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Abstract: In this review, we provide a general and clear overview about the different alternatives
reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization
of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of
NCA monomers directly from natural occurring or from modified amino acids are analyzed.
The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented.
Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this
section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies
developed to reduce the eventually occurring side reactions are presented. Finally, a general overview
of the synthetic strategies described in the literature to fabricate different polypeptide architectures is
provided. This part of the review is organized depending on the complexity of the macromolecular
topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are
described first. The next sections include cyclic and branched polymers such as star polypeptides,
polymer brushes and highly branched structures including arborescent or dendrigraft structures.

Keywords: N-carboxyanhydrides; ring-opening polymerization branched polypeptides; cyclic
polypeptides; non-linear polypeptide architectures

1. Introduction

Since the discovery of the ring-opening polymerization of N-carboxyanhydrides (ROP NCAs)
more than one century ago [1] a huge amount of work has been carried out to fabricate polypeptides
with different functionalities as well as with variable architectures. The large variety of biomedical
applications including tissue engineering, gene therapy, antibiotics or drug delivery in which synthetic
polypeptides have been employed, have made of them a particularly interesting class of materials [2,3].

As a result of the large volume of work carried out in the synthesis of synthetic polypeptides
today a rather large chemical diversity can be obtained. This diversity results from the combination
of the twenty canonical amino acids but also to a great number of functionalization strategies.
More interestingly, protein capabilities to self-assemble into precise 3D highly ordered structure
have been a source of inspiration for many researchers. However, as mentioned by Deming [3] the
basis for the synthesis of polypeptides able to mimic the unique properties of natural peptides and
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proteins entails, “in principle” the capacity to control the sequence and composition of amino acid
residues along the chain as well as the chain length itself. While it is true that NCAs polymerization
does not allow a perfect control over the amino acid distribution, it is worth mentioning that the
advances on the polymerization mechanism permit nowadays to prepare polypeptide materials with
well-defined compositions and narrow chain-length distributions.

Two main alternative strategies have been developed for the fabrication of such complex
morphologies. On the one hand, important efforts have been focused to either construct relatively
simple building blocks able to self-assemble into more complex structures [4,5]. These are typically
random and block copolymers that by self-assembly processes can form supramolecular objects
including micelles or vesicles. On the other hand, the advances in the polymerization methodologies
enabling the control over the chain length, distribution together with the “living” character of the ROP
allow us to fabricate more sophisticated polymeric structures. This strategy, known as pre-assembly,
resort to the synthetic tools to fabricate well-defined polymeric and usually branched polypeptides [5].

Excellent previous reviews have been devoted to describe the self-assembly processes on
polypeptides and the formation of assemblies in solution (micelles, vesicles, etc.), in bulk and at
surfaces [6–11]. However to the best of our knowledge the last review devoted to the pre-assembly
approach, published by Hadjicrhistidis et al. [12] for the fabrication of non-linear polypeptides is
outdated. Other reviews reported later either cover the synthetic advances [13,14] or focus in the
preparation of polypeptides with a particular topology [15,16].

The main objective of this review is, therefore, to provide a general overview of the alternatives
for the preparation of complex polypeptide structures discussing pioneer studies but also providing
recent illustrative examples of the different strategies. This review is organized in a comprehensive
way starting in Section 2 with a thorough discussion about the synthetic alternatives to prepare
functionalized and non-functionalized α-amino acid NCAs. Section 3 covers those aspects related
to the NCA polymerization highlighting the most recent advances reported in order to improve
the control over the chain length and dispersity of the polypeptides. In this section, we will
consider the strategies proposed to mediate the mechanism ROP NCA as well as those involving the
improvement of the polymerization by optimizing the experimental conditions. Finally, Sections 4–6
focus on the preparation of different macromolecular polypeptide architectures starting from linear
(homopolypeptides, random and block copolypeptides) described in Section 4. Whereas Section 5
will centre the attention on the synthesis of cyclic polypeptides, Section 6 is devoted to the different
branched polypeptide structures ranging from star polypeptides or polypeptide brushes to highly
branched dendritic graft or arborescent polypeptides.

2. Synthesis of α-Amino Acid N-Carboxyanhydrides

2.1. Pioneer Works about the Cyclization of Aminoacids to Synthesize NCA and Currently
Employed Methodologies

The first synthesis of α-amino acid N-carboxyanhydrides (NCAs) reported in the literature
goes back to the period comprised between 1906 and 1908 when Hermann Leuchs tried to purify
N-ethoxycarbonyl and N-methoxycarbonyl amino acid chlorides via distillation, also commonly
referred as Leuchs’s anhydrides [17]. After this initial experiment, a systematic investigation on the
synthesis was carried out by Wessely and coworkers during the 1920s [18]. From that time, α-amino
acid NCAs have become a very versatile class of monomers for the preparation of polypeptides.
Two major routes have been widely employed for the preparation of N-carboxyanhydrides, i.e.,
the “Leuchs” method and the “Fuchs-Farthing” method.

On the one hand, pioneer works for the preparation of α-amino acid N-carboxyanhydrides
in one single step were reported by Leuchs. Those methods involved the cyclization of
N-alkoxycarbonyl-amino acids (Figure 1) [19]. While this reaction occurred in one single step,
it required the use of high-temperature for long times, which can result in a partial decomposition of
the NCAs. Interestingly, the authors found that the cyclization rate of N-alkoxycarbonyl amino
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acid halogenides depended on the carbamate substituent and increased in the following order:
ethyl-methyl-allyl-benzyl [20]. As result of this, the initially employed thionyl chloride for the
halogenation of the N-alkoxycarbonyl amino acids because of the advantage of gaseous products
was replaced by phosphorus pentachloride (PCl5) and phosphorus trichloride (PCl3). The latter was
more reactive and permitted the reaction to be accomplished under mild conditions. In spite of
this, due to the better leaving group and better nucleophile in the dealkylation step, the most useful
halogenating agent, reported later, was phosphorous tribromide, which allows the bromination process
at temperatures below 25 ◦C [18].

In addition to the high temperatures required, a crucial aspect was also the eventual presence
of impurities that accompany the synthesis of NCAs via the Leuchs method. These depended on
the reagent used in the halogenation step but may include thionyl chloride, phosphorous penta-
or trichloride, phosphorous tribromide, alkyl or benzylhalogenides and HCl. Bromides ions were
better nucleophiles than chlorides, making phosphorous tribromide a strong halogenating agent [21].
These impurities could lead to chain termination reaction and therefore the monomers needed to be
carefully purified prior to polymerization.
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Figure 1. The “Leuchs method” for the preparation of α-amino acid N-carboxyanhydrides involves 
the cyclization of N-alkoxycarbonyl-amino acids [19]. 

The second synthetic approach, which is today widely employed for the preparation of NCAs, 
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with a good yield and no racemization. The mechanism proposed for the synthesis of the NCAs by 
this methodology is schematically shown in Figure 2A and involves the direct phosgenation of free 
α-amino acids (α-N-unprotected amino acids). Later efforts were carried out to replace the gaseous 
phosgene by diphosgene [25] and triphosgene [26]. These two, i.e., diphosgene and triphosgene are 
liquid and solid, respectively, which makes them easy to handle and allows them to be used in 
stoichiometric quantities. As shown in Figure 2 during the reaction HCl is produced. However, a 
low concentration of HCl during the NCAs synthesis is important, since HCl can lead to 
ring-cleavage and to the formation of unwanted α-isocyanate acid chlorides (Figure 2B). 
Interestingly, the solvent choice can play an important role in this NCA’s synthesis. While, in 
principle, low-boiling organic solvent can be used (Tetrahydrofuran, 1,4-dioxane, toluene or ethyl 
acetate) Kricheldorf proposed the use of 1:1 mixtures of THF or dioxane with CH2Cl2. This solvent 
mixture presents a reduced solubility on HCl in comparison, for example, with the pure ethers [27]. 
Similarly to the “Leuchs” method, several impurities can be found in the NCAs prepared via the 
“Fuchs-Farthing” method. These comprised, e.g., N-chloroformyl-amino acid chlorides and 
α-isocyanato-acid chlorides. The removal of these impurities generated during the synthesis was 
crucial since these have acidic or nucleophilic characteristics that can affect later, in the 
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Figure 1. The “Leuchs method” for the preparation of α-amino acid N-carboxyanhydrides involves the
cyclization of N-alkoxycarbonyl-amino acids [19].

The second synthetic approach, which is today widely employed for the preparation of NCAs,
is the “Fuchs-Farthing” method [22–24]. This strategy allows the synthesis of pure NCA monomers
with a good yield and no racemization. The mechanism proposed for the synthesis of the NCAs by
this methodology is schematically shown in Figure 2A and involves the direct phosgenation of free
α-amino acids (α-N-unprotected amino acids). Later efforts were carried out to replace the gaseous
phosgene by diphosgene [25] and triphosgene [26]. These two, i.e., diphosgene and triphosgene
are liquid and solid, respectively, which makes them easy to handle and allows them to be used in
stoichiometric quantities. As shown in Figure 2 during the reaction HCl is produced. However, a low
concentration of HCl during the NCAs synthesis is important, since HCl can lead to ring-cleavage and
to the formation of unwanted α-isocyanate acid chlorides (Figure 2B). Interestingly, the solvent choice
can play an important role in this NCA’s synthesis. While, in principle, low-boiling organic solvent
can be used (Tetrahydrofuran, 1,4-dioxane, toluene or ethyl acetate) Kricheldorf proposed the use of
1:1 mixtures of THF or dioxane with CH2Cl2. This solvent mixture presents a reduced solubility on
HCl in comparison, for example, with the pure ethers [27]. Similarly to the “Leuchs” method, several
impurities can be found in the NCAs prepared via the “Fuchs-Farthing” method. These comprised, e.g.,
N-chloroformyl-amino acid chlorides and α-isocyanato-acid chlorides. The removal of these impurities
generated during the synthesis was crucial since these have acidic or nucleophilic characteristics that
can affect later, in the polymerization step.
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Figure 2. The mechanism proposed for the “Fuchs-Farthing” method [22–24]. (A) N-carboxyanhydrides 
(NCAs) formation by reaction with phosgene and (B) Formation of NCA and acidic decomposition. 
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The purification process for the NCA monomers involves washing NCA solutions with water or
aqueous sodium bicarbonate at 0 ◦C in order to remove residual HCl. Subsequently, the monomer is
rapidly dried [28]. While, this methodology is still widely employed, further improvements have been
later reported. For instance, hydrochloride scavengers like pinene and limonene were proved effective
in preventing by-product formation. This methodology reported by Smeets et al. was demonstrated
to be particularly well adapted for the synthesis of L-leucine NCA (Leu-NCA) [29]. A more recent
improvement in the purification process was reported recently by Deming et al. [30]. They used a
rapid and general method i.e., flash column chromatography. This technique was effective at removing
all common impurities from NCAs and was found to work for a variety of NCAs, including those
synthesized using different routes as well as those bearing either hydrophilic or hydrophobic side
chains (especially interesting for those that cannot be recrystallized).

2.2. Functional NCA Monomers

Many studies have been devoted to the fabrication of polypeptides using natural occurring
polypeptides. Natural occurring aminoacids without functional side chain groups can be easily
polymerized the fabrication of polypeptides bearing side-chain functional groups required additional
considerations. However, for many different applications polypeptides with side functional groups are
required. In those cases, the amino acid side-chain groups require the use of, for instance, additional
protection/deprotection chemistry to be polymerized. In view to enlarge the variety of side functional
group a number of different strategies have been developed during the last decade to incorporate novel
functional groups either in the NCA monomers or by post-modification of pre-formed polypeptides.
This section will be thus devoted to describing illustrative examples for the preparation of functional
NCA monomers.

2.2.1. Protected Functional Groups Using Natural Occurring Amino Acids

As mentioned above, the first alternative to fabricate functional polypeptides is by direct
polymerization of NCA monomers that contain protected pendant groups. Protective pendant groups
have been employed to block functional groups such as amine, carboxylic acid, hydroxyl, imidazole,
thiol, and guanidine during the polymerization step followed by deprotection. Figure 3 shows
several examples of functional NCA monomers that require protective chemistry to be polymerized.
Among the depicted NCAs PGlu, PAsp, PLys are without any doubt the most extensively employed.
The strategy to prepare the protected polypeptides involves, as depicted by Chao et al. [13,31] four
different steps. In the case of PGlu and PAsp the β/ω carboxyl groups are first protected by forming
typically a copper complex that protects the α-position. Then, the NCA is synthesized and polymerized
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by using any of the mechanisms (see next section) and finally the protective groups are removed.
Carboxylic acid groups are usually protected using benzyl groups and the resulting polypeptide can be
deprotected using different alternatives such as hydrogenation, using basic conditions or using strong
acids. The same strategy can be employed for PLys but, in this case theω-amino group is protected.
Different protective chemistries have been reported for the case of Lysine and protective groups include:
tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Z), trifluoroacetyl (TFA), 6-nitroveratryloxycarbonyl
(Nvoc) and 9-fluorenylmethoxycarbonyl (Fmoc) [32].
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2.2.2. Other Side Chain Functionalized NCAs

In order to fabricate polypeptides with additional functionalities, novel NCA monomers have
been prepared. As illustrated in Figure 4, a wide variety of side chain functional groups of NCAs
leads to a wide variety of monomers that can be summarized in the following general groups: NCAs
for cycloaddition reactions, alkene NCAs, halogenide NCAs, reactive ester NCAs, S-sulfonilester
NCAs [13,14]. Selected examples with the precise chemical structure and the corresponding reference
are equally provided in Table 1.
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Table 1. Illustrative examples of functional NCAs. Adapted from reference [13].

Alkyne-Azide [2 + 3] Huisgen Cycloaddition

PG-NCA [33–36]
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NCAs have been extensively functionalized, for instance, with side-chain functional groups that
can undergo alkyne-azide Huisgen cycloadditions. Since the pioneer work of Hammond et al. [33–36]
incorporating propargyl groups, other reports have introduced precursors for the same type of
reaction in order to carry out pegylation or glycosylation reactions [37,38]. Also NCA monomers with
chloro- side groups [39] as well as azide groups [40] have been prepared for their post-modification
via a Huisgen cycloaddition.

Another class of reactions that can be carried out on functionalized NCAs is the thiol-ene reactions.
These NCAs are designed to bear a double bond as side-group [41–44]. An interesting class of
functional NCAs is represented by the incorporation of saccharides, and in particular glucose thus
leading to glycosylated peptides. Interestingly, these NCAs are polymerized and do not require any
additional modification.

Finally, pH response provided by the carboxylic acid groups (e.g., in the case of L-glutamic
acid) or the amine groups (e.g., in the case of L-Lysine) as well as thermal and photoresponsive
polypeptides have been fabricated by introducing the appropriate functional groups. For example,
Chen et al. [48] and Fu et al. [49] prepared functionalized NCA bearing oligoethylene glycol functional
groups known for changing the solubility by increasing the temperature. Photoresponsive polypeptides
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were synthesized by Liu et al. [50] and Yin et al. [51]. For instance, Liu et al. [50] reported
the synthesis of a photoresponsive S-(o-nitrobenzyl)-L-cysteine N-carboxyanhydride (NBC-NCA)
monomer employed for the synthesis of poly(S-(o-nitrobenzyl)-L-cysteine)-b-poly(ethylene glycol)
(PNBC-b-PEO) block copolymers. The β-sheet conformational PNBC block presented a thermotropic
liquid crystal phase behavior, and the crystallinity of the PEO block was progressively suppressed
over the PNBC composition. Moreover, the characteristic absorption peaks of these copolymers
at about 310 and 350 nm increased over UV irradiation time indicating that the o-nitrobenzyl
groups from the copolymers were gradually photocleaved until the completion of photocleavage.
The PNBC-b-PEO copolymers prepared self-assembled into spherical nanoparticles in aqueous solution,
presenting a photoresponsive self-assembly behavior, together with a size reduction of nanoparticles
after irradiation.

