PDOs in predicting responses to radiation and

chemotherapy in patients with rectal cancer has been evaluated

also by further co-clinical studies (171–173). Park et al.

developed PDOs from 33 patients radiation for retal

adenocarcinoma and confirmed the possibility to use these

models to predict sensibility through a machine-learning

algorithm (171). In another study, Ganesh et al. were able to

generate 65 PDOs from 41 patients with newly diagnosed,

metastatic or recurrent rectal cancer with a success rate of 77%

(172). Interestingly, 43/65 PDOs were established from samples

obtained after exposure to 1 or 2 lines of systemic therapy

demonstrating the possibility to generate 3D cultures from pre-

treated tumors. Hu et al. have shown that is possible to minimize

the time for anticancer drug testing by using microwell arrays

that enable to evaluate PDOs sensitivity to hundreds of different

compounds at passage 0 (174). Aside from allowing a timely

determination of anticancer activity the possibility to perform

drug testing at an early stage might reduce the risk of phenotypic

changes at later passages and the need of complex culture media
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with growth factors enrichment. Acoustic droplet printing

(ADP) is another approach attempted to decrease the time

necessary for PDOs generation (134, 175, 176). This technique

enables the development of PDOs in 2 weeks, with preservation

of autologous immune cells and integration of a microfluidic

system for drug delivery (134). These characteristics make ADP-

generated PDOs a promising platform for anticancer drug

testing including immunotherapeutic agents. Another critical

step to implement co-clinical trial is the definition of fast and

standardized methods for the interpretation of antitumor

activity in the pre-clinical models. Usually drug sensitivity is

estimated using cell viability assays such as ATP-dependent

luminescence, tetrazolium-based colorimetric techniques, or

fluoresce-based assays (90). These techniques however results

PDOs death impairing sequential assessments (177). Emergent

technologies such as label-free light microscopy and positron-
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emission microscopy have been tested to evaluate the antitumor

activity of investigational agents in 3D cultures (90, 178, 179).

Light microscopy might provide a more precise measurement of

antitumor activity because it allows the evaluation of cell

viability at single organoid level (90). Moreover, this technique

demonstrated the potential to detect not only cytotoxic but also

cytostatic activity (90). With the use of positron-emission

microscopy was possible to establish that PDOs retain

metabolic characteristics of parental tumours, indicating that

this technique can be used to monitor responses in the organoid

cultures (178). Even when the data obtained from preclinical

models are not suitable to guide treatment decisions the

information provided by these platforms might be precious to

unveil mechanisms underlying drug resistances and develop

strategies to restore or increase responsiveness to treatments

(180, 181). Moreover, this approach can be used to support the
TABLE 1 Ongoing co-clinical trials using patient-derived models for drug testing.

Target population Intervention N of
patients

Type of preclinical
model

NCT
number

Stage II-III TNBC Neoadjuvant chemotherapy base clinical trial not
guided by PDX

135 PDX NCT02124902

Metastatic TNBC Personalized treatament guided by miniPDX and
RNA sequencing

100 miniPDX NCT04745975

Operated GI cancers Adjuvant chemotherapy not guided by PDX 120 PDX (zebrafish) NCT03668418

Pancreatic cancer Personalized treatment guided by miniPDX 100 miniPDX NCT04373928

Lung and HNSCC Standard or experimental systemic treatment not
guided by PDX

30 PDX NCT02597738

Metastatic NSCLC PD-L1+ who failed platinum
based treatment

Pembrolizumab not guided by PDX 50 PDX NCT03134456

Childhood cancers Personalized treatment guided by molecular profiling
and PDX

400 PDX NCT03336931

Recurrent mantle cell lymphoma Ibrutinib not guided by PDX 50 PDX NCT03219047

Localized or metastatic kidney cancer Personalised treatment guided by PDX 50 PDX NCT04602702

Metastatic CRPC Personalised treatment guided by miniPDX 15 miniPDX NCT03786848

Metastatic CRC Cetuximab not guided by PDO 80 PDO NCT04906733

Metastatic pancreatic cancer Chemotherapy guided by PDO 100 PDO NCT04931381

Resected pancreatic cancer Adjuvant chemotherapy guided by PDO 200 PDO NCT04931394

HNSCC, CRC, breast or epithelial ovarian cancer Chemotherapy guided by PDO 35 PDO NCT04279509