Rhodes et al. [40] prepared azide-containing NCAs, using L-lysine and L-ornithine as starting
materials since their side-chain amine groups can be readily converted to azides in a single step.
As depicted in Figure 5, azido amino acids were prepared from the Nα-carboxybenzyl (Cbz) protected
amino acids using previously reported procedures. These derivatives were then directly converted
to NCAs, via the acid chloride using the Ghosez’s reagent, maintaining the integrity of the azide
functionality. Polymerizations of Anl-NCA and Anv-NCA using (PMe3)4Co in THF proceeded readily
at ambient temperature to give the corresponding homopolypeptides, poly(Anl) and poly(Anv),
with complete monomer conversions and no reactions at the side-chain azido groups.
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K2CO3, 1:1 THF:H2O, 16 h (88% yield, 1b). (b) Ghosez’s reagent, THF, 21 ◦C, 48 h (67% yield, 2b). (c)
(PMe3)4Co, THF, 21 ◦C, 1 h (96% yield, 3b). 2a = L-azidonorvaline-N-carboxyanhydride (m = 3, Anv
NCA), 2b = L-azidonorleucine-N-carboxyanhydride (m = 4, Anl NCA), 3a = poly(L-azidonorvaline),
poly(Anv), 3b = poly(L-azidonorleucine), poly(Anl). Reproduced with permission from reference [40].

Finally, another interesting example for the fabrication of conductive polypeptides was reported
by Holmes et al. [53]. As shown in Figure 6, they synthesized a hexithiophene functionalized Lys-NCA
and polymerized it. The materials obtained presented hierarchical self-assembled structures that
finally resulted in interesting properties organic photovoltaic applications as well as the preparation of
organic field transistor devices.
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Figure 6. Synthetic route for the preparation of Semiconductor Functionalized Peptide. Reagents and
conditions: (i) 12, Pd(PPh3)4, K2CO3, DME, H2O, 130 ◦C, 1 h; (ii) 15, Pd(PPh3)4, Cs2CO3, toluene,
reflux, 16 h; (iii) LiOH, THF, H2O; (iv) Et3N, triphosgene, EtOAc; (v) HMDS, THF, 32 h. Reproduced
with permission from reference [53].

3. Polymerization of α-Amino Acid N-Carboxyanhydrides

3.1. General Mechanisms and Historical View

The chemical structure of α-Amino acid N-carboxyanhydrides (NCAs) is shown in Figure 7.
NCAs are characterized by four reactive sites, two nucleophilic sites (after deprotonation of the NH
and CH groups) and two electrophilic groups (C-2, C-5). As a result, the ring of the NCAs can be
opened and NCAs can be polymerized via several concurrent mechanisms. Therefore, the preparation
of well-defined polypeptides in terms of chain-length and dispersity is not an easy task.
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There exist two main mechanisms generally established for NCA’s polymerization, i.e., the 
“amine mechanism” and the “activated monomer mechanism”. It is outside of the scope of this 
review to thoroughly analyze the polymerization mechanism that can be found in excellent reviews 
reporting the synthesis and the polymerization of NCAs have been written by Kricheldorf, Bamford, 
Hadjichristidis, and Deming among others [12,18,26,54–56]. Nevertheless, a brief explanation will be 
provided. On the one hand, the polymerization via the “amine mechanism” (which is also known 
under the name “protic mechanism”) is initiated by protic nucleophiles such as primary amines and 
was first reported by Wessely and by Watson et al. [57]. In this mechanism, shown in Figure 8, the 
primary amine reacts with the C-5 in the NCA monomer. The NCA’s ring opens, carbon dioxide is 
removed and a molecule with a new primary end group is formed for further reaction with other 
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There exist two main mechanisms generally established for NCA’s polymerization, i.e., the “amine
mechanism” and the “activated monomer mechanism”. It is outside of the scope of this review to
thoroughly analyze the polymerization mechanism that can be found in excellent reviews reporting the
synthesis and the polymerization of NCAs have been written by Kricheldorf, Bamford, Hadjichristidis,
and Deming among others [12,18,26,54–56]. Nevertheless, a brief explanation will be provided. On the
one hand, the polymerization via the “amine mechanism” (which is also known under the name “protic
mechanism”) is initiated by protic nucleophiles such as primary amines and was first reported by
Wessely and by Watson et al. [57]. In this mechanism, shown in Figure 8, the primary amine reacts with
the C-5 in the NCA monomer. The NCA’s ring opens, carbon dioxide is removed and a molecule with
a new primary end group is formed for further reaction with other NCA. As will be explained later,
the amine initiator used in this case is incorporated in the growing chain in contrast to the initiators
employed in the “activated monomer mechanism” that served to extract the proton of the activated
NCAs. It is worth mentioning that primary amines, such as e.g., n-butylamine and n-hexylamine, are
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highly nucleophilic compared to the reactive amine chain ends. This is a priori an interesting aspect
since the initiation process is much faster than propagation. This is a requisite for a control of the
molecular weight and to obtain narrow polydisperse polymers. However, some other termination
reactions present may limit the fabrication of high molecular polypeptides. For example, cyclization of
chain ends typically observed in the polymerization of poly(L-glutamates) enable only the formation
of polypeptides with molecular weights in the range of degree of polymerization (DP) < 150–200
(Figure 9) [58].
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The polymerization of NCAs typically occurs through the “activated-monomer mechanism”
when aprotic bases are employed (Figure 10) [59,60]. The use of a strong base deprotonates the
NCA, which becomes nucleophilic and, under these conditions, is able to react with another NCA.
Three different paths followed by the activated NCA monomer. In the first situation, the dimer
obtained can, upon, ring-opening, protonation, and elimination of CO2 led to an amino-terminal group
that follows from now the amine mechanism (Route B). The second situation involves the attack by the
activated monomer of the electrophilic N-acyl-NCA end group (Route C). Finally, the nucleophilic
carbamate group (Intermediate 2) can react according to a side reaction, i.e., the carbamate mechanism
shown in Figure 11 (also Route A in Figure 10) by an attack of another NCA monomer.

As a result, initiators that polymerize NCAs according to the activated monomer mechanism
are typically tertiary amines such as triethylamine or alkoxide anions. The use of secondary amines
requires further considerations since these initiators can react with the NCAs in two different ways.
On one hand, secondary amines can act as nucleophiles and therefore, with the C5 attack of the
NCA a thereon follow the “amine mechanism”. On the other hand, however, they may act as a base,
attacking the N-proton and following the “activated-NCA” mechanism. In conclusion, when using
secondary amines, the initiation mode will depend on the nucleophilicity/basicity (Nu/B−) ratio, i.e.,
secondary amines with low Nu/B− ratio, such as cyclohexylamine or di-n-propylamine, polymerize
NCAs according to the activated monomer mechanism and secondary amines with a high Nu/B−

ratio behave as primary amines.
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Pioneer works carried out by Blout and Karlson evidenced for the first time that initiation of the
polymerization of γ-benzyl-L-glutamate N-carboxyanhydride resulted in very high molecular weight
polypeptides [61]. The initiators used in this research were aprotic bases, which represent the second
possibility for initiate the ring opening NCA polymerization.
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so-called “activated-monomer mechanism” [22,23].

As has been mentioned above, there exists a side reaction which accompanies the polymerization
of NCAs initiated by primary amines known as “carbamate mechanism” (Figure 11). This mechanism
takes place when the primary amine is basic enough to deprotonate the intermediate carbamic acid
(Intermediate 1). The molecule generated can react via a nucleophilic reaction with an NCA monomer
resulting in an intermediate anhydride. A new peptide bond is then formed after decarboxylation
and, subsequently, the polymerization can proceed. Whereas in the case of NCAs’ polymerization
with primary amines, the “carbamate mechanism” only plays a minor role, this side reaction can be an
important limitation in the “activated monomer mechanism”.

A huge amount of work in the fabrication of polypeptides, copolypeptides and even some
branched structures by any of the mechanisms proposed above has been reported by Sela and
Katchalski [62,63]. Their unique contributions, that started back to 1950–1960, settle the basis for
the subsequent developments in NCA ROP.
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3.2. Improvements in the Polymerization of α-Amino Acid N-Carboxyanhydrides

The major limitation of both the standard amine initiated and the activated monomer mechanism
for the NCA polymerization is the “carbamate mechanism”. In order to improve this drawback further
research focused on the design of novel polymerization alternatives attempting to reduce, or even
completely avoid, these side reactions. The different alternatives proposed to overcome this issue are
depicted in this section.

3.2.1. Strategies to Improve Control over Chain Length and Dispersity: Role of the Initiator and
Mediation of the Ring-Opening Polymerization

One of the pioneer works reported in order to improve the polymerization mechanism was
reported by Deming et al. [64–66]. Their approach overcomes several drawbacks of the traditional
NCA initiator systems, both in terms of chain length control and dispersity. In their strategy, they
substituted the amines typically employed in the initiation of the ROP NCAs by transition-metal
complexes as active species to control the addition of NCA monomers to the polymer chain-end.
As a result, the NCA polymerization with these transition metal complexes follows an alternative
mechanism permitting the synthesis of polypeptides with predictable molecular weights and narrow
polydispersities. The proposed mechanism is outlined in Figure 12.

As will be thoroughly described in the next sections, the control over the polymerization process
is a crucial requirement to fabricate more complex structures. For instance, Deming et al. synthesize
homo- and block-copolypeptides with predictable molecular characteristics and low dispesities
(DIs) based on the use of zero-valent nickel complex bipyNi (COD) (bipy) 2,2-bipyridyl, (COD
1,5-cyclooctadiene). Later, they reported the use of cobalt initiators of the (PMe3)4Co type that
resulted equally efficient [67]. Although this strategy presented significant advantages, one of the
major drawbacks was that the metal ions employed need be conveniently removed from the polymers.
The authors reported that simple precipitation or dialysis of the sample after polymerization was
enough to readily remove the metal ions.
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Figure 12. Propagation Reactions of the Mechanism for the Polymerization of NCAs with
bipyNi (COD) (bipy) 2,2-bipyridyl, (COD 1,5-cyclooctadiene) or (PMe3)4Co complexes proposed
by Deming et al. [64–66].

A second strategy was reported by Schlaad’s group [68]. They proposed to control the protonation
of the amine initiator group to form hydrochloric salts as a strategy to reduce secondary reactions.
As shown in Figure 13, the acidic conditions in the system produced the elimination of CO2 from
the reactive intermediate and more importantly, suppressed the formation of unwanted NCA anions.
Consequently, as soon as free amine reacted with NCA, the resulting amine end-group on the
product was immediately protonated and prevented further reaction. According to these findings,
the dissociation of the hydrochloride released the propagating primary amine and a proton, which
avoided chain growth via the “activated monomer” mechanism. In agreement with the studies carried
out by Knobler et al. [69,70] only one NCA molecule reacted with such salts, without propagation,
since the hydrochloric salt of the primary amine formed was less nucleophilic than the parent
amine, which effectively halted the reaction after a single NCA insertion by the formation of an
inert amine hydrochloride in the product. The dormant amine hydrochloride species was favored
in this equilibrium, and therefore, the free amines were reactive for only a very short time and
could not propagate. The authors demonstrated the controlled polymerization of ZLLys-NCA in
N,N-dimethylformamide (DMF) 40–80 ◦C using PS52–NH2·HCl as a macroinitiator. As a conclusion,
although these polymerizations were slow compared to the amine-initiated polymerization, the
resulting PS-b-PZLLys block copolymers exhibited a very narrow molecular weight distribution,
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close to a Poisson distribution (PDI < 1.03). These distributions were much narrower than those
obtained using the free amine macroinitiator, which argues for diminished side reaction on the
polypeptides synthesis.
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(CH2)4NHC(O)OCH2C6H5) using primary amine–hydrochlorides (chloride ions omitted). Reproduced
with permission from reference [68].

More recently, Conejos-Sánchez et al. [71] resorted to the use of ammonium salts with
non-nucleophilic tetrafluoroborate anions as initiators for the ring opening polymerization of
α-N-carboxyanhydrides (NCAs). This methodology permitted the synthesis of polyglutamates with
defined molecular weights (up to 800 units), low dispersities (<1.2), controlled chain end functionality,
an adequate stereoselectivity and absence of any trace of toxic impurity thus allowing the use of the
polypeptide synthesized for their use in biomedical applications.

The second alternative to control the macromolecular characteristics of the synthesized
polypeptides is based on the mediation of the mechanism of the NCA ROP. Using this alternative,
Lu et al. [72] found that NCA polymerizations mediated by hexamethyldisilazane (HMDS) remained
controlled and living. The mechanism proposed by the authors is shown in Figure 14. The authors
evidenced that the initiation step involved the cleavage of the N−Si bond of HMDS and the formation
of a trimethylsilyl carbamate (TMS-CBM) terminal group. Therefore, the polypeptide chains were
propagated through the migration of TMS of the TMS-CBM end group to the incoming monomer
and formed a new TMS-CBM terminal group. As a result, this organosilicon reagent mediated
NCA polymerization offered a metal-free strategy for the convenient synthesis of homo- or block
polypeptides with predictable molecular weights and narrow molecular weight distributions.
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A similar strategy was recently employed by Zhao et al. [74]. They reported, based on
hydrogen-bonding organocatalysis, the living ring-opening polymerization of N-carboxyanhydride
of α-amino acids using aminoalcohols as initiators in the presence of N,N′-bis[3,5-bis
(trifluoromethyl)phenyl]thiourea (TU-S). As it is shown in Figure 15, the thiourea provided, through
hydrogen bonding, simultaneous activation of NCA monomers/reversible deactivation of polymer
chain-ends/silencing of the tertiary amine and thus allowed the polymerization to proceed in a highly
controllable mode. For example, by using N,N-dimethyl ethanolamine (DMEA), as an initiator in
the presence of TU-S, a series of well-defined linear polypeptides with differently designed Mns

(3.01 × 104–18.10 × 104) and low PDI values (1.02–1.05) were successfully synthesized.
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Finally, a recent development described in the literature concerning the NCA mediation was
described by Yuan et al. [75] They reported the ring-opening polymerization (ROP) of α-amino acid
N-carboxyanhydrides (NCAs) mediated by trimethylsilyl sulfide (S-TMS). According to the authors,
phenyl trimethylsilyl sulfide (PhS-TMS), an inexpensive and commercially available compound,
mediates rapid ROP of a broad scope of NCA monomers, producing functional poly(amino acids)
(PAAs) with controllable molecular weights (MWs), narrow dispersity index (DI), and an in-situ
generated phenyl thioester group at the C-terminus (PAA-SPhs). PhS-TMS, due to their rapid chain
initiation, ensures a living polymerization with improved control. Their mechanistic studies suggested
that the reactive trimethylsilyl carbamate (TMSC) was generated during the chain initiation and
continued to regulate the chain propagation through a TMS transfer process.

3.2.2. Optimization of the Experimental Conditions for the NCA Polymerization

Hadjichristidis and co-workers [76] assumed that most of the problems found in the traditional
NCA polymerization were related to impurities traces present in the reaction media. Their strategy
involved the polymerization of NCAs with primary amines, e.g., n-hexylamine and 1,6-diaminohexane,
strong nucleophiles, which are known to direct the reaction through the “normal-amine route” together
with high vacuum techniques (HVT) in order to create and maintain the necessary conditions for
the NCAs’ living polymerization. The polypeptides produced by this method could be prepared
with controlled chain lengths, producing narrow chain length distribution. HVT ensured that all
reagents, and also the reaction environment, are completely impurity-free in all steps of the synthesis.
For this purpose, they fabricated reactors equipped with break-seals along with magnets covered with
glass, and constrictions, for the reagents addition and removal of intermediate products. Controlled
polymerization of NCAs under high vacuum was later confirmed by Messman and co-workers [77].

A decrease in the reaction temperature can be also employed to control the NCA polymerization.
Vayaboury et al. [78] studied the n-hexylamine-initiated polymerization of Nε-trifluoroacetyl-L-lysine
N-carboxyanhydride in N,N-dimethyformamide by nonaqueous capillary electrophoresis (NACE).
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A polypeptide with a broad molecular weight distribution was obtained and side reactions were
clearly identified for polymerizations carried out, either at room or higher temperatures (Table 2).
However, when the polymerizations were carried out at 0 ◦C almost no dead polymer was formed.
The temperature effect is not unusual, similar trends were found in cationic and anionic vinyl
polymerizations. At elevated temperatures, the side reactions have activation barriers similar to
chain propagation. When the temperature of the reaction is lower, it appears that the activation barrier
for chain propagation becomes lower than the necessary for side reactions and, eventually, chain
propagation kinetically dominates the reaction.

Table 2. Characterization of poly(Nε-trifluoroacetyl-L-lysine) samples by nonaqueous capillary
electrophoresis (NACE). Table reproduced with permission from reference [78].

M/I Temperature (◦C) Living Polymers (◦C) a Dead Polymers (Peaks B and C) (%) a

50 50 20 80
50 Room 22 78
50 0 99 1

a From NACE experiments.

More recently Habraken et al. [79,80] examined how experimental factors including the pressure
and temperature affect the polymerization of various NCA monomers, i.e., γ-benzyl-L-glutamate (BLG),
Nε-benzyloxycarbonyl-L-lysine (ZLL), L-alanine (Ala), β-benzyl-L-aspartate (BLA), O-benzyl-L-serine
(BLS), and O-benzyl-L-threonine (BLT). They found that the studied NCAs could be divided into two
groups: in the first group, monomers of BLG, ZLL and Ala polymerized considerably faster when
a lower pressure of 1 × 105 bar was applied. Matrix-assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-ToF-MS) analysis confirmed that the formation of side products
for these monomers mostly started after full monomer conversion. The second group of monomers,
i.e., BLA, BLS and BLT, polymerized considerably slower than the first group and no effect was
observed from the lower pressure. On the other hand, the number of side reactions was significant
at 20 ◦C, so that the polymerizations for the latter monomers should preferably be done at 0 ◦C.
Their results indicated that the γ-benzylester cleavage by terminal amine (backbiting) is the major
contamination for Bn-Glu-NCA polymerization and in the case of Bn-Asp NCA, a more intricate
scenario was revealed at elevated temperatures, which showed impurities that comprise side-chain
ester cleavage and formamide end-capping from DMF.

A novel interesting strategy to fabricate polypeptides was reported by Heise et al. [81].
They reported the first example of UV-initiated synthesis of polypeptides from NCAs. The active
initiator cyclohexylamine was produced in-situ by the UV-induced breakdown of photoamine
generators. The authors carried out real-time FTIR and MALDI-ToF-MS analyses in order to obtain
evidence for the proposed photoinitiation mechanism as well as the attachment of the active initiator
to the polypeptide chain.

3.2.3. Alternative Cyclic Monomers to NCAs for the Fabrication of Polypeptides

Cao et al. [82] demonstrated that interfacial ring-opening polymerizations (iROP) of α-amino-acid
derived N-thiocarboxyanhydrides (NTAs) in hexane or heptane suspension, using soluble primary
amine initiators, can be employed to synthesize polypeptides with controlled molecular weight and
low-to moderate molecular weight distribution under mild conditions. According to the authors, the
NTA monomers improved both moisture and thermal stability in comparison to N-carboxyanhydrides
(NCAs). These unique characteristics result in long shelf life and permit the polymerization to occur
quantitatively in open air. A scheme of the synthetic strategy to prepare NTA’s monomers is depicted
in Figure 16.
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3.2.4. Improvement of the Polymerization Kinetics While Maintaining the Living Features

A reduction of the polymerization kinetics has a positive influence on the control of the
polymerization. However, the synthesis of longer polypeptides can be a rather long process. In order
to accelerate the kinetics while maintaining the living feature, Zou et al. [83] reported a straightforward
method to enhance the polymerization rate while maintaining the living features of the polymerization
by simply using N2 flow during the NCA ROP.

Although the influence of CO2 in NCA ROP was studied 50 years ago when it was observed that
the immediate removal of CO2 affected the kinetics of polymerization [84], the “livingness” of the
NCA ROP with removal of CO2 from the reaction was not demonstrated. Zou et al. confirmed
the advantages of N2 flow methods and confirmed the living characteristics for NCA ROPs by
employing γ-benzyl-L-glutamate (BLG-NCA) as a well-studied monomer and n-hexylamine as initiator.
Compared to the methods for the preparation of polypeptides from NCAs using primary amines
as initiators without catalyst activation, the use of N2 gas presented several important advantages:
(1) promoted polymerization rates, to allow NCA conversions to reach >95% in a matter of hours
rather than the multiple day time period that is required typically; (2) glovebox-free operation in a
normal fume hood, to increase the convenience, decrease the time, and allow for greater variation
of the reaction conditions, for instance the temperature; (3) control over the polymerization rate by
altering the flow rate of nitrogen; (4) maintenance of the living features of NCA ROP even at high
conversions and high monomer:initiator feed ratios [83].

More recently, an interesting fast and living ROP NCA mechanism was reported by Zhao et al. [85]
Their methodology is based on an “alliance” of primary and secondary amine initiators and allows for
fast and living ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) at
room temperature. The mechanism proposed, illustrated in Figure 17, indicates that an initiator like
triethylaminetriamine (TREN) both its core tertiary amine and the three growing primary amines act
cooperatively and in synergy to bring about a fast and yet “living” polymerization of NCAs through
the so-called accelerated amine mechanism through monomer activation (AAMMA). They later show
that primary and secondary amines can also act cooperatively and in synergy to trigger the “living”
polymerization of NCAs [86]. In contrast to conventional amine-mediated NCA polymerizations, these
“allied” amines did not require low reaction temperatures to prevent side reactions from occurring,
and they afforded well-defined polypeptides at room temperature. This unexpected finding and its
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associated AAMMA mechanism provided a new strategy to develop effective metal-free initiators for
NCA polymerization.

Polymers 2017, 9, 551  17 of 61 

 

greater variation of the reaction conditions, for instance the temperature; (3) control over the 
polymerization rate by altering the flow rate of nitrogen; (4) maintenance of the living features of 
NCA ROP even at high conversions and high monomer:initiator feed ratios [83]. 

More recently, an interesting fast and living ROP NCA mechanism was reported by Zhao et al. 
[85] Their methodology is based on an “alliance” of primary and secondary amine initiators and 
allows for fast and living ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides 
(NCAs) at room temperature. The mechanism proposed, illustrated in Figure 17, indicates that an 
initiator like triethylaminetriamine (TREN) both its core tertiary amine and the three growing 
primary amines act cooperatively and in synergy to bring about a fast and yet “living” 
polymerization of NCAs through the so-called accelerated amine mechanism through monomer 
activation (AAMMA). They later show that primary and secondary amines can also act 
cooperatively and in synergy to trigger the “living” polymerization of NCAs [86]. In contrast to 
conventional amine-mediated NCA polymerizations, these “allied” amines did not require low 
reaction temperatures to prevent side reactions from occurring, and they afforded well-defined 
polypeptides at room temperature. This unexpected finding and its associated AAMMA mechanism 
provided a new strategy to develop effective metal-free initiators for NCA polymerization. 

 
Figure 17. Accelerated amine mechanism trhough monomer activation (AAMMA). Reproduced with 
permission from reference [86]. 

4. Linear Side Chain-Functionalized Polypeptides  

4.1. Homo and Copolypeptides Bearing Side-Chain Functional Groups 

4.1.1. Chemical Modification of Homopolypeptides 

Two main strategies can be followed in order to modify polypeptides to render them functional. 
On the one hand, functional homopolypeptides can be prepared using NCAs bearing side functional 
groups. On the other hand, by chemical post-modification of the preformed polypeptides [31]. While 
it is true that both methodologies have been reported, the second alternative is by far the most 
extended approach. A large variety of examples have been reported in which NCAs can be designed 
to incorporate different functional groups including halogen-, alkyne, azide-, allyl- (for Huisgen 
cyclization reactions), vinyl benzyl-groups (for thiol-ene reactions) that can undergo further 
modification but also to introduce initiators for additional polymerization steps [33–36,52]. One of 
pioneer works of post-modification were reported by Hammond et al. [33,87,88]. They employed 
click chemistry to prepare poly(γ-propargyl-L-glutamate) that permits to chemically modify the 
alkyne side chain groups with a polyethylene glycol azide (PEG-azide) to render the polypeptide 
hydrophilic (Figure 18).  

Figure 17. Accelerated amine mechanism trhough monomer activation (AAMMA). Reproduced with
permission from reference [86].

4. Linear Side Chain-Functionalized Polypeptides

4.1. Homo and Copolypeptides Bearing Side-Chain Functional Groups

4.1.1. Chemical Modification of Homopolypeptides

Two main strategies can be followed in order to modify polypeptides to render them functional.
On the one hand, functional homopolypeptides can be prepared using NCAs bearing side functional
groups. On the other hand, by chemical post-modification of the preformed polypeptides [31].
While it is true that both methodologies have been reported, the second alternative is by far
the most extended approach. A large variety of examples have been reported in which NCAs
can be designed to incorporate different functional groups including halogen-, alkyne, azide-,
allyl- (for Huisgen cyclization reactions), vinyl benzyl-groups (for thiol-ene reactions) that can undergo
further modification but also to introduce initiators for additional polymerization steps [33–36,52].
One of pioneer works of post-modification were reported by Hammond et al. [33,87,88]. They
employed click chemistry to prepare poly(γ-propargyl-L-glutamate) that permits to chemically modify
the alkyne side chain groups with a polyethylene glycol azide (PEG-azide) to render the polypeptide
hydrophilic (Figure 18).Polymers 2017, 9, 551  18 of 61 
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Figure 18. Poly(γ-propargyl-L-glutamate) clicked to various amines to obtain polycationic [87] or
hydrophobic polymers [88].

Another interesting example was reported by Zhang et al. [39]. They described the synthesis
of a series of poly(γ-chloropropyl-L-glutamates) (PCPLG) with controlled polymer molecular
weight and molecular weight distribution by hexamethyldisilazane (HMDS)-mediated ring-opening
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polymerization (ROP) of γ-chloropropyl-L-glutamic acid based N-carboxylanhydride (CP-NCA).
Interestingly, conformational analysis of these polypeptides revealed that the polymers adopted
α-helical conformations both in solution and the solid state. As a result, their helical surfaces could
be readily decorated. The authors demonstrated a quantitative derivatization of the PCPLG side
chains with azido functional groups (Figure 19). Subsequent side-chain conjugation with mannose
moieties via copper-mediated [2 + 3] alkyne-azide 1,3-dipolar cycloaddition afforded water-soluble
mannose-polypeptide conjugates with quantitative grafting efficiency occurring under mild conditions.
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Xiao et al. [35] presented a straightforward route for the preparation of glycopolypeptides
with highly effective “glycosylation” by click postpolymerization modification (grafting efficiency
60–100% depending on the feed ratio). For that purpose, they synthesized an alkyne-substituted
N-carboxyanhydride (NCA) monomer that was, in turn, polymerized to afford the polypeptide with
“clickable” alkyne pendants. The alkyne-functionalized polypeptide was then “glycosylated” by
click reaction of different sugar azides to the alkyne pendant groups with high efficiency. Later,
the same group [9] reported the synthesis of amphiphilic homoglycopolypeptides by a combination of
NCA polymerization and click chemistry to yield a well-defined polypeptide having an amphiphilic
carbohydrate on its side chain. The amphiphilicity of the carbohydrate was achieved by incorporation
of an alkyl chain at the C-6 position of the carbohydrate, thus, also rendering the homoglycopolypeptide
amphiphilic. The homoglycopolypeptide formed multimicellar aggregates in water above a critical
concentration of 0.9 µM due to phase separation. According to the authors hydrophobic interactions
of the aliphatic chains at the 6-position of the sugar moieties drove the assembly of these rod-like
homoglycopolypeptides into large spherical aggregates.

Recently, Cheng and co-workers [89] introduced poly(γ-(4-propargyloxybenzyl)-L-glutamic acid)
(PPOBLG), which was modified with different amine and guanidine functions via CuAAC for the
evaluation of their use in gene delivery purposes. As shown in Figure 20, PPOBLG was polymerized
first via ROP of POB-L-Glu-NCA initiated by HMDS. Then, the polymer was post-functionalized in
the side-chain via the azide-alkyne Huisgen cycloaddition. HMDS allowed a controlled ROP, yielding
well-defined polypeptides with narrow molecular weight distributions (MWDs, ~1.05) and desired
degree of polymerization. Owing to the high efficiency of the “click” chemistry, the conjugation
efficiencies of amine- or guanidine-containing side chains reached over 99%.
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Deming et al. [90] demonstrated that the thioether group in poly(L-methionine) can be directly
functionalized by alkylation with various alkylation reagents under mild conditions, allowing facile
preparation of water-soluble polypeptides (Figure 21). They later extend and improved this approach
and reported a methodology for the efficient alkylation of methionine residues using epoxides as a
general strategy to introduce a wide range of functional groups onto polypeptides [91]. Interestingly,
the use of a spacer between epoxide and functional groups further allowed the addition of sterically
demanding functionalities. Contrary to other methods to alkylate methionine residues, epoxide
alkylations allowed the reactions to be conducted in wet protic media and gave sulfonium products
that were stable against dealkylation. These functionalizations were chemoselective, utilized stable
and readily available epoxides, and allowed the facile incorporation of an unprecedented range of
functional groups onto simple polypeptides using stable linkages.
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The group of Zhong [92] described the synthesis of vinyl sulfone-substituted L-cysteine
N-carboxyanhydride (VSCys-NCA) monomer to afford a novel and versatile family of vinyl
sulfone (VS)-functionalized polypeptides. These polypeptides offered a facile access to
functional polypeptide-based materials including glycopolypeptides, functional polypeptide coatings,
and in situ forming polypeptide hydrogels through Michael-type addition chemistry under
mild conditions (Figure 22). The copolymerization of γ-benzyl-L-glutamate NCA (BLG-NCA),
N-benzyloxycarbonyl-L-lysine NCA (ZLL-NCA), or L-leucine NCA (Leu-NCA) with VSCys-NCA
using 1,1,1-trimethyl-N-2-propenylsilanamine (TMPS) as an initiator proceeded smoothly in
DMF at 40 ◦C, yielding P(BLG-co-VSCys), P(ZLL-co-VSCys), or P(Leu-co-VSCys) with defined
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functionalities, controlled molecular weights, and moderate polydispersities below 1.5. The acidic
deprotection of P(BLG-co-VSCys) and P(ZLL-co-VSCys) furnished water-soluble VS-functionalized
poly(L-glutamic acid) (P(Glu-co-VSCys)) and VS-functionalized poly(L-lysine) (P(LL-co-VSCys)),
respectively. These VS-functionalized polypeptides were amenable to direct, efficient, and selective
postpolymerization modification with varying thiol-containing molecules such as 2-mercaptoethanol,
2-mercaptoethylamine hydrochloride, L-cysteine, and thiolated galactose providing functional
polypeptides containing pendant hydroxyl, amine, amino acid, and saccharide, respectively. Due to
the absence of radicals, high temperatures or UV radiation, the conditions for the Michael addition
were much milder, potentially reducing side reactions (like radical recombination/disproportionation).
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Finally, two recent examples were reported by the groups of Tang [93] and Deming [94].
Halogenide NCAs, i.e., γ-chloropropyl side chain functional groups were synthesized by
Tang et al. [93] that polymerized γ-4-chloromethylbenzyl-L-glutamate NCA and used the chloride to
introduce 1-alkylimidazolium into the side chain. The thermo-responsive behavior of the resulting
polycations could be tuned by exchange of the counter-ion. Deming [94] used the nucleophilic
substitution of bromide to synthesize poly(L-phosphorylcholine homoserine). Interestingly, both the
removal of the benzyl protective groups and the amination was performed in one step. In contrast,
this method was found to be not suitable for poly(L-phosphorylcholine serine) due to β-elimination of
the serine, followed by chain degradation.