Non muscle-invasive bladder cancer Chemotherapy guided by PDO (instillation) 33 PDO NCT05024734

Metastatic HER2 negative BC Chemotherapy guided by PDO 15 PDO NCT04450706

Operable HER2 positive BC Chemotherapy + anti-HER2 agents not guided by
PDO

94 PDO NCT04281641

NSCLC Treatment guided by PDO 100 PDO NCT04826913

Localized and metastatic CRC Standard chemotherapy not guided by PDO 120 3D bioprinted PDO NCT04755907

Advanced BC Standard therapy not guided by PDO 15 PDO NCT04655573

Solid tumors Engineering TCR-T cells 30 PDO NCT03778814

Locally advanced resectable esophagogastric
carcinoma

Standard chemotherapy not guided by PDO 40 PDO NCT03429816

Locally advanced esophageal cancer Chemoradiation not guided by PDO 140 PDO NCT03081988
f

BC, breast cancer; CRC, colorectal cancer; CRPC, castration-resistant prostate cancer; GI, gastrointestinal; HNSCC, head and neck squamous cell cancer; NSCLC, non-small cell lung
cancer; PDO, patient-derived organoids; PDX, patient-derived xenograft; TNBC, triple negative breast cancer.
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development of non-invasive techniques for the prediction of

disease response. As an example, Roy et al. used patient derived

PDXs of TNBC to identify [(18)F] fluorodeoxyglucose with

positron emission tomography radiomic signatures of response

to neoadjuvant chemotherapy (182). A list of co-clinical trials

currently ongoing is reported in Table 1.
6 Conclusion and future perspectives

Patient-derived models are powerful tools with multiple

applications in oncology. Their molecular characterization and

incorporation in multiomic biomarker-driven studies is crucial

to identify mechanisms of resistance to anticancer treatments

and guide the development of effective therapeutic strategies.

The Immune Resistance Interrogation Study (IRIS,

NCT04243720) currently ongoing at our institution, NEO-R

(NCT04504747) and PITCHER (NCT04714957) are some

examples of prospective trials using this approach. High

genomic and transcriptomic fidelity, preservation of tumor

heterogeneity and presence of a proficient TME are some of

the key factors that should be implemented to obtain results that

can be translated into clinic. The availability of large PDO and

PDX repositories combined with the development of machine

learning techniques can partially bridge the molecular gap with

original tumors and optimize drug testing in preclinical studies

(92–95). Until today, tumor heterogeneity represented a main

pitfall, jeopardizing the reliability of preclinical models in

predicting drug sensitivity. Although there is a big caveat on

the success and expansion of CTCs, there is a question of

whether they could help overcome this limitation by capturing

inter- and intratumoral heterogeneity. The use of 3D bioprinting

techniques might enable the development of complex 3D

cultures starting from CTCs, comprising proficient autologous

immune cells and vascular system. Aside from overcoming

tumour heterogeneity, the use of CTCs as primary source for

the development of cancer models may offer further advantages.

Due to its relatively low invasiveness, a liquid biopsy-based

approach might be particularly useful to investigate

mechanisms of acquired resistance through the comparison of

CDXs obtained by sequential blood draws. Finally multiple

strategies have been implemented to preserve a functional

TME leading to the development of complex in-vivo, ex-vivo

and in-vitro models. These platforms may enable a deeper

understanding of the factors regulating the networking

between cancer cells and immune system, such as microbiome

and ECM. Moreover humanized in-vivomodels and 3D cultures

retaining functional immune effectors and ECM are promising

tools to test not only immunotherapy but also novel therapeutic

strategies targeting critical processes underlying cancer initiation

and progression such as matrix deposition and remodeling.

Further elements should be taken into consideration if the
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patient derived model is intended to guide treatment selection

in the context of a co-clinical trial. The models are highly time-

sensitive. Despite the molecular affinity with the parental

tumors, mouse PDXs need months to be established; therefore,

limiting their applicability in treatment decision making, as

demonstrated by the MATCH-R study (168). Alternative

models including 3D cell cultures, along with innovative

techniques such as 3D bioprinting and microwell arrays could

overcome these limitations and have higher molecular fidelity

thanks to the limited number of passages between tissue

collection and drug-testing.
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