4.1.2. Synthesis and Post-Modification of Random Copolypeptides

While it is true that natural proteins present an extremely complex structure as a result
of the combination of up to 20 different R-amino acids, synthetic random and statistical
copolypeptides can, at least to some extent, structurally mimic the 3D structure found in proteins.
Random copolypeptides are typically prepared by simultaneous copolymerization of two or more
different NCAs. The copolymerization step is clearly affected by different parameters including the
type of initiator or the solvent employed. Nevertheless, once these parameters have been optimized,
the knowledge of the relative reactivity of the different NCA monomers employed is crucial to
determine the amino acid sequence distribution. Different techniques have been employed for this
purpose including 1H-, 15N-, and 13C-CP/MAS NMR techniques.

For instance, Wamsley et al. [95] reported the synthesis of different binary copolypeptides of
β-benzyl aspartate-NCA (BLA), leucine-NCA (L-Leu) and valine-NCA (L-Val), i.e., combinations of
L-Leu with BLA, BLA with L-Val, and L-Leu with L-Val were also prepared, parallel their reactivity
ratios were obtained through three methods, i.e., Fineman-Ross, Kelen-Tüdos graphical methods and
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the nonlinear least-squares curve fitting method. On the basis of these analyses, they found that the
reactivity ratios varied as follows: β-benzyl aspartate-NCA > leucine-NCA > valine-NCA. Moreover,
they explored also the fabrication of ternary copolymers. According to their findings, although the
complexity increased from binary polymerizations to ternary polymerizations, the addition of a
third NCA in the polymerization of poly(leucine-β-Bzl-aspartate-valine) did not adversely affect the
randomness of the reaction, as determined from binary copolymerizations. The randomness of the
terpolymer was confirmed because there was no difference between the terpolymer compositions
determined experimentally and those predicted with the Alfrey–Goldfinger equations on the basis of
the reactivity ratios obtained from binary copolymerizations.

A large number of examples have been reported for the preparation of copolymers and
terpolymers combining two or more different NCAs. Examples of these copolymers include:
γ-benzyl L-glutamate and L-methionine [96], γ-benzyl L-glutamate and L-valine [97,98],
Glycine and Alanine [99], D,L-leucine and D,L-valine [100,101], Nε-carbobenzoxy-L-lysine
and γ-benzyl-L-aspartate, [102] O-acetyl-L-tyrosine with L-valine and glycine, [103]
L-alanine and L-valine [104] Nε-carbobenzoxy L-lysine and L-valine [105], L-Alanine and
sarcosine [106], γ-methylglutamate and L-leucine [107], Nε-carbobenzoxy L-lysine and
O,O′-dicarbobenzoxy-L-dihydroxyphenylalanine [108,109], O-phospho-L-threonine and
L-aspartic acid by the corresponding phenyl- or benzyl-protected NCAs [110] L-Lysine and
one of the hydrophobic amino acids L-Leucine, L-Phenylalanine, L-Isoleucine, L-Valine, or
L-Alanine [111], γ-benzyl L-glutamate and Nε-carbobenzoxy L-lysine NCA with lysine NCAs
carrying labile protective groups such as Nε-trifluoroacetyl-(TFA), Nε-(tert-butoxycarbonyl)-(Boc),
Nε-(9-fluorenylmethoxycarbonyl)-(Fmoc), and Nε-(6-nitroveratryloxycarbonyl)-(Nvoc), γ-benzyl-
L-glutamate and Nε-carbobenzoxy-L-lysine NCA [32,107], Proline and Alanine [112], γ-methyl-
L-glutamate, L-glutamic acid [113,114], random terpolymers, such as of glycine, L-leucine, and
L-valine [115] L-Leucine, L-Valine, and β-benzyl L-aspartate [95], L-Glutamic acid, L-lysine, and
L-Tyrosine [116].

An alternative approach for the fabrication of random copolypeptide was described by
Higuchi et al. [113,114] based on the protection-deprotection chemistry. Their approach involved
the homopolymerization of a single type of NCA bearing side protective groups. Controlled
partial deprotection leads a “pseudo” copolymer that combined protected (hydrophobic) and
deprotected (hydrophilic) side functional groups. In particular, the authors, firstly polymerized
γ-methyl-L-glutamate-NCA in 1,2-dichloroethane employing n-hexylamine. Secondly, the final
homopolymer was dissolved in a mixture of methanol and isopropanol and treated with aqueous
NaOH for 10 h, followed by treatment with trifluoroacetic acid to afford the random copolypeptide
poly[(γ-methyl-L-glutamate)-co-(L-glutamic acid)] (poly(MLG)-co-(LGA)). NMR analysis revealed that
30% of the monomer units had been transformed to glutamic acid.

Side-chain modification of copolypeptides has been also a widely employed strategy to
introduce novel functionalities on the polypeptide chain. For instance, four types of functional
poly(γ-benzyl-L-glutamate) (PBLG) copolymers containing chloro, azido, allyl or propargyl groups on
the side chains were synthesized through ester exchange reactions of PBLG with functional alcohols
without any protection and de-protection process. Guo et al. [117] reported the hydrolysis of PBLG,
(which was found during the ester exchange reaction under low ratios of alcohol to the repeat units of
PBLG) was successfully depressed by addition of a certain amount of benzyl alcohol to the reaction
system (Figure 23). Click chemistry reactions of the azidized or propargylated copolymers, thiol-ene
reaction of the allyllated copolymer were taken successfully, indicating that the functional groups on
the copolymers were still reactive.
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Photochemistry. Reagents and conditions: (a) 1-hexylamine, DMF, 25 °C, 7 days; (b) MSA/anisole/TFA, 
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Figure 23. Synthesis of functional PBLGs through ester exchange reactions. Reproduced with
permission from reference [117].

A similar strategy was described by Krannig and Schlaad [42] for the synthesis of copolypeptides
of L-glutamate and glucosylated L-/dL-allyl- or dL-propargylglycine. The latter were prepared by
ring-opening polymerization and thiol-ene/yne photochemistry in aqueous solution (Figure 24).
As a result, the authors reported an interesting strategy to introduce using mild conditions for the
introduction of the sugar units (glucose) in the final step. Interestingly, the secondary conformation
transition observed in poly(L-glutamate) remained and both glucosylated and non-glucosylated
samples adopted a random-coil conformation in neutral and basic media and an α-helical conformation
in acidic media. Nevertheless, the helical content depended on the number and configuration of
allyl-/propargylglycine units.
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Figure 24. Synthesis of Glucocopolypeptides by NCA Copolymerization and Thiol-Ene/Yne
Photochemistry. Reagents and conditions: (a) 1-hexylamine, DMF, 25 ◦C, 7 days; (b) MSA/anisole/TFA,
0−20 ◦C, 38 min; (c) Irgacure 2959, hν, 0.1 M aqueous acetate buffer, 25 ◦C, 12 h. Reproduced with
permission from reference [42].

A recent example was reported by Zhu et al. [118] describing the synthesis of random
copolypeptides bearing oligo ethylene glycol (OEG) and pyridinium tetrafluoroborate (PyBF4) pendant
side chains. The synthetic strategy, depicted in Figure 25, required a four-step postpolymerization from
poly(γ-3-chloropropyl-L-glutamate) (PCPLG) which was prepared according to reported procedures.
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Poly(γ-3-chloropropyl-L-glutamate)-random-poly(γ-3-azidopropyl-L-glutamate)s (PCPLG-r-PAPLGs)
with constant main-chain length and various molar content of chloro groups (x) were
obtained by reacting PCPLG with sodium azide (NaN3) in DMF at 60 ◦C. Different x
values were achieved by regulating the reaction time. Poly(γ-3-chloropropyl-L-glutamate)-
random-poly(γ-propyl-L-glutamate)-graft-(oligo-ethylene glycol)s (PCPLG-r-PPLG-OEGs) were
synthesized by copper-mediated [2 + 3] alkyne-azide 1,3-dipolar cycloaddition between propargyl
functionalized oligo-ethylene glycol (Pr-OEG) and PCPLG-r-PAPLG.

Polymers 2017, 9, 551  23 of 61 

 

A recent example was reported by Zhu et al. [118] describing the synthesis of random 
copolypeptides bearing oligo ethylene glycol (OEG) and pyridinium tetrafluoroborate (PyBF4) pendant 
side chains. The synthetic strategy, depicted in Figure 25, required a four-step postpolymerization from 
poly(γ-3-chloropropyl-L-glutamate) (PCPLG) which was prepared according to reported procedures. 
Poly(γ-3-chloropropyl-L-glutamate)-random-poly(γ-3-azidopropyl-L-glutamate)s (PCPLG-r-PAPLGs) 
with constant main-chain length and various molar content of chloro groups (x) were obtained by 
reacting PCPLG with sodium azide (NaN3) in DMF at 60 °C. Different x values were achieved by 
regulating the reaction time. Poly(γ-3-chloropropyl-L-glutamate)-random-poly(γ-propyl-L-glutamate)- 
graft-(oligo-ethylene glycol)s (PCPLG-r-PPLG-OEGs) were synthesized by copper-mediated [2 + 3] 
alkyne-azide 1,3-dipolar cycloaddition between propargyl functionalized oligo-ethylene glycol 
(Pr-OEG) and PCPLG-r-PAPLG. 

 
Figure 25. Synthetic Route of PPLG-PyBF4-r-OEG. Reproduced with permission from reference [118]. 

4.2. Strategies for the Preparation of Block Copolymers Using NCAs 

Despite few examples devoted to the functionality of random synthetic copolypeptides, 
applications of the latter are limited mainly due to the limited control over the random amino acid 
NCA polymerization [107]. As a result, block copolymers with precise peptide segment sequences 
and controlled molecular weight may improve the drawbacks observed in random and statistical 
copolypeptides.  

Block copolymers containing polypeptide blocks have been typically classified into two main 
groups depending on the block composition. The first group includes those copolypeptide 
structures, where both blocks are polypeptides. In the second group, block copolymer structures are 
formed by a polypeptide combined with other non-peptide polymer block thus forming hybrid 
structures. In the next subsections selected examples from both, block copolypeptides and hybrid 
copolymers will be presented.  

4.2.1. Block Copolymers Comprising Exclusively Polypeptides: Block Copolypeptides 

Block copolypeptides are, in general, prepared by sequential addition of different NCAs, either 
to amine or transition metal complex initiators. Although triblock copolypeptides, and other more 
complex linear copolypeptides, have been prepared, the synthesis of diblock copolypeptides has 
been the center of multiple studies.  

The general strategy to produce these block copolymers involves the sequential addition of 
monomers, assuming complete conversion of the previous monomer [119,120]. An illustrative 
example of this methodology was reported by Aoi et al. [119]. They used n-hexylamine as initiator 

Figure 25. Synthetic Route of PPLG-PyBF4-r-OEG. Reproduced with permission from reference [118].

4.2. Strategies for the Preparation of Block Copolymers Using NCAs

Despite few examples devoted to the functionality of random synthetic copolypeptides,
applications of the latter are limited mainly due to the limited control over the random amino
acid NCA polymerization [107]. As a result, block copolymers with precise peptide segment
sequences and controlled molecular weight may improve the drawbacks observed in random and
statistical copolypeptides.

Block copolymers containing polypeptide blocks have been typically classified into two main
groups depending on the block composition. The first group includes those copolypeptide structures,
where both blocks are polypeptides. In the second group, block copolymer structures are formed
by a polypeptide combined with other non-peptide polymer block thus forming hybrid structures.
In the next subsections selected examples from both, block copolypeptides and hybrid copolymers
will be presented.

4.2.1. Block Copolymers Comprising Exclusively Polypeptides: Block Copolypeptides

Block copolypeptides are, in general, prepared by sequential addition of different NCAs, either
to amine or transition metal complex initiators. Although triblock copolypeptides, and other more
complex linear copolypeptides, have been prepared, the synthesis of diblock copolypeptides has been
the center of multiple studies.

The general strategy to produce these block copolymers involves the sequential addition of
monomers, assuming complete conversion of the previous monomer [119,120]. An illustrative
example of this methodology was reported by Aoi et al. [119]. They used n-hexylamine as initiator
and polymerized first O-(Tetra-O-acetyl-D-glucopyranosyl)-L-serine-NCA followed by Ala-NCA
to synthesize the block copolypeptide. SEC analysis confirmed the complete consumption of the



Polymers 2017, 9, 551 25 of 62

first block. Both blocks had low molecular weight, whereas the molecular weight distribution
(SEC) were very narrow. An identical strategy was followed by Higashi et al. [121] for the
preparation of poly[(BLG)-b-(LGA)] block copolymers. As depicted in Figure 26, BLG-NCA was
polymerized first using N-propylamine as an initiator. After precipitation of the PBLG block in
diethyl ether and benzyl protective group removal by catalytic hydrogenolysis (Pd/H2), a second
polymerization step was carried out using again protected BLG-NCA. Also, Guillermain et al. [120]
employed a two polymerization step approach to fabricate amphiphilic block copolypeptides of
poly(Nε-trifluoroacetyl-L-lysine) and a poly(L-lysine) block bearing liquid crystalline side groups.
These liquid crystalline blocks include poly[11-(biphenyl-4-carboxamido)undecanamido-L-lysine] and
poly(Nε-4-phenylbenzamido-L-lysine).
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Higashi et al. [121].

In order to avoid contamination and thus to reduce the eventual side reactions,
Aliferis et al. [76,122,123] resort to the use of high vacuum techniques (HVT) for the sequential
polymerization of different NCAs. For their studies, they also employed primary amines as initiators
but in contrast to previously employed methodologies, HVT ensures that all the reagents and the level
of impurities of the reaction environment were rather low in all the reaction steps and living nature of a
polymerization method is assumed. Following this methodology, the authors reported the preparation
of well-defined block copolypeptides including PBLG-PZLL, PBLG-PTYR, PBLG-PGLY, PZLL-PBLG,
and PBLG-PLEU. The molecular weights of the syntheses above mentioned, were monitored by SEC
and membrane osmometry. The results confirmed the low-level of impurities, avoiding termination
reaction and promoting the living polymerization of the NCAs.

Recently, the synthesis of triblock copolymers based on polysarcosine, poly-Nε-t-
butyloxycarbonyl-L-lysine, and poly-Nε-trifluoroacetyl-L-lysine by ring-opening polymerization of
the corresponding α-amino acid N-carboxyanhydrides (NCAs) was described by Heller et al. [124]
(Figure 27). For the synthesis of Nε-t-butyloxycarbonyl-L-lysine (lysine (Boc)) NCAs, an acid-free
method was employed using trimethylsilylchloride/triethylamine as hydrochloric acid (HCl)
scavengers. This approach enabled the synthesis of lysine (Boc) NCA of high purity in high yields.
For triblock copolypeptides, the degree of polymerization of the polysarcosine block was varied
between 200 and 600; poly-Nε-t-butyloxycarbonyl-L-lysine and poly-N-ε-t-trifluoroacetyl-L-lysine
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blocks were designed to have a Xn the range of 10–50. The polypeptide-polypeptoid hybrids
(polypept(o)ides) could be synthesized with precise control of molecular weight, high end
group integrity, and dispersities indices between 1.1 and 1.2. But more important, the use of
tertbutyloxycarbonyl- and trifluoroacetyl-protecting groups permitted the selective, orthogonal
deprotection of both blocks, which enabled further post-polymerization modification reactions in a
block-selective manner. Therefore, this synthetic approach provided a versatile pathway to triblock
copolypept(o)ides, in which functionalities can be separated in specific blocks.
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In addition to a two or multi-step consecutive strategy, in a recent work, Agut et al. [125] combined
the ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs) from α-ω-functionalized
initiators with the Huisgen 1,3 dipolar cycloaddition (click chemistry). As depicted in Figure 28,
poly(γ-benzyl-L-glutamate) (PBLGlu) and poly(trifluoroacetyl-L-Lysine) (PTFALys) functionalized
with either an azide or an alkyne functional group in α-position, was first synthesized by ROP of the
corresponding NCA at room temperature in DMF as solvent, using appropriateω-amino-containing
α-alkyne and α-azido difunctional initiators. In order to couple the homopolypeptide block,
copper(I)-catalyzed coupling reactions of α-azido-PBLGlu with the α-alkyne-PTFALys, on the one
hand, and of the α-alkyne-PBLGlu with the α-azido-PTFALys, on the other hand were carried out. As a
result, the targeted PBLGlu-b-PTFALys diblock copolypeptides possessing a triazole group in between
the two blocks were obtained. Nevertheless, the block copolypeptides required further purification by
selective extraction with chloroform.
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Figure 28. Synthesis of PBLGlu-b-PTFALys diblock copolymers by click chemistry as reported by
Agut et al. [125].

Triblock copolypeptides of the ABA type have been also prepared using identical strategies as
those depicted above. However, the fabrication of triblock structures required the use of difunctional
amine initiators. The most commonly employed initiator is 1,6-hexamethylenediamine. One of the
pioneer works attempting to fabricate triblock copolypeptides was reported by Minoura et al. [126,127].
This group reported the fabrication of poly[(BLG)-b-(L-leucine)-b-(γ-BLG)] and their corresponding
poly[(LGA)-b-(L-leucine)-b-(LGA)] triblock copolypeptide. However, the protocol followed required
further purification of the reagents (solvent, monomers, etc.) since the presence of homopolypeptides
was also observed.

A significant improvement was reported by V. Breedveld et al. [128,129] They employed a
complex structure, i.e., Co(PMe3)4 as an initiator for the preparation of poly[(Nε-carbobenzoxy
L-lysine)-b-(L-leucine)-b-(Nε-carbobenzoxy L-lysine)]. The complex-mediated the polymerization,
permitted high conversions while maintaining a relatively narrow molecular weight distributions.

Table 3 shows some common examples (non-exhaustive list) of block copolypeptides reported in
the literature.

Table 3. Illustrative examples of block copolypeptides reported in the literature.

Type of Block
Copolymer Block Copolypeptide Reference

Diblock poly[γ-benzyl-L-glutamate-b-(L-glutamic Acid)] [121]
Diblock Nε-4-phenylbenzamido-L-lysine-b-Nε-trifluoroacetyl-L-lysine [120]
Diblock o-(tetra-o-acetyl-d-glucopyranosyl)-L-serine-NCA-b-alanine NCA [119]
Diblock poly(γ-benzyl-L-glutamate)-b-polyglycine [122]

Diblock

poly[γ-benzyl-L-glutamate-b-(poly(Nε-carbobenzoxy-L-lysine)],
poly[γ-benzyl-L-glutamate-b-polyglycine],
poly[γ-benzyl-L-glutamate-b-poly(L-tyrosine)],
poly[γ-benzyl-L-glutamate-b-poly(poly(L-leucine)].

[76]
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Table 3. Cont.

Type of Block
Copolymer Block Copolypeptide Reference

Diblock poly(γ-benzyl-L-glutamate)-b-poly(L-lysine) [123]

Diblock poly[γ-benzyl-L-glutamate-b-(poly(Nε-carbobenzoxy-L-lysine)], and block
copolypeptides containing L-leucine and L-proline) [130]

Diblock poly(Nε-2[2-(2-methoxyethoxy)ethoxy]acetyl-L-lysine)-b-poly(L-aspartic acid,
sodium salt) [131]

Diblock poly(L-lysine Hbr) or poly(L-glutamic acid sodium salt), and helical, hydrophobic
segments of poly(l-leucine) [132,133]

Diblock diblock copolypeptides of hydrophilic L-lysine or L-glutamic acid and hydrophobic
leucine or valine [134]

Diblock poly(L-lysine)-b-poly(L-glycine), poly(L-lysine)-b-poly(L-alanine),
poly(L-lysine)-b-poly(L-phenylalanine) [135]

Diblock poly(S-(o-nitrobenzyl)-L-cysteine)-b-poly(ethylene glycol) (PNBC-b-PEO) block
copolymers [50]

Diblock Hydrophilic (glutamic acid or lysine) and one nonpolar block (alanine) or with both
hydrophilic blocks with opposite charges (glutamic acid and lysine) [136]

Diblock Poly(L-lysine)-b-poly(L-glycine) [137,138]
Diblock poly(L-lysine)-b-poly(L-phenylalanine) [139]
Diblock poly(L-methionine)65-b-poly(L-leucine0.5-stat-L-phenylalanine0.5)20 [140]

Diblock/Triblock poly-L-lysine-b-poly-L-leucine and poly-L-lysine-b-poly-L-leucine-b-poly-L-lysine [128]

Triblock

poly[(γ-benzyl-L-glutamate)-b-(L-leucine)-b-(γ-benzyl-L-glutamate)] and the
corresponding poly[(L-Glutamic Acid)-b-(L-leucine)-b-(L-Glutamic Acid)],
poly(Nε-carbobenzoxy-L-lysine)-b-(γ-benzyl-L-glutamate)-b-(poly-Nε-
carbobenzoxy-L-lysine)

[76,126,127,141]

Triblock poly(L-homoarginine HCl)m-block-poly(Lglutamate Na)n-block-poly(L-leucine)20 [6]

Triblock poly[(Nε-carbobenzoxy-L-lysine)-b-poly(L-leucine)-b-poly(Nε-carbobenzoxy
L-lysine)] [128,129]

Tetrablock Poly(γ-benzyl-L-glutamate)-b-poly(L-alanine)-b-poly(Nε-benzyloxycarbonyl-L-
lysine)-b-poly(β-benzyl-L-aspartate) [79]

4.2.2. Preparation of Linear Hybrid-Polypeptide Block Copolymers

Hybrid copolymers bearing polypeptide block have been prepared to combine several
polymerization techniques for the synthesis of the non-polypeptide block with ROP NCAs. In this
section, we will provide selected recent examples of hybrid polypeptides based on the methodology
employed for their preparation. However, before describing their synthesis, few aspects of the chain
end modification required for their fabrication will be analyzed.

Chain-End Modification of Polypeptides

The modification of chain-ends with particular functional groups is, in general, a prerequisite
for the fabrication of linear hybrid block copolypeptides. In order to fabricate polypeptides with the
presence of the desired functional groups at the chain ends two main strategies have been proposed.

(a) Using an Initiator that Contains the Desired Functional Group

On the one hand, different groups resorted to the use of functional initiators. As depicted in
Figure 29, depending on the initiator employed not only functional groups in the α-position can be
obtained but also in theω-position. Theω-position provides amines, metal complexes and NHTMS
functional groups for further modification. The α-position, more versatile in terms of chemical
groups, can be decorated with functional such functional groups as initiators for controlled radical
polymerization (CRP), functional initiators containing an azido, alkyne, or alkene group to combine
NCA polymerization with click chemistry or functional initiators containing disulfide, fluorophore or
photosensitizer. In particular, the functionalization of the α-position using hetero-functional initiator
strategy presents several advantages. As explained by Chao et al. [31] this strategy: (1) avoid tedious
synthesis and incomplete transformation of polymer chain ends for CRP; (2) permits the combination
of various polymerization techniques (ROP/ATRP, ROP/RAFT, ROP/NMP); and (3) it is possibly
conduct dual polymerization in one pot without intermediate purification steps.
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In the review published by Chao et al. [31] a thorough description of the end-modification
alternatives of linear polypeptides is presented. They summarized the most extensively employed
approaches and classify them into two main families. On the one hand, as illustrated in Figure 30,
dual initiators capable of promoting NCA polymerization and controlled radical polymerization.
These include dual initiators for NCA polymerization and ATRP polymerization (A, B); dual initiators
for NCA polymerization and RAFT polymerization (C); and dual initiators for NCA polymerization
and NMP polymerization (D). On the other hand, Figure 31, those approaches that involve the synthesis
of α-chain end functionalized polypeptides from initiators containing azido groups (A), alkyne groups
(B, C, D), or alkene groups (D, E).
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Figure 30. Dual initiators capable of promoting NCA polymerization and controlled radical
polymerization. (A,B) Dual initiators for NCA polymerization and atom transfer radical polymerization
(ATRP); (C) dual initiators for NCA polymerization and reversible addition-fragmentation
chain-transfer (RAFT) polymerization; and (D) dual initiators for NCA polymerization and
nitroxide-mediated radical polymerization (NMP). Reproduced with permission from reference [31].
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(b) Chemical Modification of the End Functional Groups.

As has been mentioned above, primary amine groups are generally obtained upon the ROP
NCAs. Therefore, these can be chemically modified to introduce other alternative functionalities.
This strategy has been employed to a much lower extent. One of the few examples using this strategy
was reported by Deming et al. [142]. They reported a straightforward methodology for preparation of
N-terminal functionalized polypeptide block copolymers that complemented the established technique
of using amino-functionalized polymers to prepare C-terminal functionalized polypeptides. For that
purpose, they hypothesized and confirmed later that isocyanates, or other electrophiles, added to
polymerizations, were able to react with the amido-metallacycle propagating species resulting in
N-terminal capping of the chains through the formation of stable urea linkages.

Based on this procedure Kros et al. [143], described the synthesis and self-assembly of hybrid block
copolymers composed of a poly(γ-benzyl-L-glutamate) block (PBLG) and two different polyisocyanide
blocks, namely, poly((S)-α-methylbenzyl isocyanide) (PMBI) and poly(L-isocyanoalanyl-L-alanine
methyl ester) (l,lPIAA). The diblock copolymers were synthesized by the nickel-catalyzed living
polymerization of γ-benzyl-L-glutamate N-carboxyanhydride (BnGlu NCA) followed by the
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addition of (S)-α-methylbenzyl isocyanide (MBI) or L-isocyanoalanyl-L-alanine methyl ester to the
reaction mixture.

Functional polypeptides have also been prepared by conjugating functional molecules toω-amino
polypeptides. For instance, Fluorescein isothiocyanate (FITC) was conjugated to the ω-amino
end of mPEG-SS-PLeu in the presence of triethylamine to yield FITC-labeled polypeptide hybrid
copolymer [144]. These FITC-labeled copolymers self-assembled into micelles with a fluorescent core,
that facilitated the observation of micelle internalization and trafficking in the cells by confocal laser
scanning microscopy (CLSM).

Fabrication of Hybrid Block Polypeptides

An exhaustive discussion of the strategies reported to fabricate this type of block copolymers
has been listed by Hadjichristidis et al. [12] and Deming et al. [3]. In their reports, they described the
synthesis of polypeptide hybrid block copolymers according to the initiators used for the ROP NCAs:
(a) amines; (b) transition metal complexes; and (c) amine salts.

Herein, we aim to actualize that review and, offer a novel classification and organization of the
hybrid block copolypeptides depending on the type of polymerization involved in the fabrication of
the non-polypeptide block. As a result, the most extended strategies can be summarized as follows.

(a) Use of Commercially Available Macroinitiators End-Functionalized with a Primary Amine.

Commercially available end-functionalized polymers carrying end-terminal amine groups (either
at one or at both chain ends) have been extensively used as initiators in the polymerization of
NCAs for the fabrication of hybrid block copolypeptides. Among the commercial amine terminated
homopolymers poly(ethylene oxide) (PEO) is by far the most extensively employed. Amine-terminated
PEOs are available in a wide variety of molecular weights with narrow distributions, parallel it can be
employed to form amphiphilic, double hydrophilic, and rod-coil block copolymers in one single step.
Examples of hybrid block copolymers prepared using PEO are included in Table 4.

(b) Use of Either Conventional or Controlled Radical Polymerization Techniques.

Radical polymerization is nowadays one of the most extensively employed polymerization
reactions for the fabrication of polymers from many different monomers. Radical polymerization
has been also explored by Cheon et al. [145] for the fabrication of amine-terminated
poly(N-isopropylacrylamide) in the presence of 2-amino-ethanthiol hydrochloride as chain transfer
agent. These amino-macroinitiators were, in turn, used for the synthesis of hybrid block copolymers
with PBLG. Conventional radical polymerization has, however, serious limitations in terms of polymer
chain length control, dispersity and even the control over the functional groups present in the
polymer. As a result, controlled radical polymerization (CRP) techniques have emerged as alternatives
to overcome the limitations mentioned above. Different CRP techniques are currently available,
but only three of them have been mainly employed for the fabrication of hybrid block copolypeptides,
i.e., atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain-transfer
polymerization (RAFT) and nitroxide-mediated radical polymerization (NMP).

One particularly attractive approach for synthesizing hybrid polypeptides is the sequential
integration of the ROP of NCAs with other polymerization technologies, such as atom transfer radical
polymerization (ATRP), [146–148] nitroxide-mediated polymerization (NMP), [149,150] or reversible
addition–fragmentation chain-transfer (RAFT) polymerization [151,152].

ATRP was used by Brzezinska et al. [146] for the synthesis of poly(methyl acrylate)-b-PBLG.
In a first step, the amino end-functionalized poly(methyl acrylate) was prepared by ATRP and then
transformed to Ni-macroinitiators for the polymerization of BLG-NCA. This method allows the
controlled preparation of polypeptides, control over chain length and without the formation of
homopolypeptides contaminants.
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Karatzas et al. [153] used an amine-functionalized TEMPO ((2,2,6,6-Tetramethylpiperidin-
1-yl)oxyl) radical (required for the synthesis of poly(N-vinylpyrrolidone) (PNVP)) as an initiator
for the preparation of the polypeptide block. The amino-group served as the initiator for
the polymerization of the corresponding NCAs, leading to well-defined polymers bearing
TEMPO end-groups. In a subsequent step, these macroradicals were employed for the NMP
of N-vinylpyrrolidone (NVP) in the presence of AIBN and acetic anhydride. In particular,
the authors selected the PBLG and PZLL peptides to produce PNVP-b-PBLG, PNVP-b-PZLL,
and PNVP-b-PBLG-b-PZLL triblock copolymers. More recently, Habraken et al. combined NCA
polymerization with the nitroxide mediated radical polymerization of poly(n-butyl acrylate) (PBA)
and polystyrene (PS), using a N-tert-butyl-N-[1-phenyl-2-(methyl-propyl)]nitroxide (TIPNO) and
N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide) (SG1)-based bifunctional initiator
to create a hybrid block copolymer (Figure 32). The polypeptide block consists of (block) copolymers
of poly(L-glutamic acid) embedded with various quantities of L-alanine [150].
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Finally, Zhang et al. [151] used RAFT polymerization as controlled polymerization technique
to fabricate double-hydrophilic diblock copolypeptides (BCPs), poly(L-glutamic acid)-block-poly
(N-isopropylacrylamide) (PLGA-b-PNIPAM). The diblock copolypeptides were synthesized by a
combination of ROP of γ-benzyl-L-glutamate N-carboxyanhydrides (BLG-NCA) and reversible
addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NiPAM).
For this purpose, the authors described a new class of RAFT agents (CTA-2 and CTA-3) with
amino-functional groups. Another recent example of hybrid block copolypeptides was reported
by Jacobs et al. [152] They synthesize narrow disperse poly(n-butyl acrylate), polystyrene,
and poly(N-isopropyl acrylamide) using reversible addition–fragmentation chain transfer (RAFT)
as the synthetic tool. A phthalimidomethyl trithiocarbonate RAFT chain transfer agent was used
to prepare well-defined, end-functional polymers, which after deprotection resulted in amine
terminal macroinitiators. The subsequent initiating systems could successfully be chain extended
with ε-benzyloxycarbonyl-L-lysine or γ-benzyl-L-glutamate as the NCAs to produce a library of
polymer–polypeptide conjugates.
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(c) Use of Ring-Opening Polymerization.

Hybrid block copolymers with aliphatic polyesters are commonly used in some medical
related research fields due to their biocompatibility, low immunogenicity, biodegradability and
their mechanical strength an interesting class of polymeric materials [154,155]. Among the
aliphatic polyesters poly(ε-caprolactone) (PCL) and polylactide (PLA) have received special attention.
Similar to the above-mentioned methodologies, the most extended strategy for the fabrication of
polyester hybrids involved two steps, i.e., the preparation of either mono- or diamino polyester (A)
macroinitiators and ROP of the desired NCA. This strategy has been employed by Rong et al. [156] to
prepare a biodegradable, poly(ε-caprolactone)-b-poly(γ-benzyl-L-glutamic acid) (PCL-b-PBLG) diblock
copolymer. An aminophenethoxyl-terminated PCL was prepared first via catalytic hydrogenation
of a 4-nitrophenethoxyl-terminated PCL, which, as depicted in Figure 33, was obtained from the
polymerization of ε-caprolactone (CL) initiated by amino calcium 4-nitrobenzoxide. In a second step,
the authors prepared the polypeptide block by ROP of N-carboxyanhydride of γ-benzyl-L-glutamate
(BLG-NCA) using the aminophenyl-terminated PCL as a macroinitiator. The aromatic amino groups
served as initiating sites for the polymerization of the BLG-NCA to afford PCL-b-PBLG.
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poly(ε-caprolactone)-b-poly(γ-benzyl-L-glutamic acid) (PCL-b-PBLG) diblock copolymer.

Hybrids have also been prepared using PLA macroinitiators and PAla, PPhe, PLeu, PBLG,
or poly(benzyl-L-aspartate) as polypeptides [10,157,158]. An illustrative example of this type
of block copolymers was reported by Gotsche et al. [157]. They fabricated poly(L-lactide)-b-
poly(L-aminoacid) block copolymers via polymerization of α-amino acid N-carboxyanhydrides
with amino-terminated poly(L-lactide)s as macroinitiators. The macroinitiator was obtained by
polymerization of (L,L)-lactide with an initiator prepared in-situ from diethylzinc Et2Zn and
N-tert-butoxycarbonyl-1-amino-3-propanol, followed by the deprotection of the amino group.



Polymers 2017, 9, 551 34 of 62

(d) Use of Anionic Polymerization.

Similarly to controlled radical polymerization techniques, anionic living polymerizations permit
the control over the macromolecular structure and, in particular, over the functional groups
present at both chains ends. Anionic polymerization was the methodology employed by Klok and
coworkers [159] to prepare a polystyrene oligomer. The termination of the living polymerization
was performed with 1-(3-chloropropyl)-2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane, the process
was followed by an acidolysis of the protective group. The amino-functionalized oligomers were
then used to initiate the polymerization of BLG-NCA. Also Schlaad et al. [68,160] also prepared
amino end-functionalized PS by anionic polymerization and employed them as macroinitiators for the
synthesis of PS-b-PZL hybrid block copolymers. The purified copolymers were characterized by very
narrow molecular weight distributions.

(e) Step-Growth Polymerization.

Although this type of polymerization has rarely been employed, step-growth polymerization
can also produce telechelic amine macroinitiators. Kong et al. [161] used the Yamamoto coupling
polymerization of 2,7-dibromo-9,9-dihexylfluorene, also, they modified the end-terminal groups by
end-capping with N-(p-bromobenzyl)phthalimide. After a deprotection step with hydrazine telechelic,
amine macroinitiators were obtained and posteriorly used for the polymerization of BLG-NCA.
Due to the nature of the step-growth polymerization, the molecular weight distribution of the triblock
copolymers was very broad (DP > 2.0).

(f) Use of Click Chemistry Reactions to Bond Complementary Homopolymers.

In contrast to the above-mentioned strategies that resort to two consecutive polymerization
reactions, Lecommandoux et al. [162] prepared polysaccharide-b-polypeptide hybrid block copolymers.
On the one hand, dextran was exposed to a reductive amination, using propargylamine in
acetate buffer (pH = 5.0) in the presence of sodium cyanoborohydride. On the other hand,
1-azido-3-aminopropane was employed as a functional initiator for the polymerization of BLG-NCA.
Finally, both polysaccharide and polypeptide blocks were coupled in the presence of CuBr, in DMSO,
and the ligand pentamethyldiethylenetriamine, PMDETA, at room temperature. An excess of dextran
was employed for the quantitative reaction of the functionalized PBLG chain, which was removed
later by dialysis against water. More recently, the same group prepared well-defined block copolymers
composed of a rigid poly(γ-benzyl-L-glutamate) (PBLG) sequence and a poly[2-(dimethylamino)ethyl
methacrylate] (PDMAEMA) block were synthesized by Huisgen’s 1,3-dipolar cycloaddition (click
chemistry) from homopolymers containing azide and alkyne functionalities [163]. These functional
groups were introduced in the α-position of both PBLG and PDMAEMA precursors using appropriate
α-ω-functionalized initiators to trigger the living/controlled polymerization of the corresponding
monomers. Both α-alkyne- and α-azido-PBLGs were synthesized by ring-opening polymerization
of γ-benzyl-L-glutamate N-carboxyanhydride at room temperature from amino-containing α-alkyne
and α-azide difunctional initiators, using dimethylformamide as solvent. As for the case of the
α-alkyne-PDMAEMA and α-azido-PDMAEMA, they were obtained by copper-mediated atom transfer
radical polymerization of 2-(dimethylamino)ethyl methacrylate at 60 ◦C in tetrahydrofuran as solvent.
The copper (I)-catalyzed 1,3-dipolar cycloaddition coupling reactions of the α-azido-PBLG with the
α-alkyne-PDMAEMA, in the one hand, and of the α-alkyne-PBLG with the α-azido-PDMAEMA,
on the other hand were performed in DMF and afforded the targeted PBLG-b-PDMAEMA
diblock copolymers.
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Table 4. Illustrative list of examples of hybrid block copolypeptides reported in the literature.

Type of Block Copolymer
(Diblock, Triblock,

Pentablock . . . )
Non-Polypeptidic Block Hybrid Copolymer Prepared References

Polyethylene oxide polyethyelene oxide-b-poly(γ-benzyl-L-glutamate) [164,165]
Polyethylene oxide polyethyelene oxide-b-poly(-benzyl-L-aspartate) [165]
Polyethylene oxide polyethyelene oxide-b–b-poly(L-valine/L-leucine) [166]

Polypseudorotaxane poly(γ-benzyl-L-glutamate)-b–b-polypseudorotaxane [7]
Diblock poly(ε-caprolactone) poly(ε-caprolactone)-b-poly(γ-benzyl-L-glutamate) [167]

Diblock Polylactic acid
polylactic acid-b-poly(L-Alanine), polylactic acid-b-poly(L-phenylalanine), polylactic
acid-b-poly(L-leucine), polylactic acid-b-poly(γ-benzyl-L-glutamate) and polylactic
acid-b-Poly(benzyl-L-aspartate)

[10,157,158]

Diblock Poly(ε-caprolactone) poly(ε-caprolactone)-b-poly(γ-benzyl-L-glutamate) [156]

Diblock Poly(ε-caprolactone)
poly(ε-caprolactone)-b-poly(L-Glycine), poly(ε-caprolactone)-b-poly(L-alanine),
poly(ε-caprolactone)-b-poly(L-Phenylalanine),
poly(ε-caprolactone)-b-poly(γ-benzyl-L-glutamate)

[168]

Diblock Poly(N-isopropylacrylamide)- poly(N-isopropylacrylamide)-b-poly(γ-benzyl-L-glutamate) [145,151]
Diblock Poly(2,7-dibromo-9,9-dihexylfluorene) 2,7-dibromo-9,9-dihexylfluorene-b-poly(γ-benzyl-L-glutamate) [161]

Diblock Poly(N-Vinylpirrolidone)
poly(N-Vinylpirrolidone)-b-poly(γ-benzyl-L-glutamate),
poly(N-Vinylpirrolidone)-b–b-poly(Z-L-Lysine) and
poly(N-Vinylpirrolidone)-b-poly(γ-benzyl-L-glutamate)-b-poly(Z-L-Lysine)

[153]

Diblock Polysaccharide polysaccharide-b-poly(γ-benzyl-L-glutamate) [162]
Diblock Poly(ferrocenyldimethylsilane) poly(ferrocenyldimethylsilane)-b-poly(γ-benzyl-L-glutamate) [169]

Diblock Poly(1-(3-chloropropyl)-2,2,5,5-
tetramethyl-1-aza-2,5-disilacyclopentane) 1-(3-chloropropyl)-2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane-b-poly(γ-benzyl-L-glutamate) [159]

Diblock Poly(2-methyl-2-oxazoline)-

poly(2-methyl-2-oxazoline)-b-poly(γ-benzyl-L-glutamate),
poly(2-methyl-2-oxazoline)-b-poly(phenylalanine), poly(2-methyl-
2-oxazoline)-b-poly[O-(tetra-O-acetyl–D-glucopyranosyl)-L-serine], and
poly(2-phenyl-2-oxazoline)-b-poly[O-(tetraO-acetyl–D-glucopyranosyl)-L-serine]

[170,171]

Diblock Poly(methyl acrylate) poly(methyl acrylate)-b-poly(γ-benzyl-L-glutamate) [146]
Diblock Polystyrene polystyrene-b-Poly(Z-L-Lysine) [68,160]
Triblock Poly(l-2-anthraquinonylalanine) poly(γ-benzyl-L-glutamate)-b-poly(l-2-anthraquinonylalanine)-b-poly(γ-benzyl-L-glutamate) [172]

Triblock copolymer Polyethylene oxide poly(γ-benzyl-L-glutamate)-b-polyethyelene oxide-b-poly(γ-benzyl-L-glutamate [173]
Triblock copolymer Polyethylene oxide poly(Z-L-Lysine)-b-polyethyelene oxide-b-Poly(Z-L-Lysine) [174,175]
Triblock copolymer Polyethylene oxide poly[(L-valine)-co-(L-leucine)]-b-polyethyelene oxide-b-poly[(L-valine)-co-(L-leucine)] [166]
Triblock copolymer Polyethylene oxide/Polylactic acid polyethylene oxide-b-Polylactic acid-b-poly(γ-benzyl-L-glutamate) [176]

Triblock terpolymers Polyethylene oxide polyethyelene oxide-b-Poly(Z-L-Lysine)-b-poly(γ-benzyl-L-glutamate) [153]

Pentablock Polystyrene poly(ε-tert-butyloxycarbonyl-L-lysine)]-b-poly(γ-benzyl-L-glutamate)-b-Polystyrene-b
poly(γ-benzyl-L-glutamate)-b-poly(ε-tert-butyloxycarbonyl-L-lysine)] [177]
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4.2.3. Post-Modification of Block Copolypeptides

The last alternative to fabricate novel block copolypeptides consists on the post-modification of
the block copolypeptide obtained by any of the methodologies described above. Engler et al. [87,88]
employed this approach to prepare a series of pH responsive synthetic polypeptides based on
an N-carboxyanhydride ring opening polymerization combined with click chemistry modification
step. Poly(γ-propargyl L-glutamate) (PPLG) homopolymers and poly(ethylene glycol-b-γ-propargyl
L-glutamate) (PEG-b-PPLG) block copolymers were substituted with various amine moieties that range
in pKa and hydrophobicity, providing the basis for a library of new synthetic structures that can be
tuned for specific interactions and responsive behaviors. These amine-functionalized polypeptides
had the ability to change solubility, or reversibly self-assemble into micelles with changes in the degree
of ionization; they also adopt an α-helical structure at biologically relevant pHs.

5. Strategies to Fabricate Cyclic Polypeptides

As explained in previous reviews [12], the formation of cyclic structures is basically directed by
the type of initiator employed. On the one hand, the use of protic nucleophile, (e.g., n-hexylamine) or
even alcohols, generally produce linear polypeptides. On the contrary, the use secondary or tertiary
amines as initiators are more adapted for the synthesis of cyclic polypeptides. The influence of the
reaction conditions on the extent of cyclization was studied in more detail by Kricheldorf et al. [178] by
MALDI-TOF mass spectroscopy. As a result, the authors proposed three main mechanisms to form
cyclic polypeptides.

The formation of cyclic oligopeptides occurs when the amino end groups can cleave peptide bonds
or amide end groups, so that a so-called “back-biting” equilibration occurs (Figure 34). According to
the authors, such a “back-biting” reaction is not observed for polypeptides at 20 ◦C but occurs above
220 ◦C in molten polyamides. Moreover, such reaction should also take place in dioxane and sulfolane.
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The other two cyclization mechanisms share the same initiation process, i.e., zwitterionic
polymerization. DMF and NMP are the solvents with the highest nucleophilicity and basicity, and thus,
prone to initiate a polymerization via zwitterions (Figures 35 and 36). For instance, in the case of
D,L-Phe-NCA the spontaneous polymerization occurred at 20 ◦C and cyclic polypeptides were the
largely prevailing products in DMF and in NMP according to the mechanism proposed in Figure 35.
Based on the MALDI-TOF results, m.s. ≥ 95 of the reaction product consisted of cycles.

Finally, the third mechanism proposed involves the formation of cycles via N-acyl NCA
end groups. The zwitterionic polymerization can, in principle, follow two different kinetics
courses. The chain growth consisted either of ring-opening polymerization involving a chain
growth kinetics or polycondensation step involving step growth kinetics. Both kinetics courses
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produce identical chains and end groups, but the molecular weight distributions should be different.
The polymerization of L-Phe NCA can be explained by this mechanism as outlined in Figure 36.
Oligo- and poly(L-phenylalanine) possess a low solubility in all non-acidic organic solvent and rapidly
precipitate from the reaction mixture in the form of β-sheets. This precipitation hinders cyclization, but
it does not hinder the formulation of amino end groups by DMF. Hydrolysis of the N-acyl NCA chain
end, may then occur during the work-up of the reaction mixture. In the case of poly(D,L-phenylalanine),
the higher solubility favors their cyclization.
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In Table 5 are depicted few examples of different strategies used by different research groups in
order to synthesize cyclic polypeptide structures.

Table 5. Summary of strategies and aminoacids employed to fabricate cyclic polypeptides.

Amino Acid N-Carboxyanhydride(s)
Employed Conditions References

D,L-Leucine-NCA, and
D,L-Phenylalanine-NCA Dioxane at 60 ◦C/Initiator: imidazole [179]

D,L-alanine N-carboxyanhydride,
D,L-phenylalanine N-carboxyanhydride,

and D,L-leucine N-carboxyanhydride
Using pyridine as initiator. [178]

Sarcosine-NCA at 120 ◦C Thermal polymerization [180]

D,L-Phenylalanine-NCA

Difunctional primary amines
(1,12-diaminododecane, DAD, or

1,13-diamino-4,7,10-trioxatridecane, DATT) for the
synthesis of linear well-defined telechelic polymers
bearing amino end groups. Subsequent reaction of

the telechelic polymers with
4,4′-Diisocyanatodiphenylmethane lead to

cyclic polypeptides

[181]

6. Non-Linear Polypeptide Architectures: Star, Brush and Highly Branched Polypeptides

6.1. Synthesis of Star-Shaped Polypeptides

Two main strategies have been described for the preparation of star-shaped polypeptide using
either the core-first strategy and therefore using a multifunctional initiator or using the arm-first
strategy that employs a multivalent crosslinking agent to anchor preformed polypeptide chains.

(a) The core-first strategy, also known as divergent approach, uses multifunctional initiators to
simultaneously grow the arms required. Many different examples have been reported in the literature
by using this strategy that can be classified depending on the nature of the initiator employed,
i.e., multifunctional molecules, hyperbranched polymers or dendrimers

Perylene derivatives multifunctional molecules with four primary amine groups were synthetized
by Klok et al. [182] and employed as initiators for the ROP of BnGlu NCA and Z-Lys NCA (Figure 37).
Star-shaped polypeptides with arm lengths ranging from 10 to 200 α-amino acid residues could be
readily prepared by variations in the molar ratio of NCA to initiator during the polymerization process.
The removal of the side-chain protecting groups afforded unprecedented water-soluble, fluorescent
perylene derivatives. These star polypeptides might be of interest for the development of novel
fluorescent probes or as traceable, stimuli-sensitive molecular containers.
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Other initiators include cyclotriphosphazenes [183,184], PEO stars [153] or amino terminated
multifunctional cyclodextrin [185] and porphyrin/ polyester moieties [186] that have also led to the
successful polymerization of NCAs to generate star polypeptides. Inoue et al. [183,184] prepared using
this initiators six-arm PBLG polypeptides. In that study, they used hexakis(4-benzylamino-1-oxy)- and
hexakis(4-aminophenoxy) cyclotriphosphazene as initiator. Similarly, Karatzas [153]. Karatzas et al.,
employed a four-arm PEO stars end-functionalized with primary amine groups for the polymerization
of BLG-NCA leading to the synthesis of (PEO-b-PBLG)4 star-block copolymers.

More recently, the generation of anionic star shaped polypeptides obtained through the ROP
of γ-benzyl-L glutamate (BLG) NCAs was reported by Yong et al. [185]. Therefore, β-CD-7PBLG
seven-armed polymers were synthesized in DMF by ring-opening polymerization of BLG-NCA
initiated by per-6-amino-β-CD (Figure 38). After removal the β-benzyl ester groups of β-CD-7PBLG by
hydrolyzation with NaOH, the lyophilized β-CD-7PLGA was easily dissolved in water. The molecular
weight of β-CD-7PLGA showed a tendency to increase with the increase of the feed molar ratios of
BLG-NCA monomer to amino groups indicating a controlled polymerization although the dispersities
reported (1.3–1.5) indicate the formation of relative disperse materials.
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The second alternative uses hyperbranched polymers as initiators for the ROP of NCAs.
These have been mainly obtained using branched polyethyleneimine as multifunctional initiator
and PBLG [187–189], Histidine [190], Plys [191] as NCA monomers to fabricated star shaped
homopolypeptides. For instance, Park et al. [190] reported the synthesis of star-shaped block
copolymer composed of methoxy poly(ethylene glycol) (mPEG), branched oligoethylenimine (bOEI),
and poly(L-histidine) (pHis) via the multi-initiation and ring-opening polymerization (ROP) of His
N-carboxy anhydride (NCA) on bOEI with a PEG conjugation. As illustrated in Figure 39, the cyclic
histidine monomer bzHis-NCA was first prepared and polymerized using six primary amine groups
of bOEI. The resulting bOEI-p(bzHis) was confirmed by 1H NMR. Although some of the bOEI primary
amines were spent to initiate the ROP of bzHisNCA, an equal number of primary amines was generated
at the ends of p(bzHis) in bOEI-p(bzHis). The newly formed primary amines allowed for a coupling
reaction with activated mPEG-COOH, resulting in the synthesis of mPEG-bOEI-p(bzHis). The final
product, mPEG-bOEI-pHis (POH), was prepared by deprotection of mPEG-bOEI-p(bzHis) and was
observed to be highly water-soluble.
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co-polymer was composed of a hyperbranched polyethylenimine (PEI) core, a poly(Llysine) (PLL) 
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Hydrophilic star block co-polymers were synthesized by Yan et al. [192] using PLL as amino
acid and by Huang et al. [193] using PLGA. In the work of Yan et al. they described the preparation,
the characterization as well as the evaluation as protein nanocarrier [192]. The star block co-polymer
was composed of a hyperbranched polyethylenimine (PEI) core, a poly(Llysine) (PLL) inner shell,
and a poly(ethylene glycol) (PEG) outer shell (Figure 40). The model protein selected was insulin
that could be rapidly and efficiently encapsulated by the synthesized polymer in aqueous phosphate
buffer at physiological pH. Complexation between PEI-PLL-b-PEG and insulin was investigated using
native polyacrylamide gel electrophoresis. The encapsulated insulin demonstrated sustained release at
physiological pH and showed accelerated release when the pH was decreased. The insulin released
from the star block co-polymer retained its chemical integrity and immunogenicity.
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Finally, the synthesis of polypeptide-based star-block quadripolymers and its use as unimolecular
nanocarriers for the simultaneous encapsulation of hydrophobic and hydrophilic guests was
reported by Li et al. [194]. The star-block quadripolymers PEI-g-(PLF-b-PLL-b-PEG) and
PEI-g-(PLF-b-PLG-b-PEG) comprise a polyethylenimine (PEI) core, an amphiphilic copolypeptide
poly(L-phenylalanine)-b-poly(L-lysine) (PLF-b-PLL) or poly(L-phenylalanine)-b-poly(L-glutamic
acid) (PLF-b-PLG) inner shell, and a poly(ethylene glycol) (PEG) outer shell (Figure 41).
The star-block quadripolymers were obtained by sequential ring-opening polymerizations of
L-phenylalanine N-carboxyanhydride and Nε-benzyloxycarbonyl-L-lysine N-carboxyanhydride
or γ-benzyl-L-glutamate N-carboxyanhydride initiated by the terminal primary amines of PEI.
Subsequently, the periphery was PEGylated, and the poly(L-lysine) or poly(L-glutamic acid) side
chains were deprotected. These polymers were well dispersed in aqueous solutions and resembled
amphiphilic unimolecular micelles were able to solubilize nonpolar model compounds through
hydrophobic interactions. Moreover, these polymers could efficiently encapsulate hydrophilic
model compounds via electrostatic interactions or even entrap hydrophobic and hydrophilic model
compounds in the site-isolated state simultaneously. The entrapped hydrophilic model compounds
demonstrated sustained release at physiological pH and accelerated release when the pH was either
increased or decreased. The simultaneous encapsulation of versatile guest molecules as well as the
pH-responsive releasing properties of these star-block quadripolymers could be potentially useful in
the controlled drug co-delivery applications.
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Finally, the third alternative to prepare star shaped polypeptides by the core-first approach
involves the use of dendrimers functionalized with a precise number of primary amine groups as
multifunctional initiators for the polymerization of NCAs. In fact, as the dendrimer generation
increases, the peripheral amine functionality also increases permitting the synthesis of different
polypeptide star polymers. Polypropylene imine (PPI) and poly(amidoamine) (PAMAM) dendrimers
are the two most widely employed dendrimers in NCA polymerization partly owing to their
commercial availability. The first case of polypeptide growth from a dendritic core via NCA
polymerization was reported by Okada [195], who constructed a short armed glycosylated star
polypeptide from the ROP of glycosylated NCA via generation 3 PAMAM. The polymers, dubbed
“sugar balls” were shown to be well-defined in terms of molecular weight distribution with NCA
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polymerisation proceeding via NAM with all the amino peripheral groups employed for the
polymerization. Other example, Harada et al. [196,197] synthesized a polyamidoamine dendron
(PAMAM) carrying Boc-protected amine groups that upon removal were employed as initiators for
the polymerization of ZLL-NCA.

However, probably one of the most relevant studies was reported by Byrne et al. using different
generations of polypropylene imine (PPI) dendrimers as initiators [198,199]. A series of well-defined
star-shaped polypeptides were successfully synthesized by the ring opening polymerisation (ROP) of
the N-carboxyanhydride (NCA) of Nε-carbobenzyloxy-L-lysine (ZLL) using a range of generations
of polypropylene imine (PPI) dendrimers as multifunctional initiators (Figure 42). The monomer
feed ratio and dendrimer generation were varied to afford a series of polypeptide dendrimer hybrids
with superior structural versatility and functionality. Subsequent protecting group removal yielded
star-shaped poly(L-lysine)s with variable polypeptide chain length and arm multiplicity. The same
approach was later extended to the fabrication of star-shaped architectures with a maximum of 8
to 64 poly(γ-benzyl-L-glutamate) (PBLG) arms. By deprotection, the PBLG star polypeptides were
converted into poly(L-glutamic acid) (PGA) star polypeptides. In a very recent work these PGA based
star polypeptides were glycosylated. Glycosylation of star-shaped poly(glutamic acid) resulted in
the formation of a diverse range of glycopolypeptide architectures with tuneable degree of sugar
conjugation [200]. The secondary structure of the branched glycopolypeptides was studied as a
function of the degree glycosylation. The bioactivity of the described glycopoly-peptides toward the
lectin ConA was investigated and was shown to be architecture dependent.
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(b) The arm-first strategy uses a multivalent crosslinking agent where the polypeptide chains are
covalently anchored. This strategy presents several important advantages over the core-first strategy
including the facility for the characterization of arms and final star product, i.e., arm length and star
polymer functionality can be readily and accurately determined. However, this methodology presents
several drawbacks including the extended linking reaction time and the need to remove unreacted
linear arms often using the crude purification process of fractionation.

This strategy was employed by Aliferis et al. [201] for the synthesis of, both, star
homopolypeptides based on (PBLG)3 and (PZLL)3 as well as 3-arm star-block copolypeptides,
PZLL-b-PBLG3 based on a combination of both amino acids. The strategy employed is based on
the use of three-valent isocyanate crosslinking agent that readily reacted with the amino end-terminal
group of the polypeptide (Figure 43). In order to efficiently link the polypeptide chains, the authors
employed an excess of the living arms and carried out the salting-out technique to purify and obtain
the pure product.
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Alternative strategies to fabricate star polypeptides with a larger number of arms have been
reported. In this context, Qiao group investigated extensively this method for the preparation of star
shaped polypeptides by the preparation of Core Cross linked Star (CCS) polymers. [202–204] Their
approach to prepare multiply functionalized CCS polymers comprised entirely of amino acids via
ring opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCA) in a one-pot, arm-first
approach (Figure 44). The CCS polymers had selectively degradable cores and possessed hierarchical
functionalities spanning from the peripheral groups, along the arms, as well as on the core itself. ROP of
Nε-Z-L-lysine NCA initiated with the secondary amine, hexamethyldisilazane (HMDS), afforded linear
living poly(Nε-Z-L-lysine) (PZLL)7 which served as the ‘arm’ or macroinitiator (MI) for star formation.
Subsequent addition of L-cystine NCA, which acts as a cross-linker, resulted in the formation of
poly(Nε-Z-L-lysine)arm poly(L-cystine)core (PZLL-arm-PLC-core) CCS polymer 1. Unreacted pendant
NCAs within the core of the star 1 allowed for facile post-functionalization through reaction with
primary amines bearing different functional groups, such as propargylamine (PGA), propylamine (PA)
and aminomethyl pyrene (AMP) to yield core-functionalized stars 2. Deprotection of the carboxybenzyl
(Cbz) protecting groups from the side-chains of the PZLL arms of star 2 gave the water soluble
poly(L-lysine)arm poly(L-cystine)core (PLL-arm-PLC-core) CCS polymer 3. The degradability of
the CCS polymers was demonstrated by cleavage of the disulfide bridge in the core with reducing
agents such as dithiothreitol (DTT), which yielded the star’s linear poly((Nε-Z-L-lysine)-b-(L-cystine))
(P(ZLL-b-LC)) block copolymer constituents.

Other groups have also prepared CCS star polymers with, for instance, polypeptide periphery and
styrene cores synthesized via the cross-linking of styrenic terminated PBLG arms with divinylbenzene
(Heise et al. [205,206]) or alkyne terminated PBLG and multifunctional azide terminated polyhedral
oligomeric silsesquioxane (POSS) [207].
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(c) Combined strategies to fabricate star-shaped polypeptides. Hybrid star-shaped polypeptide
structures have been also prepared by combining other living/controlled polymerization
methodologies with ROP of polypeptides. An illustrative example of this combination was reported
by Babin et al. [11,208]. Babin and coworkers combined ATRP and ROP for the synthesis of PS(PBLG)2

miktoarm star copolymers, as depicted in Figure 45. The four-step synthetic strategy combined ATRP of
styrene, selective derivatization of PS chain-ends, ROP of γ-benzyl-L-glutamate N-carboxyanhydride,
and a final treatment under acidic conditions in order to remove the γ-benzyl group rendering from
the amphiphilic miktoarm.
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polystyryllithium, followed by the reaction with acidic methanol and their corresponding 
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Figure 45. Synthetic strategy for miktoarm star hybrid-copolypeptides reported by Babin et al.
Reproduced with permission from reference [11].

Other miktoarm structures have equally being reported by other groups. For instance,
Cho et al. [209] used a PEO bearing two central- and two end-amine groups as a macroinitiator for
the polymerization of BLG-NCA, leading to the synthesis of (PEO-b-PBLG)2(PBLG)2 miktoarm star
copolymers. Also, Sun et al. [210] prepared similar structures using, in this case, a trifunctional initiator,
i.e., 2-benzyloxycarbonylamino-1,3-propanediol. Finally, more intricate structures were synthesized
by Karatzas et al. [177] combining anionic polymerization and ROP of NCAs. They employed high
vacuum conditions in order to avoid any contamination, necessary for the preparation of a variety of
well-defined miktoarm star hybrids. An example of these complex structures is depicted in Figure 46.
In this case, polystyrene-b-polyisoprene functionalized with one NH2 group at the junction (PS-NH2-PI)
was synthesized by the reaction of PI-D with polystyryllithium, followed by the reaction with acidic
methanol and their corresponding deprotection. The amino group was then employed to initiate the
ROP NCA.
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Figure 46. Synthesis of the 3-Miktoarm Star Chimeras (PS)(PI)(Polypeptide). Reproduced with
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A similar strategy was recently employed by Zhao et al. [74]. They reported that based on
hydrogen-bonding organocatalysis, living ring-opening polymerization of N-carboxyanhydride of
α-amino acids using aminoalcohols as initiators in the presence of N,N′-bis[3,5-bis(trifluoromethyl)
phenyl]thiourea (TU-S) was achieved. The thiourea provided, through hydrogen bonding,
simultaneous activation of NCA monomers/reversible deactivation of polymer chain-ends/silencing
of the tertiary amine and thus allowed the polymerization to proceed in a highly controllable
mode. For example, by using N,N-dimethyl ethanolamine (DMEA), as an initiator in the
presence of TU-S, a series of well-defined linear polypeptides with differently designed Mns

(3.01 × 104–18.10 × 104) and low PDI values (1.02–1.05) were successfully synthesized. This general
strategy was also extended to the synthesis of well-defined di- and multi-armed polypeptides by using
di-, tri-, or tetra-aminoalcohol initiators (methyldiethanolamine (MDEA), triethanolamine (TEA) or
N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine (THEED)) in the presence of TU-S.

6.2. Grafted Polypeptides and Other Highly Branched Structures

6.2.1. Methods for the Preparation of Polypeptide Brushes

In addition to the non-linear star-shaped polypeptides, other grafted and highly branched
polypeptide structures have been also reported. For the preparation of branched grafted polypeptides,
the traditionally reported strategies “grafting onto” [211–215], “grafting from” [216–218] and “grafting
through” [219,220] methodology have been employed.

Grafting onto Methodologies

Fu et al. [215] obtained poly(L-glutamate)-g-oligo(ethylene glycol) graft polymers by a
combination of NCA polymerization of γ-propargyl-L-glutamate NCA and thiol-yne photoaddition
using thiol-terminated oligo(ethylene glycol). As depicted in Figure 47, a series of poly(L-glutamate)
bearing Y-shaped oligo(ethylene glycol)x (OEGx) side-chains (PPLG-g-EGx, x = 2, 3 and 4) were
synthesized via a combination of ring opening polymerization (ROP) of γ-propargyl-L-glutamate
N-carboxyanhydride (PLG-NCA) with thiol-yne photoaddition. Interestingly, PPLG-g-EG3 and



Polymers 2017, 9, 551 47 of 62

PPLG-g-EG4 were soluble in water and displayed fully reversible thermal-responsive behaviors.
Additionally, the polypeptides showed redox-responsive properties along with the conformation
associated water solubility due to the presence of thioether groups in side-chains.
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[52] via ROP and subsequently ATRP (Figure 49). The approach started with the preparation of 
Nε-bromoisobutyryl functionalized Nα-CBZ-L-lysine and converted in polymerizable α-amino acid 
N-carboxyanhydride (NCA). Then, the NCA was polymerized using Ni(0) transition metal complex 
to give well-defined bromo-functionalized homopolypeptide (PBrLL), from which the authors 
prepared two types of polypeptide bottlebrushes with polystyrene and poly(oligoethylene glycol 
methacrylate) as side-chains. PBrLL macroinitiator was demonstrated to have high initiation 
efficiency for ATRP, which allowed good control over side-chain length.  

Figure 47. The synthetic route to PPLG-g-EGx by a combination of ROP of PLG-NCA and thiol-yne
photochemistry. Reagents and conditions: (i) HMDS, THF/DMF 1:1 v/v, rt, 48 h. (ii) DMPA, DMF, hν,
3 h. Reproduced with permission from reference [215].

Grafting from Methodologies

An illustrative example of the preparation of polypeptide brushes was reported by
Deming et al. [218]. They described a methodology for the synthesis of cylindrical copolypeptide
brushes via N-carboxyanhydride (NCA) polymerization using a tandem catalysis approach that
allowed preparation of brushes with controlled segment lengths, in a single-step procedure requiring
no intermediate isolation or purification stages. As shown in Figure 48, to obtain high-density
brush copolypeptides, they used a “grafting from” approach where alloc-α-aminoamide groups
were installed onto the side chains of NCAs to serve as masked initiators. These groups were inert
during cobalt-initiated NCA polymerization and gave allyloxycarbonyl-α-aminoamide-substituted
polypeptide main chains. The alloc-α-aminoamide groups were then activated in-situ using nickel to
generate initiators for the growth of side-chain brush segments. The use of stepwise tandem cobalt and
nickel catalysis was found to be an efficient method for preparation of high-chain-density, cylindrical
copolypeptide brushes.
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Figure 48. One-pot synthesis of cylindrical brush copolypeptides reported by Deming et al. The
N-carboxyanhydride (NCA) component (blue) of Nε-(alloc-L-methionyl)-L-lysine NCA was first
polymerized using (PMe3)4Co initiator to give a linear polypeptide that bears pendant initiator
precursors (green). Side-chain initiators were then activated by using dmpeNi(COD), followed by
addition of a second NCA monomer (red) to give the brush copolymers. Reproduced with permission
from reference [218].

Molecular bottlebrushes based on poly-L-lysine (PLL) as backbone were reported by Liu et al. [52]
via ROP and subsequently ATRP (Figure 49). The approach started with the preparation of
Nε-bromoisobutyryl functionalized Nα-CBZ-L-lysine and converted in polymerizable α-amino acid
N-carboxyanhydride (NCA). Then, the NCA was polymerized using Ni(0) transition metal complex to
give well-defined bromo-functionalized homopolypeptide (PBrLL), from which the authors prepared
two types of polypeptide bottlebrushes with polystyrene and poly(oligoethylene glycol methacrylate)
as side-chains. PBrLL macroinitiator was demonstrated to have high initiation efficiency for ATRP,
which allowed good control over side-chain length.
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Figure 49. Synthetic route to poly(Br-L-lysine) (PBrLL) (P1), PLL-g-PS (P2), and PLL-g-PEGMA (P3)
polypeptide bottlebrushes. Reproduced with permission from reference [52].

Polyglutamic acid with chloride in the side chain was also used in a “grafting from” approach
by the group of Chen [221,222]. Starting from α-helical poly(2-chloro ethyl glutamate), atom-transfer
radical polymerization (ATRP) was used to graft methoxy di(ethylenoxid) methacrylate from the
side chain. With this strategy Chen et al. [221], synthesized a novel thermo-responsive polypeptide,
poly(L-glutamate)-g-poly(2-(2-methoxyethoxy)ethyl methacrylate) (PLG-g-PMEO2MA) was prepared
by the combination of ROP of γ-2-chloroethyl-L-glutamate-N-carboxyanhydride (CELG-NCA) using
n-hexylamine as the initiator and subsequent ATRP of 2-(2-methoxyethoxy)-ethyl methacrylate
(MEO2MA) monomer. This model thermo-responsive graft copolymer revealed the high efficiency of
“grafting from” polymer side chains while maintaining the a-helical polypeptide backbone.

Grafting through Methodologies

An illustrative example of the use of this strategy was reported Fan et al. [220] for the
preparation of poly(norbornene-graft-poly(β-benzyl-L-aspartate)) (P(NB-g-PBLA)). They integrated
both N-carboxyanhydride ring-opening polymerizations (NCA ROPs) and ring-opening metathesis
polymerizations (ROMPs) and were able to independently construct in controlled manners both
the desirable segment lengths of polypeptide side chains as well as the polynorbornene brush
backbones (Figure 50). The N2 flow accelerated NCA ROP was utilized to prepare polypeptide
macromonomers with different lengths initiated from a norbornene-based primary amine, and those
macromonomers were then polymerized via ROMP. In order to increase the graft density a mixture of
dichloromethane and an ionic liquid was required as the solvent system. This solvent mixture allowed
the construction of molecular brush polymers having densely-grafted peptide chains emanating
from a polynorbornene backbone, poly(norbornene-graft-poly(β-benzyl-L-aspartate)) (P(NB-g-PBLA)).
Highly efficient postpolymerization modification was achieved by aminolysis of PBLA side chains to
obtain functional moieties onto the molecular brushes.
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Figure 50. Synthetic design of polypeptide molecular brushes via “grafting through” strategy with
postpolymerization modification using aminolysis of PBLA brush side chains. Reproduced with
permission from reference [220].

6.2.2. Dendritic Graft, Arborescent and Hyperbranched Polypeptide Architectures

The synthesis of the dendritic-graft polypeptides was described by Klok and
Rodriguez-Hernandez [223] and is outlined in Figure 51. The synthetic strategy was based
on the ring-opening copolymerization (ROCP) of two orthogonally Nε-protected L-lysine NCAs.
One of the monomers contained a temporary protective group, which could be removed under
relatively mild conditions. The ε-NH2 group of the other L-lysine monomer was masked with a
permanent protective group, stable under the conditions applied for the removal of the temporary
protective group. The permanent protective group was removed in the very last step of the synthesis.
In the first synthetic step, a primary amine was used to initiate the ROCP of the two NCAs to prepare
the core of the targeted polypeptide. Removal of the temporary protective group generated a number
of primary amine groups, which can act as an initiator to graft the first generation of peptide arms
onto the core. Repetition of this NCA ring-opening polymerization/deprotection cycle yielded highly
branched, or dendritic-graft, polypeptides.
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Highly branched poly(L-lysine) was also prepared by a repetitive sequence of NCA
polymerization and end-functionalization/deprotection reactions as depicted in Figure 52 [224].
Z-Lys-NCA or Nε-trifluoroacetyl-L-lysine-NCA was initially polymerized with n-hexylamine.
The polymer was then end-functionalized by reaction with Nα,Nε-diFmoc-L-Lys (Fmoc:
9-fluorenylmethoxycarbonyl) under standard peptide coupling conditions. Deprotection
of the Nα,Nε-diFmoc Lys end group produced two new primary amine groups that
could initiate the polymerization of the second generation of branches. Repetition of this
ring-opening polymerization-end functionalization sequence afforded highly branched poly(Nε-
benzyloxycarbonyl-L-lysine) (poly(Z-Lys)) and poly (Nε-trifluoroacetyl-L-lysine) (poly(TFA-Lys)) in a
small number of straightforward synthetic steps. Removal of the side-chain protective groups yielded
water-soluble and highly branched poly(L-lysine)s.
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Very recently, Li and Dong [225] reported the use of phototriggered ring-opening polymerization
of a photocaged L-Lysine N-Carboxyanhydride to synthesize hyperbranched and linear polypeptides.
In their strategy, they combined the inimer (initiator + monomer) ring-opening polymerization (ROP)
and photocaged chemistry to prepare hyperbranched and linear polypeptides without addition
of any initiator/catalyst. The approach, schematically shown in Figure 53, used a photocaged
Nε-(o-nitrobenzyloxycarbonyl)-L-lysine-N-carboxyanhydride (oNB-LysNCA) that possessed intrinsic
photosensitivity and could be straightforwardly transformed into an activated AB* inimer-type
α-amino acid N-carboxyanhydride (NCA) upon UV-LED exposure. As a result, the activated inimer
contains a primary ε-amine, which further triggered ROP to produce linear and/or hyperbranched
polypeptides in one pot and at room temperature. More interestingly, as the authors reported by
tuning the UV irradiation time or intensity, this methodology permitted the synthesis of either linear
polypeptide with a high Mw or (hyper)branched polypeptides with tunable Mw (1.4–73.5 kDa) and
degree of branching (0.09–0.60).
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The ROP NCAs is today an interesting synthetic tool for the synthesis of functional 
polypeptides with variable chemical composition and topology while permitting the fabrication of 
high molecular weight polypeptides with narrow polydispersities. In this review, we provided a 
general overview of this type of polymerization including the preparation of functional monomers, 
the mechanisms and the recent developments in the ROP NCAs that permit a better control over 
dispersity and chain length. These improvements are, without any doubt, the consequence of a large 
amount of work reported focused on the fabrication of multiple macromolecular architectures and 
the large variety of applications explored for these materials. Block copolypeptides able to form 
nanocapsules or highly branched polypeptides have been extensively explored for the delivery of 
therapeutics including drug, proteins or even genes. Functional polypeptides are at the base for the 
fabrication of many different types of hydrogels that have been and are currently being evaluated for 
tissue engineering purposes. Finally, another interesting example is the use of hybrid polypeptide 
materials for the fabrication of tissue engineering scaffolds since polypeptides such as poly(L-lysine) 
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All these applications require a thorough macromolecular design. However, with a large 
number of different synthetic strategies at hand the precise fabrication of a particular polypeptide 
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7. Summary and Conclusions

The ROP NCAs is today an interesting synthetic tool for the synthesis of functional polypeptides
with variable chemical composition and topology while permitting the fabrication of high molecular
weight polypeptides with narrow polydispersities. In this review, we provided a general overview
of this type of polymerization including the preparation of functional monomers, the mechanisms
and the recent developments in the ROP NCAs that permit a better control over dispersity and chain
length. These improvements are, without any doubt, the consequence of a large amount of work
reported focused on the fabrication of multiple macromolecular architectures and the large variety of
applications explored for these materials. Block copolypeptides able to form nanocapsules or highly
branched polypeptides have been extensively explored for the delivery of therapeutics including
drug, proteins or even genes. Functional polypeptides are at the base for the fabrication of many
different types of hydrogels that have been and are currently being evaluated for tissue engineering
purposes. Finally, another interesting example is the use of hybrid polypeptide materials for the
fabrication of tissue engineering scaffolds since polypeptides such as poly(L-lysine) promote cell
adhesion and proliferation.

All these applications require a thorough macromolecular design. However, with a large
number of different synthetic strategies at hand the precise fabrication of a particular polypeptide
structure can be realized and tailored in order to meet the requirements of a particular biomedical or
pharmaceutical need.
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